New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalize a pseudocryptic horn of plenty

Piotr Gasiorek
Uniwersytet Jagielloński
Artur Oczkowski
Uniwersytet Jagielloński
Brian Blagden
Uniwersytet Jagielloński
Reinhardt M. Kristensen
Statens Naturhistoriske Museum

Paul J. Bartels
Warren Wilson College

See next page for additional authors

Follow this and additional works at: https://dc.etsu.edu/etsu-works

Citation Information

Gasiorek, Piotr; Oczkowski, Artur; Blagden, Brian; Kristensen, Reinhardt M.; Bartels, Paul J.; Nelson, Diane R.; Suzuki, Atsushi C.; and Michalczyk, Łukasz. 2021. New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalize a pseudocryptic horn of plenty. Zoological Journal of the Linnean Society. Vol.192(3). 794-852. https://doi.org/10.1093/zoolinnean/zlaa110 ISSN: 0024-4082

New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalize a pseudocryptic horn of plenty

Copyright Statement

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2021, 192, 794-852 794 Zoological Journal of the Linnean Society, 2021, 192, 794-852. With 29 figures. This is an Open Access article distributed under the terms of the Creative Commons AttributionNonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Creative Commons License

(c) ${ }^{(7)}$ ©

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Creator(s)

Piotr Gasiorek, Artur Oczkowski, Brian Blagden, Reinhardt M. Kristensen, Paul J. Bartels, Diane R. Nelson, Atsushi C. Suzuki, and Łukasz Michalczyk

New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalize a pseudocryptic horn of plenty

PIOTR GASSIOREK ${ }^{1 *, \oplus}$, ARTUR OCZKOWSKI ${ }^{1}$, BRIAN BLAGDEN ${ }^{1}$, REINHARDT M. KRISTENSEN ${ }^{2, \oplus}$, PAUL J. BARTELS ${ }^{3, \oplus}$, DIANE R. NELSON ${ }^{4}$, ATSUSHI C. SUZUKI ${ }^{5, \oplus}$ and ŁUKASZ MICHALCZYK ${ }^{1 *, \oplus}$
${ }^{1}$ Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
${ }^{2}$ Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen Ø DK-2100, Denmark
${ }^{3}$ Department of Biology, Warren Wilson College, Asheville, NC 28815, USA
${ }^{4}$ Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA
${ }^{5}$ Department of Biology, Keio University, Yokohama 223-8521, Japan

Received 15 June 2020; revised 18 August 2020; accepted for publication 25 August 2020

Abstract

The cosmopolitan echiniscid genus Hypechiniscus contains exclusively rare species. In this contribution, by combining statistical morphometry and molecular phylogeny, we present qualitative and quantitative aspects of Hypechiniscus diversity, which remained hidden under the two purportedly cosmopolitan species: H. gladiator and H. exarmatus. A neotype is designated for H. gladiator from Creag Meagaidh (Scotland), and an informal re-description is provided for H. exarmatus based on animals from Creag Meagaidh and the Isle of Skye (Inner Hebrides). Subspecies/forms of H. gladiator are suppressed due to the high developmental variability of the cirrus dorsalis. At the same time, four species of the genus are described: H. daedalus sp. nov. from Roan Mountain and the Great Smoky Mountains (Southern Appalachian Mountains, USA), H. flavus sp. nov. and H. geminus sp. nov. from the Yatsugatake Mountains (Honshu, Japan), and H. cataractus sp. nov. from the Malay Archipelago (Borneo and the Moluccas). Dorsal and ventral sculpturing, together with morphometric traits, are shown to be the key characters that allow for the phenotypic discrimination of species within the genus. Furthermore, the morphology of Hypechiniscus is discussed and compared to that of the most similar genera, Pseudechiniscus and Stellariscus. Finally, a diagnostic key to all recognized Hypechiniscus species is provided.

ADDITIONAL KEYWORDS: convergence - crypsis - DNA barcoding - species delimitation - taxonomic drawing.

INTRODUCTION

Progress in tardigrade classification is hampered by a history of deceptive pitfalls. Many species that were once considered cosmopolitan and extremely variable are no longer seen as such [see Bertolani \&

[^0]Rebecchi (1993) for the oldest example in the literature based on the genus Macrobiotus and the gradually amassed evidence for other taxa: Claxton (1998) for Minibiotus, Faurby et al. (2011) for Echiniscoides, Lisi (2011) for Doryphoribius, Michalczyk et al. (2012) for Milnesium, Gąsiorek et al. (2016, 2018a) for Hypsibius and Mesocrista, Guidetti et al. $(2016,2019)$ for Richtersius and Paramacrobiotus, Stec et al. (2018) for Ramazzottius, Santos et al. (2019) for Batillipes and Cesari et al. (2020) for Pseudechiniscus]. On the other hand, other species do appear to be widely distributed and morphologically variable [see Cesari et al. (2016) for

Acutuncus and Gasiorek et al. (2019a) for Echiniscus]. Advancement in our understanding of tardigrade intraspecific variability (Kosztyła et al., 2016; Gąsiorek et al., 2019b; Jackson \& Meyer, 2019; Morek et al., 2019) and the utilization of species delimitation methods (Stec et al., 2018; Cesari et al., 2020) was possible thanks to the acquisition of molecular data (Cesari et al., 2009, 2013). In short, DNA barcoding has disembroiled systematic doubts concerning tardigrade lineages that had accumulated over decades of classical taxonomy (Jørgensen et al., 2018).

In this paper, we investigate the genus Hypechiniscus Thulin, 1928, yet another case of undisclosed tardigrade diversity within the class Heterotardigrada. Hypechiniscus was distinguished from Echiniscus, along with Bryodelphax, by differences in the dorsal plate morphology (Thulin, 1928). This genus was at first represented by two species, H. gladiator (Murray, 1905) (with a single centrodorsal cirrus) and H. exarmatus (Murray, 1907) (without the cirrus), described from Scotland and the adjacent Shetland Islands in the beginning of the $20^{\text {th }}$ century. Despite the clear morphological difference in the state of the centrodorsal cirrus, H. exarmatus was long considered a form of H. gladiator until Kristensen (1987) elevated it to a species rank based on the morphology of claw spurs (smaller in H. exarmatus and larger in H. gladiator) and habitat preferences (soil and aquatic niches vs. mosses, respectively). Nearly seven decades after the erection of H. gladiator, Robotti (1972) described H. papillifer from Italy (originally Echiniscus papillifer), and Iharos (1973) described three forms of H. gladiator from North Korea, now recognized as subspecies: bigladii, fissigladii and spinulosa. In the light of the findings on the ontogenetic and interpopulation variability of heterotardigrades (Gąsiorek et al. 2019b; Santos et al. 2019), these three subspecies are questionable. The most recently delineated species, H. fengi Sun \& Li, 2013, was discovered in China. Thus, the genus currently comprises four species, including one divided into four subspecies. Hypechiniscus is distributed worldwide, but its records are rare and scattered (McInnes, 1994). Hypechiniscus papillifer and H. fengi are known only from their type localities, whereas the two oldest species, H. gladiator and H. exarmatus, each have been reported from different zoogeographic realms (Palaearctic, Nearctic and Australasia), which may suggest that these two taxa represent species complexes.

By combining morphological, morphometric (statistical) and genetic analyses we identify four new species, formally re-describe the nominal species for the genus, provide descriptions of the remaining known species, amend the generic diagnosis, and invalidate the superfluous subspecies/forms. The cuticular sculpturing of Hypechiniscus is reviewed and demonstrated as being of crucial significance in the identification of
species, as was discovered in other heterotardigrade groups (e.g. Kristensen \& Hallas, 1980; Dastych et al., 1998; Grobys et al., 2020). Given that the genus shares many morphological similarities with the genus Pseudechiniscus Thulin, 1911, which was recently revised from multiple perspectives (Cesari et al., 2020; Grobys et al., 2020; Tumanov, 2020), and because key problems associated with their taxonomy are similar, we compare the two taxa with each other and with Stellariscus Gąsiorek et al., 2018c, a potential sister-genus of Hypechiniscus. Finally, a diagnostic key to all currently recognized species of Hypechiniscus is provided.

MATERIAL AND METHODS

SAMPLING, DATA COLLECTION AND TERMINOLOGY

More than 500 individuals of Hypechiniscus were extracted from 21 moss and lichen samples collected throughout the world [details in Table 1; see Stec et al. (2015) for the extraction protocol]. After extraction, the animals were divided into three groups to be used in different analyses: (1) qualitative and quantitative morphology investigated with light contrast microscopy (LCM), specifically phase contrast (PCM) and Nomarski differential interference contrast microscopy (NCM), (2) qualitative morphology with scanning electron microscopy (SEM) and (3) DNA sequencing. The terminology for sclerotized structures follows Kristensen (1987), with the reservation that the 'dorsomedian cirrus', i.e. the synapomorphy of some Hypechiniscus spp., is termed herein as 'cirrus dorsalis', consisting of the base and a flexible flagellum. The gladiator group is the taxonomic term embracing all Hypechiniscus spp. with cirrus dorsalis, whereas the exarmatus morphogroup includes all Hypechiniscus spp. without cirrus dorsalis.

Abbreviations used for scientific institutions: CU, University of Catania, Italy. NMNS, National Museum of Nature and Science, Japan. NMS, National Museum of Scotland, UK. UJ, Jagiellonian University, Poland. NHMD, Natural History Museum of Denmark, Denmark.

Establishing The neotype series for HYPECHINISCUS GLADIATOR

Murray (1905) did not designate a type series for H. gladiator, but the four individuals (and an exuvia without the cirrus dorsalis, thus presumably representing H. exarmatus) isolated from the samples he collected from Loch Morar - subsequently mounted on slides and deposited in the Royal Scottish Museum in Edinburgh (Morgan, 1977) - constitute the material used by Murray (1907). However, because Loch Ness was clearly designated as the type locality in Murray (1905), animals from Loch Morar cannot serve as
Table 1. List of populations used in integrative analyses. Types of analyses: (LCM) imaging and morphometry in PCM/NCM, (SEM) imaging in SEM, (DNA) DNA sequencing. Number in each analysis indicates how many specimens were utilized in a given method (a, adults; v, exuvia; j, juveniles; l, larvae)

Species	Sample code	Coordinates altitude	Locality	Sample type	Collector	Analyses		
						LCM	SEM	DNA
Hypechiniscus daedalus	US. 036	$\begin{aligned} & 36^{\circ} 07^{\prime} 17^{\prime} \mathrm{N} \\ & 82^{\circ} 05^{\prime} 37 " \mathrm{~W} \\ & 1239 \mathrm{~m} \text { a.s.l. } \end{aligned}$	USA, Tennessee, Roan Mountain	moss from tree bark	Diane Nelson	$6 \mathrm{a}+1 \mathrm{j}$	-	3a
	US. 041	$35^{\circ} 35^{\prime} 13$ " N $83^{\circ} 04^{\prime} 31^{\prime \prime} \mathrm{W}$ 1514 m a.s.l.	USA, North Carolina, Purchase Knob	moss from tree trunk	Nate Gross, Mackenzie McClay	$10 a+11$	4a	3 a
Hypechiniscus geminus	JP. 006	$35^{\circ} 56^{\prime} 32^{\prime \prime} \mathrm{N}$ $138^{\circ} 20^{\prime} 46^{\prime \prime} \mathrm{E}$ 2510 m a.s.l.	Japan, Mt. Amigasa	moss from rocks and fallen tree trunks	Atsushi C. Suzuki	$33 \mathrm{a}+5 \mathrm{j}+2 \mathrm{l}$	2a	ca. 30 a
Hypechiniscus gladiator	GB. 033	$\begin{aligned} & 57^{\circ} 08^{\prime} 49^{\prime \prime} \mathrm{N} \\ & 4^{\circ} 40^{\prime} 42^{\prime W} \mathrm{~W} \\ & 20 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Scotland, Loch Ness, Fort Augustus	moss from rock off the lake shore	Brian Blagden	$\begin{aligned} & 55 a+4 v \\ & \quad+11 j+11 \end{aligned}$	30a	10a
	GB. 058	$\begin{aligned} & 56^{\circ} 57^{\prime} 33.03 " \mathrm{~N} \\ & 4^{\circ} 34^{\prime} 04.5 " \mathrm{~W} \\ & 624 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Scotland, Creag Meagaidh, Lochan a' Choire	moss from rock	Brian Blagden	$34 a+4 j$	10a	4a
	GB. 110	$\begin{aligned} & 57^{\circ} 15^{\prime} 04.9^{\prime \prime} \mathrm{N} \\ & 6^{\circ} 16^{\prime} 11.3^{\mathrm{W}} \\ & 107 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Scotland, Inner Hebrides, Isle of Skye	moss from rock	Brian Blagden	13a	-	-
	IS. 019	$64^{\circ} 15^{\prime} 59^{\prime \prime} \mathrm{N}$ $21^{\circ} 04^{\prime} 46^{\prime \prime} \mathrm{W}$ 122 m a.s.l.	Iceland, Thingvellir	moss from soil	Małgorzata Mitan, Małgorzata Osielczak	48a	-	4a
	IT. 116	$\begin{aligned} & 45^{\circ} 28^{\prime} 59^{\prime \prime} \mathrm{N} \\ & 7^{\circ} 22^{\prime} 17^{\mathrm{E}} \\ & 1854 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Italy, Lago di Teleccio	moss from rock	Piotr Gąsiorek, Witold Morek	2a	-	-
	IT. 132	$\begin{aligned} & 45^{\circ} 28^{\prime} 47^{\prime \prime} \mathrm{N} \\ & 7^{\circ} 22^{\prime} 22^{\mathrm{E}} \\ & 1709 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Italy, Vallone di Piantonetto	moss from rock	Piotr Gąsiorek, Witold Morek	2a	-	-
	SE. 018	$\begin{aligned} & 56^{\circ} 40^{\prime} 01 " \mathrm{~N} \\ & 16^{\circ} 36^{\prime} 12^{\prime \prime} \mathrm{E} \\ & 33 \mathrm{~m} \text { a.s.l. } \\ & \hline \end{aligned}$	Sweden, Öland, Gråborg	moss from rock	Reinhardt M. Kristensen	4a	-	-

Table 1. Continued

Species	Sample code	Coordinates altitude	Locality	Sample type	Collector	Analyses		
						LCM	SEM	DNA
Hypechiniscus cataractus	ID. 865	$\begin{aligned} & 0^{\circ} 39^{\prime} 52^{\prime \prime} \mathrm{N} \\ & 127^{\circ} 24^{\prime} 19^{\prime \prime} \mathrm{E} \\ & 1561 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Indonesia, Moluccas, Tidore, Gunung Kiematubu	moss from tree bark	Piotr Gasiorek	3a	-	-
	ID. 870	$\begin{aligned} & 0^{\circ} 39^{\prime} 51^{\prime \prime} \mathrm{N} \\ & 127^{\circ} 24^{\prime} 31^{\prime \mathrm{E}} \\ & 1368 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Indonesia, Moluccas, Tidore, Gunung Kiematubu	moss from tree bark	Piotr Gasiorek	1a	-	1a
	ID. 874	$\begin{aligned} & 0^{\circ} 39^{\prime} 55^{\prime \prime} \mathrm{N} \\ & 127^{\circ} 24^{\prime} 38^{\prime \mathrm{E}} \\ & 1211 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Indonesia, Moluccas, Tidore, Gunung Kiematubu	moss and lichen from tree bark	Piotr Gasiorek	3 a	-	1a
	MY. 041	$\begin{aligned} & 4^{\circ} 57^{\prime} \mathrm{N} \\ & 118^{\circ} 09^{\prime} \mathrm{E} \\ & 700-800 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Malaysia, Borneo, Sabah, Gunung Silam	moss from tree bark	Piotr Gasiorek	4a	-	2a
	MY. 802	$\begin{aligned} & 1^{\circ} 43^{\prime} 27^{\prime N} \\ & 110^{\circ} 28^{\prime} 16^{\prime \prime} \mathrm{E} \\ & 67 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Malaysia, Borneo, Sarawak, Bako Peninsula	moss from tree bark	Piotr Gasiorek, Artur Oczkowski	$16 \mathrm{a}+4 \mathrm{j}$	-	-
	MY. 803	$\begin{aligned} & 1^{\circ} 43^{\prime} 27^{\prime} \mathrm{N} \\ & 110^{\circ} 28^{\prime} 16^{\prime} \mathrm{E} \\ & 67 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Bako Peninsula, Sarawak, Borneo, Malaysia	moss from tree bark	Piotr Gasiorek, Artur Oczkowski	$9 \mathrm{a}+2 \mathrm{j}$	-	-
	MY. 805	$\begin{aligned} & 1^{\circ} 43^{\prime} 29^{\prime N} \mathrm{~N} \\ & 110^{\circ} 28^{\prime} 10^{\prime \prime} \mathrm{E} \\ & 90 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Bako Peninsula, Sarawak, Borneo, Malaysia	moss from soil	Piotr Gasiorek, Artur Oczkowski	$18 \mathrm{a}+3 \mathrm{j}$	10a	6 a
Hypechiniscus exarmatus	GB. 061	$\begin{aligned} & 56^{\circ} 57^{\prime} 03^{\prime N} \mathrm{~N} \\ & 4^{\circ} 36^{\prime} 09^{\mathrm{W}} \\ & 1100 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Scotland, Creag Meagaidh	lichen from rock	Brian Blagden	7a	-	1a
	GB. 110	$57^{\circ} 15^{\prime} 04.9^{\prime \prime} \mathrm{N}$ $6^{\circ} 16^{\prime} 11.3^{\prime \prime} \mathrm{W}$	Scotland, Inner Hebrides, Isle of Skye	moss from rock	Brian Blagden	6a	-	1a
Hypechiniscus flavus	JP. 006	$\begin{aligned} & 107 \mathrm{~m} \text { a.s.l. } \\ & 35^{\circ} 56^{\prime} 32^{\mathrm{N}} \\ & 138^{\circ} 20^{\prime} 46^{\mathrm{E}} \\ & 2510 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Japan, Mt. Amigasa	moss from rocks and fallen tree trunks	Atsushi C. Suzuki	$10 \mathrm{a}+4 \mathrm{j}$	4a	ca. 30a
	JP. 008	$\begin{aligned} & 36^{\circ} 03^{\prime} 31^{\prime \prime} \mathrm{N} \\ & 138^{\circ} 20^{\prime} 43 " \mathrm{E} \\ & 2127 \mathrm{~m} \text { a.s.l. } \end{aligned}$	Japan, Mugikusa Pass	moss from rocks and fallen tree trunks	Atsushi C. Suzuki	$54 \mathrm{a}+20 \mathrm{j}+11$	4a	-

syntypes and a neotype needs to be established. In accordance with the International Code of Zoological Nomenclature (1999), the neotype and the new type (neotype) locality (Scotland, Creag Meagaidh) are designated on the following grounds: the description of the species in question is vague and both phenotypic and genotypic characters need to be redefined, allowing an unambiguous identification of the taxon (art. 75.3.1-3), the type series does not exist (art. 75.3.4), the neotype corresponds with the original description (art. 75.3.5), one of the populations used in the redescription was collected precisely at the type locality chosen by Murray (art. 75.3.6) and the neotype is deposited in a recognized scientific institution (art. 75.3.7). Even though the GB. 033 population is geographically closer to the original type locality, we chose Creag Meagaidh, which is $c .20 \mathrm{~km}$ southwards, as the new type locality for H. gladiator, because specimens representing the population GB. 058 (Creag Meagaidh) are preserved in a better condition, allowing us to designate a good-quality specimen for the neotype. Nevertheless, the population GB. 033 (Loch Ness) is included in the redescription as an additional locality, because we confirm that populations originating from both places are conspecific.

Attempts to redescribe Hypechiniscus exarmatus and Hypechiniscus papillifer

We undertook sampling in the Shetland Islands, the type locality of H. exarmatus (Mainland, Northmaven, Ronas Hill; see Murray, 1907), but without success. Consequently, a designation of a neotype for this species was not possible as we could not ascertain whether the populations from the Hebrides and mainland Scotland represent the same species as from the Shetland Islands. We also sampled in the vicinity of Lago di Teleccio (Vallone di Piantonetto, Graian Alps, Italy), the type locality of H. papillifer (Robotti, 1972), yet again with a negative outcome.

Microscopy and imaging

Specimens for light microscopy and morphometry were first air-dried on microscope slides, subsequently mounted in a small drop of Hoyer's medium to ensure they were fully stretched, and finally examined under a Nikon Eclipse 50i PCM associated with a Nikon Digital Sight DS-L2 digital camera and Olympus BX 51 NCM. Specimens for imaging in the SEM were prepared according to Stec et al. (2015) and examined in Versa 3D DualBeam SEM at the ATOMIN facility of the Jagiellonian University. All figures were assembled in Corel Photo-Paint X8. For deep structures that could not be fully focused in a single LCM photograph, a series of seven to ten images was taken every c. 0.2 mm of vertical focusing and then assembled manually in

Corel Photo-Paint into a single deep-focus image. General schematics of the dorsal and ventral cuticle for all Hypechiniscus spp. were drawn, based on observations of optimally stretched and dorsoventrally oriented specimens under $1000 \times$ magnification in LCM.

Morphometry and statistics

All measurements were performed using PCM. Sample size was adjusted following recommendations by Stec et al. (2016) wherever the number of individuals was sufficiently high. Structures were measured only when oriented properly and not broken or deformed. Body length was measured from the anterior to the posterior end of the body, excluding the hind legs. The $s p$ index is the ratio of the length of a given structure to the length of the scapular plate (Dastych, 1999). The $b s$ index is the ratio between the body length and the maximal body width, only when a specimen is fully relaxed and oriented dorsoventrally (Gasiorek et al., 2018c). Morphometric data were handled using the Echiniscoidea v.1.2 template available from the Tardigrada Register, https:// tardigrada.net/register (Michalczyk \& Kaczmarek, 2013). Fifteen standard absolute traits were measured and one relative trait (cirrus A length/body length ratio) was calculated for adult females and males of all analysed species of Hypechiniscus. Hypechiniscus exarmatus was excluded from interspecific comparisons due to an insufficient number of individuals. To allow for a comparison of all species of the gladiator and exarmatus groups, the length of cirrus dorsalis was not considered in the principal component analysis (PCA), which was performed in RStudio (RStudio Team, 2015) with the prcomp function. To completely eliminate body-size effects, Thorpe normalizations are required (Bartels et al., 2011), but sample sizes for some species did not allow for this approach. Therefore, to minimize allometric effects, PCA included only the $s p$ values, with the exception of the body and scapular plate lengths. Approximately 13% (\%) and 15% (ơ) of the measurements could not be made due to unfavourably oriented structures (mostly claw spurs). To avoid losing sample size for the other traits, the missing data were replaced by the median values of each variable within a given population, which for small datasets is usually similar to using mean values (Refaat, 2007). To account for divergent dimensions of the measured traits, all variables were scaled to unit variance and zero mean. The results were visualized using the package ggfortify (v.0.4.1; Tang et al., 2016). As the first and the second principal components, comprising cephalic appendages and claws, explained the predominant portion of variance (65% for $\$ \%$ and 63% for ${ }^{\circ} \delta^{\circ}$), they were chosen for one-way ANOVA tests followed by post-hoc Tukey's testing to check for morphometric differences between the species. The assumptions relating to homogeneity
of variances and the normality of distributions were checked by applying Levene's and Shapiro-Wilk tests, respectively, using car package (Fox \& Weisberg, 2011). In all cases, the assumptions of ANOVA were met ($P \gg 0.05$), with the exclusion of the cirrus internus length for $0^{\star 0}$, for which the variances were always heterogeneous, irrespective of discarded outliers. The Benjamini-Hochberg correction was applied to the α-level to account for multiple testing. Box plot charts were generated using the package ggpubr (https:// CRAN.R-project.org/package=ggpubr).

GEnotyping and phylogenetics

DNA was extracted from individual animals following a Chelex 100 resin (Bio-Rad) extraction method (Casquet et al., 2012; Stec et al., 2015). Four DNA fragments were sequenced: the small ribosome subunit 18 S rRNA, the large ribosome subunit 28 S rRNA, the internal transcribed spacer ITS1 and the cytochrome c oxidase subunit I COI. Despite trying various sets of primers (LCO1490+HCO2198, LCO1490+HCOoutout, jjLCO1490+jjHCO2198 and bcdF01+bcdR04), only for
H. exarmatus were we able to sequence the COI. All fragments were amplified and sequenced according to the protocols described in Stec et al. (2015); primers and original references for specific PCR programmes are listed in Table 2. GenBank accession numbers for all species are provided in Table 3. The sequences 18 S rRNA, 28S rRNA and ITS1 were aligned with sequences (MW077138-40) for Acanthechiniscus islandicus (Richters, 1904) as the outgroup, using the Q-INS-i strategy in MAFFT v. 7 (Katoh et al., 2002; Katoh \& Toh, 2008). The aligned fragments were edited and checked manually in BioEdit with the gaps left intact.

ModelFinder (Kalyaanamoorthy et al., 2017) under the Akaike information criterion (AIC) and corrected AIC (AICc) were used to find the best substitution models for three predefined partitions (Chernomor et al., 2016). The programme indicated the following models: K2P+G4 (18 S rRNA), TIM2e +I (28 S rRNA) and TVM $+\mathrm{F}+\mathrm{I}$ (ITS1). Maximum likelihood (ML) topologies were constructed using IQ-TREE (Nguyen et al., 2015; Trifinopoulos et al., 2016). The strength of support for the internal nodes of the ML construction was measured using 1000 ultrafast bootstrap replicates (Hoang et al., 2018).

Table 2. Primers and references for specific protocols for amplification of the four DNA fragments sequenced in the study

DNA fragment	Primer name	Primer direction	Primer sequence ($5^{\prime}-3{ }^{\prime}$)	Primer source	PCR programme*
18S rRNA	18S_Tar_Ff1	forward reverse	AGGCGAAACCGCGAATGGCTC	Stec et al. (2017)	Zeller (2010)
	18S_Tar_Rr2		CTGATCGCCTTCGAACCTCTAACTTTCG	Gassiorek et al. (2017)	
28S rRNA	28S_Eutar_F	forward	ACCCGCTGAACTTAAGCATAT	Gasiorek et al. (2018b)	Mironov et al. (2012)
	28SR0990	reverse	CCTTGGTCCGTGTTTCAAGAC	$\begin{aligned} & \text { Mironov et al. } \\ & (2012) \end{aligned}$	
ITS1	ITS1_Echi_F	forward	CCGTCGCTACTACCGATTGG	Gassiorek et al. (2019a, b)	Wełnicz et al. (2011)
	ITS1_Echi_R	reverse	GTTCAGAAAACCCTGCAATTCACG		
COI	LCO1490	forward	GGTCAACAAATCATAAAGATATTGG	$\begin{aligned} & \text { Folmer et al. } \\ & (1994) \end{aligned}$	Michalczyk et al. (2012)
	HCO2198	reverse	TAAACTTCAGGGTGACCAAAAAATCA		

* All PCR programmes are also provided in Stec et al. (2015).

Table 3. GenBank accession numbers for the Hypechiniscus spp. analysed in this work, bold font indicates new sequences

Species	18S rRNA	28 S rRNA	ITS1	COI
Hypechiniscus gladiator	MT809239-43	MT809202-3	MT809191-4	-
Hypechiniscus exarmatus	MT809238	MT809201	MT809190	MT801042
Hypechiniscus daedalus	MT809236-7	MT809199-200	MT809186-9	-
Hypechiniscus flavus*	HM193377	HM193394	-	HM193410
Hypechiniscus geminus*	HM193378	HM193395	-	HM193411
Hypechiniscus cataractus	MT809232-5	MT809195-8	MT809179-85	-

[^1]Using PartitionFinder v.2.1.1 (Lanfear et al., 2016) under the AIC, the best substitution model and partitioning scheme was chosen for posterior phylogenetic analysis. As the best-fit partitioning scheme, PartitionFinder suggested the retention of three separately predefined partitions, and the bestfit models were: GTR $+\mathrm{I}+\mathrm{G}$ (18 S rRNA) and GTR+I (28S rRNA, ITS1). Bayesian inference (BI) marginal posterior probabilities were calculated using MrBayes v.3.2 (Ronquist \& Huelsenbeck, 2003). Random starting trees were used and the analysis was run for ten million generations, sampling the Markov chain every 1000 generations. An average standard deviation of split frequencies of <0.01 was used as a guide to ensure the two independent analyses had converged. TRACER v.1.3 (Rambaut et al., 2014) was then used to ensure Markov chains had reached stationarity and to determine the correct 'burn-in' for the analysis, which was the first 10% of generations. The ESS values were greater than 200 and the consensus tree was obtained after summarizing the resulting topologies and discarding the 'burn-in'. All final consensus trees were
viewed and visualized by FigTree v.1.4.3 available from https://tree.bio.ed.ac.uk/software/figtree.

DATA DEPOSITION

Raw morphometric data underlying the description of the new species are deposited in the Tardigrada Register under www.tardigrada.net/register/0071.htm (H. gladiator), www.tardigrada.net/register/0072.htm (H. daedalus), www.tardigrada.net/register/0073.htm (H. flavus), www. tardigrada.net/register/0074.htm (H. geminus) and www. tardigrada.net/register/0075.htm (H. cataractus). DNA sequences are deposited in GenBank.

RESULTS

PhYLOGENETIC POSITION AND PHYLOGENY OF HYPECHINISCUS

The concatenated 18 S rRNA+28S rRNA+ITS1 phylogenetic reconstructions reveal congruent topologies in both BI and ML (Figs. 1-2), corroborating the monophyly of Hypechiniscus and the position

Figure 1. The concatenated 18S rRNA+28S rRNA+ITS1 consensus Bayesian phylogenetic tree of the six Hypechiniscus spp. analysed in this study; with Acanthechiniscus islandicus (Richters, 1904) as the outgroup. Hypechiniscus gladiator is represented by two populations: GB. 033 and IS.019, as the population GB. 058 was characterized by identical haplotypes as GB.033. Branch support is given as BI posterior probability values above branches and ML bootstrap values below branches. Maximum likelihood tree shared the topology with BI analysis.
of the genus as a sister-taxon to Testechiniscus, Diploechiniscus and Echiniscus-like genera, as inferred in other recent echiniscid phylogenies (Gasiorek \& Michalczyk, 2020a; Fig. 2).

The three analysed species of the gladiator group form a clade(Fig.1).The exarmatus group is paraphyletic with respect to the monophyletic gladiator group. The Palaearctic H. gladiator and new Nearctic species H. daedalus are the most closely related taxa. The new species H. flavus, exhibiting a unique yellow body coloration, is the sister-taxon to all other sequenced Hypechiniscus spp., which are whitish.

SPECIES DESCRIPTIONS

PhyLum: Tardigrada Doyère, 1840
Class: Heterotardigrada Marcus, 1927
Order: Echiniscoidea Richters, 1926
Family: Echiniscidae Thulin, 1928
Genus: Hypechiniscus Thulin, 1928
The Hypechiniscus gladiator group

> SPECIES: HYPECHINISCUS DAEDALUS GASIOREK, OcZKOWSKI, BARTELS, NELSON, KRISTENSEN \& MICHALCZYK, SP. NOV.

Zoobank registration: 99D4BB97-5668-4C96-BBE3CAB4FB52EA39.
Echiniscus gladiator; Durham (North Carolina, USA); Higgins (1960)

Figure 2. Phylogenetic position of Hypechiniscus in the crown-group Echiniscidae. The hypothetical position of Stellariscus based on the morphological and molecular analyses of Gąsiorek et al. (2018c), Cesari et al. (2020) and Gasiorek \& Michalczyk (2020a).
E. (Hypechiniscus) gladiator; Giles and Grayson County (Virginia, USA); Riggin (1962)
E. (H.) gladiator; Roan Mountain (Tennessee, North Carolina, USA); Nelson (1975)
H. gladiator; Spruce Mountain (West Virginia, USA); Tarter \& Nelson (1990)
H. gladiator; Monongahela National Forest (West Virginia, USA); Tarter \& Nelson (1994)
H. gladiator; Roan Mountain (Tennessee, USA); Guidetti et al. (1999)
H. gladiator; Great Smoky Mountains (Tennessee, North Carolina, USA); Bartels \& Nelson (2007), Nelson \& Bartels (2007, 2013), Nelson et al. (2020)
(Fig 3-6, 26C; TABLES 4-5)

Description

Females (i.e. from the third instar onwards; measurements and statistics in Table 4): Body whitish and stout (Figs 3A, C, 4), with spheroid or ovoid black eyes, persisting also after mounting. Elongated, dactyloid cephalic papillae (secondary clavae) and (primary) clavae (Figs 3A, C, 5A, B); peribuccal cirri without cirrophores (Fig. 5B). Cirrus A short, with cirrophore (Figs 3A, 5A). Long cirrus dorsalis with a triangular base inserted posterior to median plate 2 (Figs 3A, C, 4), the flagellum occasionally subdivided into two cirri.

Dorsal plates poorly sclerotized, with the Pseudechiniscus-type sculpturing, that is endocuticular pillars protruding through the epicuticle and visible as densely packed dark dots in PCM (Fig. 3A), bumps in NCM (Fig. 3C) or weakly elevated protrusions (granules) in SEM (Fig. 26C). Epicuticular ornamentation in the form of ridges visible in LCM and SEM (Figs 3A, C, 4, 26C). Generally, the sculpture is well-developed and evident in LCM. The cephalic plate is large and pentapartite, with two small anterior portions, a central keel-like portion and two larger trapezoid portions (Figs 3A, 4A, 5A). The cervical (neck) plate is not visible in LCM, indistinctly merged with the anterior margin of the scapular plate in SEM (Fig. 5A). The scapular plate falsely divided in two parts by a central longitudinal suture and by numerous epicuticular ridges (Figs 3A, 4A, 5A, 6A). Three median plates, all pseudobipartite, falsely subdivided by transverse sutures (Fig. 6A) and with six pairs of lateral intersegmental platelets flanking their borders (Figs 3A, 4A, 6A). Two pairs of large segmental plates without marginal incisions, but with a complicated system of epicuticular ornamentation giving an impression of false subdivisions (Figs 3A, 6A). Caudal (terminal) plate large, with long incisions (Figs 3A, 4A, 6A).

Ventral cuticle with a clear species-specific pattern of ornamentation reaching the lateroventral sides of the body (Figs 3A, 4B). Ornamentation composed of epicuticular thickenings and endocuticular pillars of

Figure 3. Habitus of Hypechiniscus daedalus (LCM): A, holotype (ㅇ) , dorsal view (PCM); B, allotype (${ }^{\circ}$), dorsolateral view
(PCM), filled arrowheads indicate pulvini; C, paratype (($)$, dorsal view (NCM), empty arrowheads indicate distal, sclerotized
Figure 3. Habitus of Hypechiniscus daedalus (LCM): A, holotype (\%), dorsal view (PCM); B, allotype (o), dorsolateral view
(PCM), filled arrowheads indicate pulvini; C, paratype (\%), dorsal view (NCM), empty arrowheads indicate distal, sclerotized portions of legs. All scale bars $=100 \mu \mathrm{~m}$.

Figure 4. Habitus of Hypechiniscus daedalus (SEM): A, paratype (q), dorsal view; B, paratype (q), lateral view. All scale bars $=50 \mu \mathrm{~m}$.
variable sizes, which are tightly arranged and closely adjacent to each other (Figs 4B, 6B). The largest and most evident pillars occur between legs II and legs III, and in the gonoporal zone, where pillars are densely aggregated and form pseudoplates. Subcephalic zone with a pair of large pseudoplates, and the subcervical area with a
slender columnar or pedestal shaped aggregation or plate (Fig. 6B). Sexpartite gonopore placed between legs III and legs IV and a trilobed anus between legs IV.

Pedal plates and dentate collar IV absent, instead large belts of pillars are present on the outer central part of each leg (Fig. 5D). Weak pulvini present on all

Figure 5. Morphological details of Hypechiniscus daedalus: A, cephalic region, incised arrowheads indicate rudimentary papillae I (SEM); B, peribuccal cirri and cephalic papilla in close-up (SEM); C, claws I, arrowheads indicate pseudoaccessory points (SEM); D, claws II (PCM). All scale bars in $\mu \mathrm{m}$.
legs. Markedly sclerotized areas present at the inner side of each leg below the claws (Fig. 3C). A small papilla on leg I present and visible in SEM (Fig. 5A); a papilla on leg IV present (Fig. 4A). Claws I-IV of equal heights. External claws on all legs smooth (Fig. 5C-D). Internal claws with massive spurs positioned at c. one-quarter of the claw height and strongly bent downwards. Fragments of upwardly bent epicuticle formed as pseudoaccessory points on all claws (visible only in SEM; Fig. 5C, arrowheads).

Males (i.e. from the second instar onwards; measurements and statistics in Table 5): Except for the circular gonopore, no sexual dimorphism was observed (compare Fig. 3B with Figs 3A, C). The bs ratios for males and females largely overlap (0.35-0.43 in $N=8$ ơ * vs. $0.38-0.43$ in $N=6$ о\%).

Juveniles (i.e. the second instar, sexually immature females): No qualitative differences with respect to adults, except for lack of the gonopore. Shorter than adults ($165 \mu \mathrm{~m}$ in length, scapular plate length $20.7 \mu \mathrm{~m}$).

Lengths of cephalic appendages: cirrus internus $12.1 \mu \mathrm{~m}$, cirrus externus $16.2 \mu \mathrm{~m}$, cirrus A $21.4 \mu \mathrm{~m}$. Cirrus dorsalis length: $65.9 \mu \mathrm{~m}$. Claw heights: 9.0-9.2 $\mu \mathrm{m}$.

Larvae (i.e. the first instar): Dorsal sculpturing weakly developed, but epicuticular ornamentation present. Gonopore and anus absent. Shorter than juveniles and adults, body $122 \mu \mathrm{~m}$ in length, scapular plate length $10.9 \mu \mathrm{~m}$. Lengths of cephalic appendages: cirrus internus $4.3 \mu \mathrm{~m}$, cephalic papilla $3.7 \mu \mathrm{~m}$, cirrus externus $7.8 \mu \mathrm{~m}$, clava $4.0 \mu \mathrm{~m}$, cirrus A $9.4 \mu \mathrm{~m}$. Cirrus dorsalis length: $24.4 \mu \mathrm{~m}$. Claw heights: 5.9-7.1 $\mu \mathrm{m}$.

Eggs: One or two round, white eggs per exuvia were found.

Genetic markers: 18S rRNA was characterized by two haplotypes with minor differences between them $(p$-distance $=0.2 \%)$. One haplotype was detected in the 28 S rRNA and three in the ITS1 ($0.1-0.2 \%$); see Table 3 for details.

Figure 6．Schematic morphology of Hypechiniscus daedalus：A，dorsum；B，venter．

Type material：Holotype（adult female，slide US．041．02），allotype（adult male，slide US．041．02） and 16 paratypes（ 8 ¢ $+6,60^{\lambda}$ ， 1 juvenile， 1 larva）． Slides US．041．01－2（3ㅇํ， 2 す̛ず， 1 larva）deposited in UJ，slide US． 041.05 deposited in NHMD（3오， 2 す̛ * ），slide US．036．18 deposited in NMS（19， $2 \mathbf{o ̛}^{\star}$ ）and slides US．036．19－20（2워，1ð， 1 juvenile）deposited in CU．

Type locality： $35^{\circ} 35^{\prime} 13^{\prime \prime} \mathrm{N}, 83^{\circ} 04^{\prime} 31^{\prime \prime} \mathrm{W}, 1514 \mathrm{~m}$ a．s．l．：USA，North Carolina，Purchase Knob（see Supporting Information，Fig．S1）；deciduous forest； moss from tree trunk．The species was accompanied by other echiniscids：Claxtonia mauccii（Ramazzotti， 1956），Echiniscus virginicus Riggin， 1962 and Pseudechiniscus brevimontanus Kendall－Fite \＆ Nelson， 1996.

Additional locality： $36^{\circ} 07^{\prime} 17^{\prime} \mathrm{N}, 82^{\circ} 05^{\prime} 37^{\prime} \mathrm{W}, 1239 \mathrm{~m}$ a．s．l．：USA，Tennessee，Roan Mountain，（see Supporting Information，Fig．S2）；deciduous forest；moss from beech tree（Fagus grandifolia Ehrh．）bark．

Etymology：From Latin daedalus＝artfully，subtly formed．The name refers to the sophisticated ventral pattern in the new species．An adjective in the nominative singular．

Phenotypic differential diagnosis：The species is separated from the exarmatus group by having a cirrus dorsalis and it differs from the remaining members of the gladiator group：
－H．fengi by the presence of papilla IV，identifiable in LCM（papilla IV not observable in LCM in H．fengi）．
－H．geminus by having median plates 1－2 falsely subdivided into anterior and posterior portions by sutures（clearly unipartite median plates in
－H．gladiator by both clear epicuticular ridges and endocuticular pillars visible in LCM（only endocuticular pillars visible in LCM in H．gladiator； compare Fig． 3 with Fig．11）．
－H．papillifer by having smooth external claws （claws with secondary spurs directed upwards in H．papillifer）and lacking papillae on legs II－III．
Table 4. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult females of Hypechiniscus daedalus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; sp, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Holotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	7	180	-	239	882	-	1062	200	963	20	55	196	942
Scapular plate length	8	18.1	-	22.5		-		20.4	-	1.5	-	20.8	-
Head appendages lengths													
Cirrus internus	7	9.0	-	14.4	47.9	-	70.1	12.0	59.3	2.0	7.7	11.2	53.8
Cephalic papilla	8	5.8	-	6.8	26.7	-	36.2	6.5	31.9	0.4	2.7	6.7	32.2
Cirrus externus	8	13.5	-	18.7	71.8	-	88.6	16.7	81.9	1.7	5.5	16.1	77.4
Clava	8	4.0	-	5.7	21.2	-	26.1	4.9	24.1	0.6	2.0	4.4	21.2
Cirrus A	8	14.7	-	25.9	73.1	-	115.1	20.5	100.1	3.4	13.7	20.8	100.0
Cirrus A/Body length ratio	7	7\%	-	12\%		-		10\%	-	2\%	-	11\%	-
Body appendages lengths													
Cirrus C^{d}	7	36.7	-	71.6	186.3	-	324.0	52.8	261.1	12.0	47.3	51.5	247.6
Papilla on leg IV length	5	3.2	-	4.0	16.2	-	19.9	3.6	17.9	0.3	1.3	3.7	17.8
Claw I heights													
Branch	7	8.8	-	10.2	44.0	-	51.8	9.5	47.3	0.6	3.2	9.2	44.2
Spur	5	1.9	-	2.5	9.0	-	12.4	2.2	10.5	0.3	1.3	2.0	9.6
Spur/branch height ratio	5	20\%	-	25\%		-		22\%	-	2\%	-	22\%	-
Claw II heights													
Branch	8	8.9	-	10.8	45.3	-	53.0	9.9	48.7	0.5	2.8	9.7	46.6
Spur	8	1.8	-	2.7	8.5	-	13.2	2.2	10.9	0.3	1.6	2.7	13.0
Spur/branch height ratio	8	17\%	-	28\%		-		22\%	-	3\%	-	28\%	-
Claw III heights													
Branch	8	8.8	-	10.3	45.8	-	51.2	9.7	47.8	0.6	2.0	10.3	49.5
Spur	6	1.9	-	2.4	9.6	-	11.5	2.2	10.5	0.2	0.8	2.4	11.5
Spur/branch height ratio	6	20\%	-	23\%		-		22\%	-	1\%	-	23\%	-
Claw IV heights													
Branch	8	9.1	-	11.6	50.2	-	57.7	10.8	53.2	0.8	2.5	11.3	54.3
Spur	1	2.0	-	2.0	10.6	-	10.6	2.0	10.6	?	?	?	?
Spur/branch height ratio	1	20\%	-	20\%		-		20\%	-	?	-	?	-

Table 5. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult males of Hypechiniscus daedalus (type series) mounted in Hoyer's medium. N,
number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Allotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	8	153	-	213	812	-	1009	172	900	18	76	166	869
Scapular plate length	8	16.1	-	21.1		-		19.2	-	1.9	-	19.1	-
Head appendages lengths													
Cirrus internus	7	9.0	-	16.2	43.7	-	78.2	11.8	62.2	2.7	14.1	9.3	48.7
Cephalic papilla	8	5.9	-	8.0	31.8	-	41.2	6.8	35.6	0.7	3.5	6.1	31.9
Cirrus externus	8	12.3	-	20.9	64.4	-	99.1	15.9	82.6	2.9	10.8	12.3	64.4
Clava	8	3.8	-	6.6	19.3	-	32.7	5.1	26.7	1.0	4.1	4.5	23.6
Cirrus A	8	13.7	-	25.3	71.7	-	119.9	19.3	100.7	3.3	16.3	13.7	71.7
Cirrus A/Body length ratio	8	8\%	-	12\%		-		11\%	-	1\%	-	8\%	-
Body appendages lengths													
Cirrus C^{d}	8	40.5	-	64.5	206.1	-	390.9	49.2	259.2	9.1	61.6	40.5	212.0
Papilla on leg IV length	6	2.8	-	3.7	14.7	-	19.9	3.3	17.6	0.4	1.8	2.8	14.7
Claw I heights													
Branch	7	7.2	-	10.7	43.8	-	50.7	8.8	46.2	1.1	2.7	8.5	44.5
Spur	7	1.4	-	2.2	7.9	-	10.7	1.8	9.3	0.3	1.0	1.5	7.9
Spur/branch height ratio	7	18\%	-	24\%		-		20\%	-	2\%	-	18\%	-
Claw II heights													
Branch	8	6.8	-	9.5	42.2	-	47.3	8.7	45.2	1.0	1.9	8.8	46.1
Spur	6	1.3	-	1.8	6.8	-	10.9	1.6	8.8	0.2	1.5	1.3	6.8
Spur/branch height ratio	6	15\%	-	24\%		-		19\%	-	3\%	-	15\%	-
Claw III heights													
Branch	8	7.2	-	10.3	43.1	-	48.8	8.8	45.9	1.0	2.3	8.6	45.0
Spur	8	1.4	-	2.5	7.3	-	11.8	1.7	9.1	0.4	1.6	1.4	7.3
Spur/branch height ratio	8	16\%	-	24\%		-		20\%	-	3\%	-	16\%	-
Claw IV heights													
Branch	7	7.6	-	11.4	46.2	-	54.4	9.8	51.5	1.4	3.4	10.0	52.4
Spur	2	1.6	-	1.8	9.1	-	9.7	1.7	9.4	0.1	0.4	?	?
Spur/branch height ratio	2	18\%	-	20\%		-		19\%	-	1\%	-	?	-

Genetic differential diagnosis: Uncorrected p-distances between H. daedalus and other species are as follows:

- 18S rRNA: from 0.2% (H. gladiator, MT809194) to 4.1\% (H. flavus, HM193377).
- 28S rRNA: from 0.5% (H. gladiator, MT809202-3) to 5.0% (H. cataractus, MT809195-8).
- ITS1: from 2.4% (H. gladiator, MT809192, MT809194) to 18.2% (H. cataractus, MT809184).

Genetically verified geographic distribution: Nearctic: USA.

Species: Hypechiniscus fengi Sun \& Li, 2013

Shortened and corrected version of the original description

Females (i.e. from the third instar onwards): Body 171-222 $\mu \mathrm{m}$ in length, colourless or very light yellow. Eyespots almost invisible. Cephalic appendages lengths: cirrus internus $10.4-13.0 \mu \mathrm{~m}$, cephalic papilla $5.7-7.5 \mu \mathrm{~m}$, cirrus externus $12.1-21.6 \mu \mathrm{~m}$, clava $5.1-6.8 \mu \mathrm{~m}$, and cirrus $A 19.7-25.8 \mu \mathrm{~m}$. Cirrus dorsalis $25.8-30.0 \mu \mathrm{~m}$ long, arising posteriorly to m 2 . Dorsal plates poorly sclerotized, sometimes indistinct, with the Pseudechiniscus-type sculpturing, i.e. fine endocuticular pillars protruding through the epicuticle and visible as densely packed dark dots in PCM. Dorsal armour consists of pentapartite cephalic plate, narrow cervical (neck plate), scapular plate, median plates m1-3 (false divisions of m2-3 into two parts resulting from the presence of longitudinal sutures) and caudal (terminal) plate with incisions. Lateral intersegmental platelets present laterally to m 1 and m 2 . Ventral sculpturing pattern unknown. Pedal (leg) plates, patches of granulation and papillae absent or not visible under LCM on all legs. Claws 9.6-12.4 $\mu \mathrm{m}$ long. Robust spurs pointed downwards present on internal claws; small, sharp spurs usually present at bases of external claws IV. Sexpartite rosette gonopore.

Males (i.e. from the second instar onwards): Sexual dimorphism not specified, but evidenced by the smaller body size ($133-180 \mu \mathrm{~m}$). Cephalic appendages lengths: cirrus internus $4.6-13.7 \mu \mathrm{~m}$, cephalic papilla $5.1-8.7 \mu \mathrm{~m}$, cirrus externus 12.1-20.6 $\mu \mathrm{m}$, clava $5.8-8.2 \mu \mathrm{~m}$ and cirrus A 18.1-24.4 $\mu \mathrm{m}$. Cirrus dorsalis 16.2-32.2 $\mu \mathrm{m}$ long. Claws $8.2-12.1 \mu \mathrm{~m}$ long. Circular gonopore.

Phenotypic differential diagnosis: The species is separated from the exarmatus group by having a cirrus dorsalis and it differs from the remaining members of
the gladiator group by lacking papilla IV (or papilla IV not identifiable under LCM).

Species: Hypechiniscus geminus GąSiorek, OczKowski, Suzuki, Kristensen \& Michalczyk, SP. NOV.

Zoobank registration: 492E0FCD-A39E-4B90-AC7A2914BC8582E4.

Echiniscus (Hypechiniscus) gladiator; Mt. Sara (Ehime Prefecture, Japan); Morikawa (1951)
E. gladiator; Toyama Prefecture (Japan); Utsugi et al. (1995)
E. gladiator; Mt. Tanzawa (Kanagawa Prefecture, Japan); Utsugi \& Hiraoka (1997)
H. gladiator; Mt. Amigasa (Nagano Prefecture, Japan); Jørgensen et al. (2011)
(Figs 7-10, 26E; TABLES 6-8)

Description

Females (i.e. from the third instar onwards; measurements and statistics in Table 6): Body translucent to light fleshcoloured (Fig. 7) and stout (Fig. 8A, D), with spheroid or ovoid black eyes, persisting also after mounting. Elongated, dactyloid cephalic papillae (secondary clavae) and (primary) clavae (Fig. 8A, D); peribuccal cirri without cirrophores. Cirrus A short, with the cirrophore. Long cirrus dorsalis with a triangular base inserted posteriorly to the median plate 2 (Fig. 8A, D), flagellum sometimes subdivided into two cirri.

Dorsal plates poorly sclerotized, with the Pseudechiniscus-type sculpturing, i.e. endocuticular pillars protruding through the epicuticle and visible under PCM as faint, minute, densely packed dark dots on the scapular, segmental and caudal plates (Fig. 8A,B), as densely packed bumps on analogous parts of the armour under NCM (Fig. 8C) or as weakly elevated protrusions (granules) in SEM (Fig. 26E). Generally, the pillars are poorly developed and scarcely visible in LCM. Solid, continuous epicuticular ridges present along the margins of all plates and developed as folds subdividing some plates (Figs 8A, 26E). Cephalic plate large and pentapartite, with two small, anterior portions, a central, keel-like portion and two larger trapezoid posterior portions (Figs 8B, C, 10A). The cervical (neck) plate, not visible in LCM, indistinctly merged with the anterior margin of the scapular plate. The scapular plate uniform (Fig. 10A). Three median plates, all weakly outlined and unipartite (Figs 8A, 10 A), with three pairs of lateral intersegmental platelets flanking their borders. Two pairs of large segmental plates without any incisions or sutures

Figure 7. Two Japanese species isolated in vitro: white Hypechiniscus geminus on the left, and yellow Hypechiniscus flavus on the right. Scale bar $=100 \mu \mathrm{~m}$.
(Fig. 10A). Caudal (terminal) plate large, with long incisions (Figs 8D, 10A).

Ventral cuticle with a clear species-specific pattern of ornamentation that does not extend to the lateroventral margins of the body (Figs 8D, 10B). Ornamentation composed of endocuticular pillars of approximately uniform size. Additionally, large linear epicuticular thickenings sparsely distributed on the venter and discrete from the endocuticular pillars at its lateral sides. Pillars form two column-like shapes: the first extending from the subcervical zone towards the posterior bases of legs I, and the second beginning slightly anterior to legs II and ending at the anterior bases of legs III. The largest aggregation of pillars is in the gonoporal area, however these do not form pseudoplates (Fig. 10B). Sexpartite gonopore placed between legs III and IV and a trilobed anus between legs IV.

Pedal plates, pulvini and dentate collar IV absent (Fig. 8A, D). Belts of pillars present centrally on each leg (Fig. 9A). Poorly sclerotized areas present on the inner side of each leg below the claws. A small spine or papilla on leg I absent and a papilla on leg IV present (Fig. 8D). Claws I-IV of equal heights. External claws on all legs smooth (Fig. 9). Internal claws with spurs of moderate size positioned at c. one-quarter of the claw height and strongly bent downwards.

Fragments of epicuticle formed as upwardly pointing pseudoaccessory points on all claw branches (visible only in SEM; Fig. 9B, arrowhead).

Males (i.e. from the second instar onwards; measurements and statistics in Table 7): Epicuticular ornamentation in the form of grey ridges may be less obvious than in females (Fig. 8B), but still evident in NCM (Fig. 8C). Suture-like pseudodivision of the scapular plate occasionally present (Fig. 8B). Sexual dimorphism expressed only in the shape of the gonopore. The $b s$ ratios overlap ($0.29-0.40$ in $N=12$ す̋す vs. $0.35-0.42$ in $N=13$ ¢¢).

Juveniles (i.e. the second instar, sexually immature females; measurements and statistics in Table 8): Except for the lack of the gonopore, no qualitative differences with respect to adult females were observed. Body size equal to that of the shortest adult female.

Larvae (i.e. the first instar; measurements and statistics in Table 8): Dorsal sculpturing weakly developed, thus larvae may appear unarmoured (Oreella-like). Gonopore and anus absent. Minute and shorter than juveniles.

Eggs: One or two round, white eggs per exuvia were found.

Figure 8. Habitus of Hypechiniscus geminus: A, holotype ((\uparrow), dorsolateral view (PCM); B, allotype (${ }^{*}$), dorsal view (PCM); C, paratype (${ }^{\star}$), dorsal view (NCM); D, paratype ($\%$), lateral view (SEM). All scale bars = $50 \mu \mathrm{~m}$.

Figure 9．Claws of Hypechiniscus geminus：A，claws III（PCM）；B，claws II，arrowhead indicates pseudoaccessory point （SEM）．All scale bars in $\mu \mathrm{m}$ ．

Figure 10．Schematic depiction of morphology of Hypechiniscus geminus：A，dorsum；B，venter．

Genetic markers：Single haplotypes were reported for 18 S rRNA， 28 S rRNA and COI in Jørgensen et al． （2011）．

Type material：Holotype（adult female，slide JP．006．05）， allotype（adult male，slide JP．006．11）and 38 paratypes
（15＠ி，16ずず， 5 juveniles， 2 larvae on slides JP．006．02， 04－19）．Slides JP．006．07－19（11ヶீ，15 すð 2 juveniles， 2 larvae）deposited in UJ，slide JP．006．02 deposited in NHMD（1 juvenile），JP．006．04（2와）deposited in CU and slides JP．006．05－6（3¢ㅇ， 2 す̛す， 2 juveniles） deposited in NMNS．
Table 6. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult females of Hypechiniscus geminus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Holotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	15	173	-	216	739	-	977	196	880	16	67	209	897
Scapular plate length	15	18.6	-	24.9		-		22.4	-	1.9	-	23.3	-
Head appendages lengths													
Cirrus internus	8	6.7	-	11.4	32.8	-	55.4	9.4	43.3	1.5	8.0	?	?
Cephalic papilla	15	4.9	-	6.8	21.3	-	33.3	5.9	26.6	0.6	3.3	6.5	27.9
Cirrus externus	11	10.9	-	15.3	49.0	-	70.3	13.4	58.5	1.4	5.8	14.0	60.1
Clava	13	4.1	-	5.6	18.5	-	29.0	4.9	22.0	0.4	2.8	5.0	21.5
Cirrus A	11	16.7	-	22.9	71.7	-	100.5	19.5	85.3	2.1	9.2	16.7	71.7
Cirrus A/Body length ratio	11	8\%	-	12\%		-		10\%	-	1\%	-	8\%	-
Body appendages lengths													
Cirrus C^{d}	15	41.0	-	72.7	184.2	-	321.5	57.7	258.1	9.5	40.4	72.7	312.0
Papilla on leg IV length	8	2.4	-	3.4	10.7	-	14.0	2.9	12.8	0.4	1.3	2.5	10.7
Claw I heights													
Branch	15	8.7	-	11.4	41.8	-	57.0	10.2	45.5	0.8	3.9	10.9	46.8
Spur	12	1.5	-	2.0	6.3	-	9.7	1.7	7.6	0.2	0.9	1.8	7.7
Spur/branch height ratio	12	13\%	-	19\%		-		17\%	-	2\%	-	17\%	-
Claw II heights													
Branch	14	8.7	-	11.6	41.6	-	56.5	10.1	45.7	0.8	4.0	11.6	49.8
Spur	10	1.4	-	2.0	6.7	-	8.6	1.7	7.4	0.2	0.6	2.0	8.6
Spur/branch height ratio	10	14\%	-	19\%		-		16\%	-	1\%	-	17\%	-
Claw III heights													
Branch	15	8.7	-	11.3	40.2	-	54.3	10.1	45.3	0.8	3.6	11.1	47.6
Spur	9	1.3	-	2.2	5.4	-	9.2	1.6	7.2	0.3	1.0	1.6	6.9
Spur/branch height ratio	9	13\%	-	19\%		-		16\%	-	2\%	-	14\%	-
Claw IV heights													
Branch	15	9.5	-	12.4	45.0	-	61.8	11.1	49.8	0.8	4.1	12.3	52.8
Spur	7	1.5	-	2.1	6.7	-	8.8	1.8	7.8	0.2	0.8	1.9	8.2
Spur/branch height ratio	7	14\%	-	19\%		-		16\%	-	2\%	-	15\%	-

Table 7. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult males of Hypechiniscus geminus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Allotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	14	128	-	199	645	-	938	172	837	19	80	159	791
Scapular plate length	14	15.7	-	23.4		-		20.6	-	1.9	-	20.1	-
Head appendages lengths													
Cirrus internus	10	6.4	-	9.1	34.1	-	44.3	8.0	40.0	0.8	3.2	8.9	44.3
Cephalic papilla	12	4.5	-	6.8	23.0	-	33.2	5.9	28.9	0.7	3.0	5.7	28.4
Cirrus externus	12	8.4	-	14.2	51.6	-	71.1	11.8	57.3	1.6	6.4	10.6	52.7
Clava	11	3.5	-	5.4	18.8	-	26.7	4.4	21.9	0.5	2.2	4.0	19.9
Cirrus A	13	14.3	-	21.4	69.1	-	105.9	16.6	81.6	2.1	10.6	14.6	72.6
Cirrus A/Body length ratio	13	8\%	-	12\%		-		10\%	-	1\%	-	9\%	-
Body appendages lengths													
Cirrus C^{d}	14	28.0	-	70.3	138.6	-	312.4	48.0	233.5	10.3	46.0	49.1	244.3
Papilla on leg IV length	7	1.7	-	3.4	10.8	-	17.8	2.7	13.8	0.7	2.6	2.5	12.4
Claw I heights													
Branch	14	7.1	-	10.8	39.7	-	51.5	9.5	46.3	0.9	3.2	8.6	42.8
Spur	8	1.1	-	1.8	5.8	-	8.9	1.5	7.4	0.2	1.1	1.5	7.5
Spur/branch height ratio	8	12\%	-	18\%		-		16\%	-	2\%	-	17\%	-
Claw II heights													
Branch	14	6.8	-	10.5	39.3	-	50.2	9.4	45.6	0.9	3.4	8.2	40.8
Spur	6	1.1	-	1.5	5.8	-	7.5	1.3	6.8	0.2	0.6	1.5	7.5
Spur/branch height ratio	6	12\%	-	18\%		-		15\%	-	2\%	-	18\%	-
Claw III heights													
Branch	13	7.2	-	10.6	40.2	-	50.5	9.6	46.7	0.9	2.8	8.5	42.3
Spur	10	1.2	-	1.6	5.5	-	7.6	1.5	7.0	0.1	0.6	?	?
Spur/branch height ratio	10	12\%	-	17\%		-		15\%	-	1\%	-	?	-
Claw IV heights													
Branch	14	7.5	-	11.5	39.7	-	56.4	10.4	50.3	1.0	4.2	10.4	51.7
Spur	4	1.4	-	1.7	6.9	-	7.5	1.5	7.2	0.1	0.3	1.5	7.5
Spur/branch height ratio	4	14\%	-	18\%		-		15\%	-	2\%	-	14\%	-

Table 8. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the juveniles and larvae of Hypechiniscus geminus (type series) mounted in Hoyer's medium. $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	Juvenile 1		Juvenile 2		Larva 1		Larva 2	
	$\mu \mathrm{m}$	$s p$						
Body length	178	967	186	964	116	1045	111	782
Scapular plate length	18.4	-	19.3	-	11.1	-	14.2	-
Head appendages lengths								
Cirrus internus	6.6	35.9	6.5	33.7	3.7	33.3	4.3	30.3
Cephalic papilla	5.5	29.9	5.0	25.9	3.6	32.4	3.6	25.4
Cirrus externus	?	?	13.2	68.4	5.6	50.5	5.7	40.1
Clava	3.9	21.2	4.8	24.9	2.6	23.4	3.0	21.1
Cirrus A	13.8	75.0	15.7	81.3	7.8	70.3	7.3	51.4
Cirrus A/Body length ratio	8\%	-	8\%	-	7\%	-	7\%	-
Body appendages lengths								
Cirrus C^{d}	47.1	256.0	56.4	292.2	20.7	186.5	25.1	176.8
Papilla on leg IV length	2.6	14.1	2.8	14.5	?	?	?	?
Claw I heights								
Branch	7.7	41.8	9.0	46.6	6.3	56.8	6.4	45.1
Spur	1.5	8.2	1.5	7.8	1.0	9.0	1.2	8.5
Spur/branch height ratio	19\%	-	17\%	-	16\%	-	19\%	-
Claw II heights								
Branch	8.3	45.1	8.7	45.1	5.6	50.5	5.7	40.1
Spur	?	?	1.4	7.3	1.1	9.9	1.1	7.7
Spur/branch height ratio	?	-	16\%	-	20\%	-	19\%	-
Claw III heights								
Branch	8.8	47.8	9.2	47.7	6.0	54.1	6.4	45.1
Spur	1.7	9.2	1.5	7.8	1.0	9.0	1.2	8.5
Spur/branch height ratio	19\%	-	16\%	-	17\%	-	19\%	-
Claw IV heights								
Branch	9.5	51.6	9.6	49.7	6.4	57.7	6.7	47.2
Spur	?	?	1.6	8.3	1.3	11.7	1.0	7.0
Spur/branch height ratio	?	-	17\%	-	20\%	-	15\%	-

Type locality: $35^{\circ} 56^{\prime} 32^{\prime \prime} \mathrm{N}, 138^{\circ} 20^{\prime} 46 " \mathrm{E}, 2510 \mathrm{~m}$ a.s.l.: Japan, Honshu, Mount Amigasa (see Supporting Information, Fig. S3); Japanese stone pine [Pinus pumila (Pall.) Regel] zone; moss from rocks and fallen tree trunks. The species was accompanied by H. flavus, Stellariscus pseudelegans (Séméria, 1994) and a Pilatobius sp. nov.

Etymology: From Latin geminus = twin. The name has a twofold sense as the new species was found in the company of H. flavus, and it is the sister-species of H. gladiator. An adjective in the nominative singular.

Phenotypic differential diagnosis: The species is separated from the exarmatus group by having the cirrus dorsalis and it differs from the remaining members of the gladiator group:

- H. gladiator by clear epicuticular ridges visible in LCM as grey elements overlapping with pillars (only endocuticular pillars visible in LCM in H. gladiator; compare Fig. 8 with Fig. 11).
- H. papillifer by having smooth external claws (with secondary spurs directed upwards in H. papillifer) and lacking papillae on legs II-III.

Genetic differential diagnosis: Uncorrected p-distances between H. geminus and other species are as follows [not computable for 28 S rRNA since different fragments were sequenced in Jørgensen et al. (2011) and in the present study]:

- 18S rRNA: from 0.5% (H. gladiator, MT809240) to 3.8% (H. flavus, HM193377).
- COI: 9.8\% (H. flavus, HM193410).

Genetically verified geographic distribution: Eastern Palaearctic: Japan.

Species: Hypechiniscus gladiator (Murray, 1905)

Echiniscus gladiator; locus typicus: Loch Ness (Scotland); Murray (1905)
E. gladiator; Loch Morar, Ben Lawers (Scotland), Faroe Islands; Murray (1907)
E. gladiator; Borðoy, Suðuroy (Faroe Islands); Sellnick (1908)
E. gladiator; Achill Island (Ireland); Murray (1911)

Parechiniscus unispinosus; locus typicus: Serra d’Arga, Serra de Estrela (Portugal); da Cunha (1947)

Hypechiniscus gladiator; Nuuk/Godthåb, Kangaamiut, Kangerlussuaq/Søndre Strømfjord (Greenland); Petersen (1951)
E. (H.) gladiator; Achnasheen, Ben Nevis (Scotland), Cwm Idwal (Wales); Morgan \& King (1976)
H. gladiator; Bergen (Norway); Kristensen (1987)
H. gladiator; Narssaq (Greenland), Thingvellir (Iceland); Maucci (1996)
H. gladiator; Sierra de Guadarrama (Spain); Guil \& Sanchez-Moreno (2013)
H. gladiator; Faroe Islands; Trygvadóttir \& Kristensen (2013)
(Figs 11-15, 26A, B; TABLES 9, 10)

Redescription

Females (i.e. from the third instar onwards; measurements and statistics in Table 9): Body white and stout, with spheroid or ovoid black eyes, persisting also after mounting (Figs 11A, B, 12A). Elongated, dactyloid cephalic papillae (secondary clavae) and (primary) clavae (Figs 11A, B, 12A-D); peribuccal cirri without cirrophores (Figs 11A, B, 12A-C). Cirrus A short, with the cirrophore (Figs 11A, B, 12B, D). Long cirrus dorsalis with a triangular base inserted after median plate 2 (Figs 11A, 12A, 14 A), sometimes flagellum subdivided into two cirri (the 'fissigladii form'; Fig. 15B) or two cirri with independent bases are present (the 'bigladii form', Fig. 15C).

Dorsal plates poorly sclerotized, with the Pseudechiniscus-type sculpturing, i.e. endocuticular pillars protruding through the epicuticle and visible as densely arranged dark dots in PCM (Fig. 11A), bumps in NCM (Fig. 11D) or weakly elevated protrusions (granules) in SEM (Fig. 26B). No epicuticular ridges

Figure 11. Habitus of Hypechiniscus gladiator (Murray, 1905) (LCM): A, neotype (q), dorsolateral view (PCM); B, neotype (ㅇ), lateroventral view (PCM); C, male from a Scottish population, lateral view (PCM); D, male from an Icelandic population, dorsolateral view (NCM). All scale bars $=50 \mu \mathrm{~m}$.

Figure 12. Habitus and morphological details of Hypechiniscus gladiator (SEM): A, female, lateral view; B, cephalic region with peribuccal cirri and secondary clavae (cephalic papillae); C, peribuccal cirri and cephalic papilla in close-up; D, primary clava and cirrophore A in close-up; E, papilla on leg IV. All scale bars in $\mu \mathrm{m}$.
(Fig. 26A) or epicuticular ornamentation visible only in SEM (Fig. 26B). Generally, the sculpture is welldeveloped and evident in LCM. The cephalic plate is large and clearly sexpartite, with three small anterior portions, a central keel-like portion (with the most sclerotized margins) and two significantly larger trapezoid portions (Figs 11A, 12B, 14A). The cervical (neck) plate not visible in LCM, reduced to a thickening anterior to the scapular plate (Figs 12B, 14A). The scapular plate divided in two parts by a central longitudinal suture (Figs 11A, 14A). Three median plates, all weakly outlined and unipartite (Figs 11A, 14 A), with three pairs of lateral intersegmental platelets flanking their borders (Figs 11A, 12A, 14A). Two pairs of large segmental plates with short incisions at their anterior and posterior margins (Figs 11A, 12A, 14A). Caudal (terminal) plate large, with long incisions (Figs 11A, 12A, 14A).

Ventral cuticle with a clear species-specific pattern reaching the lateroventral sides of the body (Figs 11A, B, 14B), and composed of endocuticular pillars of variable sizes. The largest and most evident pillars occur in the subcephalic zone (forming a single large pseudoplate), immediately posterior to legs I, at the level of legs II-III, and in the gonoporal zone (Figs 11B, 14B). The remaining pillars are smaller, forming belts on the lateral portions of the venter, a reticulate design
between legs I-III and before the gonoporal area, and a column-like shape extending posteriorly from the subcervical zone towards the first aggregation of larger pillars (Fig. 14B). Sexpartite gonopore located anteriorly of legs IV and a trilobed anus between legs IV.

Pedal plates and dentate collar IV absent; instead, large patches of pillars are present centrally on each leg (Fig. 13A). Distinct pulvini on all legs (Fig. 11A). Markedly sclerotized areas present on the inner side of each leg below the claws (Fig. 11B). A spine or papilla on leg I absent (LCM and SEM), and a papilla on leg IV present (Figs 11B, 12A, E). Claws I-IV of equal heights. External claws on all legs spurless (Fig. 13). Internal claws with massive spurs positioned at c. one-quarter of the claw height and strongly bent downwards. Upward-directed fragments of epicuticle formed as pseudoaccessory points on all claw branches (visible only in SEM; Fig. 13B, C).

Buccal apparatus (anatomically homogenous in the entire genus) with a rigid, thick-walled tube and a spheroidal pharynx. Pharynx with very short, reduced placoids encrusted with CaCO_{3} (see figs 29-30 in Kristensen 1987). Stylet supports absent.

Males and sexually dimorphic traits (i.e. from the second instar onwards; measurements and statistics in Table 10): ơ almost identical to $\circ+$, , i.e. sexual

Figure 13．Claws of Hypechiniscus gladiator：A，claws III（PCM，paratype）；B，claws I（SEM）；C，claws III（SEM）．Note divergent pseudoaccessory points．All scale bars in $\mu \mathrm{m}$ ．
dimorphism is rudimentary，as even clavae are of similar lengths in both sexes（size differences in clavae are typically indicative of sexual dimorphism in echiniscids）．Cephalic papillae broader in ơ ơ （Fig．11C）．Of the standardly measured traits， ơ differ significantly from size，estimated both as mean body length \pm SD： $200 \pm 19 \mu \mathrm{~m}$ vs． $246 \pm 25 \mu \mathrm{~m}$（one－tailed Welch＇s t－test due to unequal variances，with $N_{\text {op }}=30$ and $N_{\text {do }}=30$ ： $\left.t_{55}=8.06 ; P<0.001\right)$ and as average scapular plate length： $21.4 \pm 1.8 \mu \mathrm{~m}$ vs． $25.4 \pm 2.6 \mu \mathrm{~m}\left(t_{52}=6.90\right.$ ； $P<0.001$ ）．The bs ratio ranges，which are usually clearly separate for each sex，also overlap（0．34－0．41 in $N=11$ ơす $\begin{gathered}\text { vs．} 0.37-0.47 \text { in } N=10 \text { ㅇㅇ）．}\end{gathered}$

Juveniles（i．e．the second instar，sexually immature females）：Except for the lack of the gonopore，no qualitative differences with respect to adult females were observed．Shorter than adult females．

Larvae（i．e．the first instar；measurements and statistics in Table 10）：Dorsal sculpturing weakly developed． Gonopore and anus absent．Shorter than juveniles．

Eggs：One to four round，white eggs per exuvia were found．

Genetic markers：18S rRNA was characterized by three haplotypes with minor differences between them（ p－distances $=0.1-0.3 \%$ ），but one haplotype was detected for 28 S rRNA，and four in ITS1（0．3－1．6\％）； see Table 3 for details．

Neotype material：Neotype（adult female，slide GB．058．12）， 105 individuals（ 25 ¢우， 28 すた 0,11 juveniles， and one larva on slides GB．033．16－51；19우，14 ơ * ， 4 juveniles on slides GB．058．11－17），including the form bigladii，and four exuvia．Slides GB．033．16－46（22웅， 22 ơず， 8 juveniles， 1 larva， 2 exuvia）＋GB．058．11－12 （5\％\％， 4 がず， 1 juvenile）deposited in UJ，slide GB．058．13
deposited in NHMD（ 3 옹， 3 ỡ $^{\text {o }}$ ），slide GB．058．14
 GB．033．47－51（3웅， 6 ơず， 3 juveniles， 2 exuvia）＋ GB．058．15－17（10¢ㅇ， 4 ở $^{\top}, 2$ juveniles）deposited in CU．

New type（neotype）locality： $56^{\circ} 57{ }^{\prime} 33.03^{\prime \prime} \mathrm{N}$ ， $4^{\circ} 34^{\prime} 04.5^{\prime} \mathrm{W}, 624 \mathrm{~m}$ a．s．l．：Scotland，Creag Meagaidh， Lochan a＇Choire；mountain grassland；moss from rock． The species was accompanied by other echiniscids： Bryodelphax parvulus Thulin，1928，Diploechiniscus oihonnae（Richters，1903）and Echiniscus merokensis Richters， 1904.

Additional locality： $57^{\circ} 08^{\prime} 49^{\prime \prime} \mathrm{N}, 4^{\circ} 40^{\prime} 42^{\prime \prime} \mathrm{W}, 20 \mathrm{~m}$ a．s．l．：Scotland，Loch Ness，Fort Augustus；moss from rock off the lake shore．The species was accompanied by other echiniscids：B．parvulus，D．oihonnae and E．merokensis．

Etymology：The name most likely refers to the presence of the cirrus dorsalis，which resembles a whip that gladiators（lorarii）in the Roman Empire used to goad animals and humans into fighting at arenas．A noun in the nominative singular standing in apposition．

Phenotypic differential diagnosis：The species is separated from the exarmatus group by having a cirrus dorsalis and it differs from the remaining members of the gladiator group：
－H．papillifer by having smooth external claws（with secondary spurs directed upwards in H ．papillifer） and lacking papillae on legs II－III．
－H．daedalus and H．geminus by only endocuticular pillars visible in LCM（clear epicuticular ridges visible in LCM as grey elements overlapping with pillars in the two new species；compare Figs 3,8 and 11），the epicuticular portion of the sculpture is similar in all three species under SEM（Fig．26B，C，E）．

Figure 14. Schematic depiction of morphology of Hypechiniscus gladiator: A, dorsum; B, venter.

Genetic differential diagnosis: Uncorrected p-distances between H. gladiator and other species are as follows:

- 18S rRNA: from 0.2% (H. daedalus, MT809237) to 4.3\% (H. flavus, HM193377).
- 28 S rRNA: from 0.5% (H. daedalus, MT809199, MT809200) to 4.5% (H. cataractus, MT809195-8).
- ITS1: from 2.4\% (H. daedalus, MT809187, MT809189) to 18.2% (H. cataractus, MT809184).

Genetically verified geographic distribution: Western Palaearctic: Iceland, Scotland.

Remarks: Animals found in Italy and the Swedish Öland constitute the first records of this rare species for both countries (Maucci, 1986; Guidetti et al., 2015). Both the forms fissigladii and bigladii [described by Iharos (1973); see Fig. 15; recorded as subspecies in Degma et al. (200920)] are herein suppressed, because: (1) they fall within the genetic variability of the morphotype of H . gladiator with a single cirrus dorsalis and (2) similar morphological variability with regard to the cirrus dorsalis occurs in the new species of the gladiator group (described above). However, the status of the form spinulosa (Fig. 15A) is
unclear. Originally it was used to separate individuals of 'H. gladiator' (see the section 'Biogeography') having three projections in the median line and at the posterior edges of the scapular and segmental plates, together with two anterior projections of the caudal plate, from 'typical' individuals with continuous, smooth plate margins (Iharos, 1973). However, as the dorsal armour is thin and easily deformable in the entire genus, it is feasible that such projections could be formed as artefacts resulting from incomplete relaxation of an individual during mounting (the examination of the syntypes deposited in the Hungarian Natural History Museum in Budapest revealed that such projections are absent). Therefore, this form possesses no reliable character, which would substantiate its distinctiveness. The form spinulosa should, therefore, be recognized as invalid until Hypechiniscus specimens originating from the Korean Peninsula are examined.

SPECIES: Hypechiniscus Papillifer (Robotti, 1972)
Shortened and corrected version of the original description: Sex not specified: Body 196-227 $\mu \mathrm{m}$ in length, almost translucent. Eyespots black. Cirrus dorsalis $52.0-59.0 \mu \mathrm{~m}$ long. Dorsal plates with the fine

Figure 15. Forms of Hypechiniscus gladiator distinguished by Iharos (1973) and suppressed in the present study: A, forma spinulosa; B, forma fissigladii; C, forma bigladii.

Pseudechiniscus-type sculpturing. Ventral sculpturing pattern unknown. Papillae present on legs II-IV. Internal claws with robust spurs directed downwards, and external claws with minute, needle-like spurs at their bases, directed upwards.

Phenotypic differential diagnosis: This is the only Hypechiniscus species with papillae on legs II-III.

The Hypechiniscus exarmatus morphogroup

Species: Hypechiniscus cataractus Gasiorek,
OcZKowski, Kristensen \& MichalcZyk, Sp. nov.

Zoobank registration: 49CA86F7-0A6E-4909-AC498F13A5DE2964.
(Figs 16-19, 26F; TABLES 11-13)

Description

Females (i.e. from the third instar onwards; measurements and statistics in Table 11): Body translucent to white, cylindrical (Figs 16A, C, 17A-C), with minute spheroid black eyes present after mounting. Elongated, dactyloid cephalic papillae
(secondary clavae) and (primary) clavae (Figs 16A, C, 17A, C, 18A); peribuccal cirri without cirrophores (Fig. 18A). Cirrus A short, with cirrophore. Cirrus dorsalis absent.

Minute and densely arranged endocuticular pillars present (see the pillars exposed by a fragment of detached epicuticle in Fig. 17B, arrowhead), however their capituli (heads) are not visible either under LCM or SEM, thereby giving the cuticle an unsculptured appearance. Dorsal plates are thus uniformly grey in PCM (Fig. 16A), and smooth in NCM and SEM (Figs 16C, 17A, B, 26F). The cephalic plate is large and pentapartite, with two small anterior portions, a central keel-like portion, and two larger trapezoid posterior portions (Figs 16A, 17A, B). The cervical (neck) plate is not visible in LCM and is reduced to an anterior thickening of the scapular plate (Fig. 17A, B). The scapular plate divided into four parts by horizontal and longitudinal sutures (Figs 16A, 19A). Three median plates, all weakly outlined and unipartite, with false secondary sutures dividing them into smaller subparts (Figs 16A, 19A) and five pairs of lateral intersegmental platelets flanking their borders (Fig. 19A). Two pairs of large segmental plates with very short incisions at their anterior and posterior margins, and folds of cuticle that subdivide them into smaller portions (Figs 17A, 19A). Caudal (terminal)
Table 9. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult females of Hypechiniscus gladiator (neotype series + population GB.033) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Neotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	30	194	-	300	795	-	1102	246	972	25	61	235	1022
Scapular plate length	30	21.1	-	30.8		-		25.4	-	2.6	-	23.0	-
Head appendages lengths													
Cirrus internus	29	8.8	-	15.0	32.7	-	53.6	11.0	43.1	1.4	5.3	9.2	40.0
Cephalic papilla	30	5.4	-	8.9	20.1	-	35.5	7.0	27.9	0.8	3.3	6.7	29.1
Cirrus externus	29	13.2	-	21.1	51.4	-	81.4	17.0	67.0	1.7	7.6	16.6	72.2
Clava	29	4.0	-	6.9	14.9	-	29.5	5.9	23.5	0.7	3.5	5.9	25.7
Cirrus A	30	12.8	-	31.4	44.6	-	115.5	22.7	90.3	4.0	17.3	21.8	94.8
Cirrus A/Body length ratio	30	5\%	-	12\%		-		9\%	-	2\%	-	9\%	-
Body appendages lengths													
Cirrus C^{d}	28	40.3	-	77.8	156.8	-	332.2	60.7	239.2	10.1	44.9	59.1	257.0
Papilla on leg IV length	24	3.3	-	5.3	13.3	-	20.0	4.2	16.4	0.6	1.6	4.0	17.4
Claw I heights													
Branch	27	10.7	-	13.5	43.1	-	57.6	12.3	49.3	1.0	3.8	11.6	50.4
Spur	23	2.2	-	3.9	8.0	-	14.3	2.8	10.9	0.4	1.4	2.2	9.6
Spur/branch height ratio	23	18\%	-	29\%		-		22\%	-	3\%	-	19\%	-
Claw II heights													
Branch	28	10.1	-	14.8	42.8	-	57.1	12.7	50.0	1.3	3.6	10.1	43.9
Spur	26	2.4	-	3.7	8.9	-	13.8	2.9	11.3	0.3	1.2	?	?
Spur/branch height ratio	26	19\%	-	25\%		-		23\%	-	2\%	-	?	-
Claw III heights													
Branch	24	10.6	-	15.4	44.2	-	55.2	12.8	50.0	1.2	3.0	10.6	46.1
Spur	22	2.1	-	3.7	7.7	-	14.6	2.8	10.9	0.5	1.7	2.1	9.1
Spur/branch height ratio	22	17\%	-	27\%		-		22\%	-	3\%	-	20\%	-
Claw IV heights													
Branch	27	11.1	-	15.9	43.1	-	63.1	13.5	53.2	1.3	4.4	11.9	51.7
Spur	21	2.1	-	3.4	9.0	-	12.7	2.7	10.8	0.3	1.1	2.1	9.1
Spur/branch height ratio	21	16\%	-	23\%		-		20\%	-	3\%	-	18\%	-

Table 10. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult males and a larva of Hypechiniscus gladiator (neotype series + population GB.033) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Larva	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	30	150	-	239	773	-	1072	200	936	19	68	124	984
Scapular plate length	30	18.6	-	24.6		-		21.4	-	1.8	-	12.6	-
Head appendages lengths													
Cirrus internus	26	6.9	-	14.5	34.8	-	59.8	9.9	46.6	1.7	6.9	4.9	38.9
Cephalic papilla	30	5.4	-	9.1	27.3	-	43.5	7.3	34.3	1.1	3.8	3.9	31.0
Cirrus externus	29	11.5	-	22.2	50.0	-	91.4	15.3	71.4	2.4	10.0	5.8	46.0
Clava	30	4.5	-	8.5	21.5	-	34.6	5.8	27.3	1.0	3.3	3.9	31.0
Cirrus A	28	12.0	-	24.8	51.3	-	120.3	19.3	91.0	3.5	15.4	10.8	85.7
Cirrus A/Body length ratio	28	6\%	-	12\%		-		10\%	-	2\%	-	9\%	-
Body appendages lengths													
Cirrus C^{d}	28	30.3	-	62.3	138.8	-	302.6	47.3	221.5	10.2	45.2	23.2	184.1
Papilla on leg IV length	17	2.8	-	5.1	14.1	-	22.5	3.9	18.4	0.6	2.4	?	?
Claw I heights													
Branch	25	9.1	-	13.4	43.0	-	60.1	11.2	51.2	1.0	3.8	6.5	51.6
Spur	20	1.8	-	3.4	9.0	-	15.1	2.7	12.3	0.4	1.8	2.3	18.3
Spur/branch height ratio	20	18\%	-	28\%		-		24\%	-	3\%	-	35\%	-
Claw II heights													
Branch	24	8.5	-	13.1	44.4	-	56.9	11.0	51.5	1.1	3.3	6.5	51.6
Spur	23	1.9	-	3.1	9.2	-	16.2	2.7	12.5	0.4	1.6	1.8	14.3
Spur/branch height ratio	23	17\%	-	26\%		-		24\%	-	3\%	-	28\%	-
Claw III heights													
Branch	24	8.4	-	12.7	45.2	-	58.1	11.1	51.4	1.1	2.9	6.2	49.2
Spur	22	1.8	-	3.2	9.7	-	16.6	2.6	11.9	0.4	1.6	1.9	15.1
Spur/branch height ratio	22	19\%	-	25\%		-		23\%	-	3\%	-	31\%	-
Claw IV heights													
Branch	28	10.0	-	13.8	50.5	-	60.9	12.0	55.9	1.0	2.8	7.1	56.3
Spur	9	2.2	-	3.2	10.3	-	14.3	2.6	12.0	0.4	1.3	?	?
Spur/branch height ratio	9	17\%	-	26\%		-		22\%	-	3\%	-	?	-

Figure 16. Habitus of Hypechiniscus cataractus (LCM): A, holotype (\%), dorsolateral view (PCM); B, allotype (ð), dorsal view (PCM); C, paratype (單), dorsolateral view (NCM). All scale bars $=50 \mu \mathrm{~m}$.

Figure 17. Habitus of Hypechiniscus cataractus (SEM): A, paratype (\%), dorsal view; B, paratype (q), dorsal view, arrowhead indicates an exposed fragment of endocuticle (note the difference in body proportions between the two females); C, paratype ($\%$), ventral view; D, paratype (δ^{*}), dorsal view (note the difference in the body proportions between the members of two sexes). All scale bars $=50 \mu \mathrm{~m}$.

Figure 18. Head appendages and claws of Hypechiniscus cataractus: A, peribuccal cirri and secondary clavae (cephalic papillae) in close-up (SEM); B, claws III (PCM, paratype); C, claws II (SEM); D, claws III (SEM). All scale bars in $\mu \mathrm{m}$.
plate large, with poorly marked incisions (Figs 17A, 19A).

Ventral cuticle with a clear species-specific pattern of ornamentation that extends to the lateroventral margins of the body (Fig. 19B). Ornamentation composed of endocuticular pillars of two sizes: large pillars forming a pseudoplate in the subcephalic zone, at the level of legs I, and a pair of genital pseudoplates; and smaller pillars forming thin stripes and an additional two pseudoplates at the level of legs II-III. Importantly, epicuticular thickenings are absent, thus the venter appears smooth under SEM (Fig. 17C).
Pedal plates, belts of pillars, pulvini, and dentate collar IV absent (Fig. 16A). A small spine or papilla on leg I absent and a papilla on leg IV present (LCM and SEM; Fig. 17A, C). Claws minute and resembling those of Pseudechiniscus. Claws IV higher than claws I-III. External claws on all legs smooth. Internal claws with small spurs positioned at c. one-quarter of the claw height and strongly bent downwards. Pseudoaccessory points absent (Fig. 18B-D).

Males and sexually dimorphic traits (i.e. from the second instar onwards; measurements and statistics in Table 12): Almost identical to \circ ㅇ, i.e. sexual dimorphism rudimentary, as even the clavae are of similar lengths
and shapes in both sexes. The ơ ${ }^{\star}$ are significantly different from $\uparrow \uparrow+$ only in body size (see Figs 16B, 17D) estimated as mean body length \pm SD: $153 \pm 12 \mu \mathrm{~m}$ vs. $179 \pm 13 \mu \mathrm{~m}$ (one-tailed Welch's t-test with $N_{\text {요 }}=15$ and $N_{\text {o } \delta \delta}=10: t_{21}=5.31 ; P<0.001$); and as average scapular plate length: $15.4 \pm 1.5 \mu \mathrm{~m}$ vs. $18.6 \pm 1.9 \mu \mathrm{~m}\left(t_{22}=4.58\right.$; $P<0.001$). The $b s$ ratios for both sexes overlap (0.32-

Juveniles (i.e. the second instar, sexually immature females; measurements and statistics in Table 13): Except for the lack of the gonopore, no qualitative differences with respect to adults were observed. Clearly smaller than adult females.

Larvae and eggs: Unknown.
Genetic markers: Three haplotypes were found for 18 S rRNA (p-distances $=0.1-0.3 \%$), two for 28 S rRNA (0.1%), and six for ITS1 ($0.2-0.9 \%$).

Type material: Holotype (adult female, slide MY.802.05), allotype (adult male, slide MY.805.05)
 MY.802.03-6, MY.803.02-3, MY.805.01, 4-7, 11). Slides MY.802.05-6, MY.803.02-3, MY.805.01, 4-6 (15웅,

Figure 19. Schematic depiction of morphology of Hypechiniscus cataractus: A, dorsum; B, venter.

14 ỡ $^{\text {on }}, 5$ juveniles) deposited in UJ, slides MY.802.03-4 (3 ㅇㅇ, 3 ơす $^{\star}, 3$ juveniles) deposited in CU, and slides MY.805.07, 11 (3워, 4 ỡ $^{\text {on }} 1$ juvenile) deposited in Lee Kong Chian Natural History Museum of Singapore.

Type locality: c. $1^{\circ} 43^{\prime} 28^{\prime \prime} \mathrm{N}, 110^{\circ} 28^{\prime} 13^{\prime \prime} \mathrm{E}, 67-90 \mathrm{~m}$ a.s.l.: Malaysia, Borneo, Sarawak, Bako Peninsula (see Supporting Information, Fig. S4); Sundaland heath forest (keranga) passing into padang scrub with dominant Nepenthes gracilis Korth. and N. rafflesiana Jack pitcher plants, both growing on acidic arenosols; moss from tree bark.

Etymology: From Latin cataracta $=$ waterfall. The name signifies the type locality, localised in the vicinity of the waterfall Terjun Tajor. An adjective in the nominative singular.

Phenotypic differential diagnosis: The species is separated from all other known Hypechiniscus spp. by the absence of dorsal sculpturing.

Genetic differential diagnosis: Uncorrected p-distances between H. cataractus and other species are as follows:

- 18S rRNA: from 2.6% (H. gladiator, MT809240) to 5.8% (H. flavus, HM193377).
- 28 S rRNA: from 4.3% (H. daedalus, MT809199, MT809200) to 6.4% (H. exarmatus, MT809201).
- ITS1: from 16.9% (H. gladiator, MT809194) to 18.2% (H. daedalus, MT809186, MT809188).

Genetically verified geographic distribution: The Indomalayan realm: Indonesia, Malaysia.

SPECIES: Hypechiniscus exarmatus (Murray, 1907)
Echiniscus gladiator var. exarmatus; locus typicus: Ronas Hill (Shetland Islands); Murray (1907)
E. gladiator var. exarmatus; Achill Island, Clare Island, Inishturk Island, Belclare (Ireland); Murray (1911)

Hypechiniscus gladiator exarmatus; Rocca d'Argimonia (Piedmont, Italy); Bertolani et al. (1984)
H. exarmatus; Faroe Islands; Trygvadóttir \& Kristensen (2013)
(Figs 20-21; TABLES 14, 15)
Table 11. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult females of Hypechiniscus cataractus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Holotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	15	158	-	206	823	-	1139	179	972	13	101	183	915
Scapular plate length	15	14.2	-	20.4		-		18.6	-	1.9	-	20.0	-
Head appendages lengths													
Cirrus internus	15	7.0	-	11.5	35.8	-	59.7	9.0	48.6	1.4	7.8	8.4	42.0
Cephalic papilla	15	4.5	-	6.9	23.5	-	43.0	5.7	30.8	0.7	4.5	6.9	34.5
Cirrus externus	15	9.4	-	16.8	48.7	-	111.3	14.1	76.8	2.1	14.8	13.4	67.0
Clava	12	3.2	-	5.6	16.2	-	37.1	4.2	22.5	0.6	5.2	4.4	22.0
Cirrus A	15	14.5	-	20.8	71.8	-	123.2	17.1	93.1	1.8	13.2	17.4	87.0
Cirrus A/Body length ratio	15	8\%	-	11\%		-		10\%	-	1\%	-	10\%	-
Body appendages lengths													
Papilla on leg IV length	5	1.9	-	2.7	10.1	-	13.2	2.2	11.8	0.3	1.2	?	?
Claw I heights													
Branch	14	6.5	-	8.5	32.2	-	47.5	7.3	39.7	0.6	4.8	7.1	35.5
Spur	11	0.7	-	1.5	4.4	-	8.6	1.2	6.2	0.2	1.2	1.2	6.0
Spur/branch height ratio	11	11\%	-	19\%		-		16\%	-	3\%	-	17\%	-
Claw II heights													
Branch	13	6.1	-	8.3	32.0	-	43.7	7.1	38.6	0.7	4.0	6.4	32.0
Spur	10	0.9	-	1.6	4.4	-	8.3	1.1	5.7	0.2	1.2	1.2	6.0
Spur/branch height ratio	9	12\%	-	19\%		-		15\%	-	3\%	-	19\%	-
Claw III heights													
Branch	15	6.2	-	8.1	32.5	-	43.7	7.1	38.5	0.6	3.8	6.5	32.5
Spur	12	0.8	-	1.4	3.9	-	7.7	1.1	5.9	0.2	1.2	1.2	6.0
Spur/branch height ratio	12	11\%	-	20\%		-		15\%	-	3\%	-	18\%	-
Claw IV heights													
Branch	14	7.0	-	9.0	35.6	-	53.6	8.0	43.5	0.6	4.8	8.3	41.5
Spur	9	0.7	-	1.4	4.1	-	7.3	1.0	5.5	0.2	1.0	?	?
Spur/branch height ratio	9	9\%	-	16\%		-		13\%	-	2\%	-	?	-

Table 12. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult males of Hypechiniscus cataractus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Allotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	10	129	-	175	877	-	1183	153	996	12	99	149	974
Scapular plate length	10	12.6	-	17.9		-		15.4	-	1.5	-	15.3	-
Head appendages lengths													
Cirrus internus	10	6.1	-	10.1	40.7	-	66.7	8.1	52.6	1.4	8.5	9.2	60.1
Cephalic papilla	10	4.9	-	7.7	31.6	-	50.0	6.4	42.0	1.0	6.5	7.3	47.7
Cirrus externus	10	11.8	-	17.6	76.2	-	110.7	13.9	90.8	1.5	11.3	14.0	91.5
Clava	10	4.0	-	6.2	26.5	-	40.5	5.1	32.9	0.8	4.6	6.2	40.5
Cirrus A	10	11.1	-	18.5	64.5	-	138.1	14.3	93.8	2.6	22.6	12.5	81.7
Cirrus A/Body length ratio	10	7\%	-	12\%		-		9\%	-	2\%	-	8\%	-
Body appendages lengths													
Papilla on leg IV length	8	1.7	-	2.5	10.7	-	14.5	2.1	13.1	0.3	1.2	2.0	13.1
Claw I heights													
Branch	9	5.9	-	6.7	39.0	-	46.8	6.4	42.2	0.3	2.7	6.0	39.2
Spur	6	0.8	-	1.3	5.2	-	8.5	1.1	6.8	0.2	1.2	1.3	8.5
Spur/branch height ratio	6	12\%	-	22\%		-		17\%	-	4\%	-	22\%	-
Claw II heights													
Branch	9	5.8	-	6.5	35.5	-	48.4	6.2	41.1	0.2	3.8	6.0	39.2
Spur	8	0.7	-	1.3	4.5	-	8.7	1.0	6.9	0.2	1.4	0.9	5.9
Spur/branch height ratio	8	11\%	-	21\%		-		17\%	-	3\%	-	15\%	-
Claw III heights													
Branch	8	6.0	-	7.1	39.7	-	48.4	6.4	42.0	0.3	3.1	$?$?
Spur	7	0.7	-	1.1	5.0	-	7.2	0.9	6.2	0.1	0.9	?	?
Spur/branch height ratio	7	11\%	-	17\%		-		15\%	-	2\%	-		-
Claw IV heights													
Branch	9	6.2	-	8.0	40.7	-	52.4	7.2	46.1	0.6	3.6	6.5	42.5
Spur	9	0.8	-	1.5	5.1	-	10.2	1.1	7.0	0.2	1.7	0.9	5.9
Spur/branch height ratio	9	11\%	-	19\%		-		15\%	-	3\%	-	14\%	-

Table 13. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the juveniles of Hypechiniscus cataractus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; sp, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	5	96	-	158	873	-	1065	134	954	25	73
Scapular plate length	5	11.0	-	16.2		-		14.0	-	2.2	-
Head appendages lengths											
Cirrus internus	5	4.7	-	7.5	42.7	-	54.7	6.6	47.5	1.1	5.1
Cephalic papilla	5	3.9	-	4.9	26.5	-	35.9	4.4	32.2	0.4	4.7
Cirrus externus	5	7.0	-	12.9	63.6	-	87.5	10.6	75.6	2.2	8.8
Clava	2	3.5	-	4.1	21.6	-	25.3	3.8	23.5	0.4	2.6
Cirrus A	5	10.0	-	19.5	79.7	-	120.4	13.6	96.7	3.7	16.0
Cirrus A/Body length ratio	5	7\%	-	12\%		-		10\%	-	2\%	-
Body appendages lengths											
Papilla on leg IV length	2	1.8	-	2.2	11.1	-	17.2	2.0	14.1	0.3	4.3
Claw I heights											
Branch	5	4.6	-	6.5	39.5	-	44.2	5.8	41.7	0.8	1.9
Spur	3	0.7	-	1.0	4.3	-	6.4	0.8	5.6	0.2	1.1
Spur/branch height ratio	3	11\%	-	15\%		-		14\%	-	3\%	-
Claw II heights											
Branch	5	4.3	-	6.4	36.4	-	46.4	5.6	40.4	0.8	4.2
Spur	4	0.5	-	1.0	4.5	-	7.8	0.8	5.7	0.2	1.5
Spur/branch height ratio	4	12\%	-	18\%		-		15\%	-	3\%	-
Claw III heights											
Branch	5	4.1	-	6.4	37.3	-	46.1	5.7	41.1	0.9	4.1
Spur	3	0.7	-	1.0	6.2	-	6.4	0.9	6.2	0.2	0.1
Spur/branch height ratio	3	16\%	-	17\%		-		16\%	-	1\%	-
Claw IV heights											
Branch	4	5.0	-	7.0	41.4	-	46.1	6.2	44.0	0.9	2.2
Spur	4	0.8	-	1.1	6.2	-	8.2	1.0	6.8	0.1	0.9
Spur/branch height ratio	4	14\%	-	18\%		-		16\%	-	2\%	-

Figure 20. Habitus of Hypechiniscus exarmatus (Murray, 1907) (LCM): A, female, dorsolateral view (PCM); B, female, dorsolateral view (NCM); C, male, dorsolateral view (PCM); D, male, dorsal view (PCM). Inset: claws II (PCM). All scale bars $=50 \mu \mathrm{~m}$ (with the exception of the inset).

Figure 21. Schematic depiction of morphology of Hypechiniscus exarmatus: A, dorsum; B, venter.

Description

Females (i.e. from the third instar onwards; measurements and statistics in Table 14): Body translucent and slender (Fig. 20A, B), with small spheroid black eyes, persisting also after mounting. Elongated, dactyloid cephalic papillae (secondary clavae) and (primary) clavae (Fig. 20A, B); peribuccal cirri without cirrophores. Cirrus A short, with the cirrophore (Fig. 20A, B). Cirrus dorsalis absent.
Dorsal plates poorly sclerotized, with Pseudechiniscus-type sculpturing, i.e. endocuticular pillars protruding through the epicuticle and visible as densely packed dark dots in PCM (Fig. 20A), and bumps in NCM (Fig. 20B). The sculpture is welldeveloped and evident in LCM. Lacking ornamentation of the epicuticular layer. The cephalic plate is large and clearly sexpartite, with three small anterior portions, a central keel-like portion and two significantly larger trapezoid portions (Figs 20A, B, 21A). The cervical (neck) plate not visible in LCM, presumably reduced to a thickening of the anterior margin of the scapular plate (Fig. 21A). The scapular plate divided in two
parts by a central longitudinal suture (Figs 20A, B, 21A). Median plates $1-2$ bipartite, and median plate 3 unipartite (Figs 20B, 21A), with three pairs of lateral intersegmental platelets flanking their boarders (Figs 20B, 21A).Two pairs of large segmental plates with short incisions at their anterodorsal and posterodorsal margins (Figs 20A, B, 21A). Caudal (terminal) plate large, with long incisions (Figs 20D, 21A).

Ventral cuticle with a clear species-specific pattern of ornamentation, which extends to the lateroventral sides of the body, composed of epicuticular thickenings and endocuticular pillars of variable size (Fig. 21B). Belts of epicuticular thickenings extending medially from the ventral margin. Belts enclosing legs II and III replaced at their mutual junction by predominantly large endocuticular pillars. The remaining belts, which are of variable length, transition into small endocuticular pillars. Two aggregations of large pillars are present: in the subcephalic zone (pseudoplate with an anterior incision), and in the genital zone, surrounding the gonopore laterally and posteriorly (lateral portions form wing-shaped pseudoplates). Sexpartite gonopore placed anteriorly of legs IV and the trilobed anus placed between legs IV.
Table 14. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult females of Hypechiniscus exarmatus (populations GB.061 + GB.110) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	6	144	-	256	742	-	967	202	817	41	83
Scapular plate length	6	18.4	-	31.1		-		24.8	-	5.3	-
Head appendages lengths											
Cirrus internus	5	8.0	-	13.6	37.9	-	55.3	11.1	45.4	2.4	7.1
Cephalic papilla	6	3.5	-	4.9	13.3	-	19.6	4.1	16.7	0.6	2.6
Cirrus externus	6	13.3	-	19.5	56.1	-	77.2	16.5	67.2	2.8	8.4
Clava	6	2.1	-	4.4	10.8	-	17.9	3.4	13.9	0.8	2.7
Cirrus A	6	20.3	-	25.2	70.8	-	118.5	22.5	93.3	1.8	16.9
Cirrus A/Body length ratio	6	9\%	-	14\%		-		11\%	-	2\%	-
Body appendages lengths											
Papilla on leg IV length	4	1.9	-	2.7	7.5	-	12.0	2.4	9.7	0.4	2.0
Claw I heights											
Branch	6	7.8	-	11.7	37.6	-	51.1	10.2	41.7	1.5	4.8
Spur	5	1.0	-	1.9	4.7	-	6.1	1.4	5.3	0.3	0.5
Spur/branch height ratio	5	11\%	-	16\%		-		13\%	-	2\%	-
Claw II heights											
Branch	6	7.6	-	11.6	34.6	-	51.1	10.0	40.9	1.4	5.9
Spur	5	1.0	-	2.1	4.3	-	6.8	1.4	5.7	0.4	0.9
Spur/branch height ratio	5	11\%	-	18\%		-		14\%	-	3%	-
Claw III heights											
Branch	6	7.3	-	11.7	37.6	-	50.5	10.2	41.8	1.7	5.3
Spur	5	1.0	-	2.3	5.4	-	7.6	1.6	6.0	0.5	0.9
Spur/branch height ratio	5	11\%	-	20\%		-		14\%	-	4\%	-
Claw IV heights											
Branch	6	9.3	-	12.3	39.2	-	56.0	11.1	45.8	1.2	6.7
Spur	6	1.1	-	2.0	4.7	-	8.1	1.6	6.2	0.5	1.1
Spur/branch height ratio	6	11\%	-	16\%		-		14\%	-	3\%	-

Table 15. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult males of Hypechiniscus exarmatus (population GB.061) mounted in Hoyer's deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	2	205	-	235	810	-	880	220	845	21	49
Scapular plate length	2	25.3	-	26.7		-		26.0	-	1.0	-
Head appendages lengths											
Cirrus internus	2	8.9	-	16.8	35.2	-	62.9	12.9	49.0	5.6	19.6
Cephalic papilla	2	5.6	-	6.7	22.1	-	25.1	6.2	23.6	0.8	2.1
Cirrus externus	2	12.5	-	21.1	49.4	-	79.0	16.8	64.2	6.1	20.9
Clava	2	3.4	-	6.6	13.4	-	24.7	5.0	19.1	2.3	8.0
Cirrus A	2	23.4	-	24.2	87.6	-	95.7	23.8	91.6	0.6	5.7
Cirrus A/Body length ratio	2	10\%	-	12\%		-		11\%	-	1\%	-
Body appendages lengths											
Papilla on leg IV length	2	2.0	-	3.0	7.9	-	11.2	2.5	9.6	0.7	2.4
Claw I heights											
Branch	2	10.6	-	12.3	41.9	-	46.1	11.5	44.0	1.2	2.9
Spur	2	1.3	-	1.6	5.1	-	6.0	1.5	5.6	0.2	0.6
Spur/branch height ratio	2	12\%	-	13\%		-		13\%	-	1\%	-
Claw II heights											
Branch	2	10.6	-	12.6	41.9	-	47.2	11.6	44.5	1.4	3.7
Spur	2	1.5	-	1.6	5.6	-	6.3	1.6	6.0	0.1	0.5
Spur/branch height ratio	2	12\%	-	15\%		-		13\%	-	2\%	-
Claw III heights											
Branch	2	10.9	-	12.2	43.1	-	45.7	11.6	44.4	0.9	1.8
Spur	2	1.8	-	1.8	6.7	-	7.1	1.8	6.9	0.0	0.3
Spur/branch height ratio	2	15\%	-	17\%		-		16\%	-	1\%	-
Claw IV heights											
Branch	2	11.8	-	14.8	46.6	-	55.4	13.3	51.0	2.1	6.2
Spur	1	1.9	-	1.9	7.5	-	7.5	1.9	7.5	?	?
Spur/branch height ratio	1	16\%	-	16\%		-		16\%	-	?	-

Pedal plates and dentate collar IV absent. Large, centrally placed patches of pillars present on each leg. Weakly developed pulvini on all legs. Markedly sclerotized areas present on the inner side of each leg below the claws (Fig. 20A). A spine or papilla on leg I absent (LCM). Papilla on leg IV present (Fig. 20A, B). Claws I-IV of equal heights. External claws on all legs smooth. Internal claws with small spurs positioned at c. one-quarter of the claw height and strongly bent downwards (Fig. 20D, insert).

Males and sexually dimorphic traits (i.e. from the second instar onwards; measurements and statistics in Table 15): Almost identical to $\$ 9$, i.e. sexual dimorphism is rudimentary, as even the clavae are of similar lengths in both sexes (compare Fig. 20A with Fig. 20C). Cephalic papillae and clavae broader in ơ ơ (Fig. 20D). $\begin{gathered}\text { đ } \\ \text { are slightly slimmer (} b s=0.33-0.35 \text { in }\end{gathered}$

Juveniles, larvae and eggs: Unknown.

Genetic markers: All four markers were characterized by single haplotypes (see Table 3 for details).

Type locality: $60^{\circ} 32^{\prime} 02^{\prime \prime} \mathrm{N}, 1^{\circ} 26^{\prime} 46^{\prime \prime} \mathrm{W}$, c. 450 m a.s.l.; Ronas Hill, Mainland (Shetland); isolated hill.

Etymology: From Latin exarmo = disarm, thus the name most likely refers to the absence of cirrus dorsalis in reference to the 'armed' H. gladiator. An adjective in the nominative singular.

Phenotypic differential diagnosis: The species is separated from the gladiator group based on the absence of the cirrus dorsalis and it differs from the remaining members of the exarmatus group:

- H. flavus by having a translucent body (lemonyellow body colour in the new species; see Fig. 7).
- H. cataractus by endocuticular pillars visible in LCM (greyish dorsal plates with no apparent pillars visible in LCM in the new species; compare Figs 16 and 20).

Genetic differential diagnosis: Uncorrected p-distances between H. exarmatus and other species are as follows:

- 18S rRNA: from 2.9\% (H. daedalus, MT809236-7) to 4.4% (H. cataractus, MT809233).
- 28S rRNA: from 3.2% (H. gladiator, MT809202-3) to 6.4% (H. cataractus, MT809195-8).
- ITS1: from 12.5% (H. gladiator and H. daedalus, MT809191-4, MT809187, MT809189) to 17.7% (H. cataractus, MT809184).
- COI: from 21.1\% (H. flavus, HM193410) to 22.9\% (H. geminus, HM193411).

Genetically verified geographic distribution: Western Palaearctic: Scotland.

> Species: Hypechiniscus flavus Gasiorek, Oczkowski, Suzuki, Kristensen \& Michalczyk, SP. NOV.

Zoobank registration: 84BD6B3B-8134-45A5-A77834491DD0100C.

Hypechiniscus exarmatus; Mt. Amigasa (Nagano Prefecture, Japan); Jørgensen et al. (2011)
(Figs 7, 22-25, 26D; Tables 16-18)

Description

Females (i.e. from the third instar onwards; measurements and statistics in Table 16): Body lemonyellow (Fig. 7) and stout (Figs 22A, B, 23), with ovoid black eyes, persisting also after mounting. Elongated, dactyloid cephalic papillae (secondary clavae) and (primary) clavae (Figs 22A, B, 24A); peribuccal cirri without cirrophores. Cirrus A short, with cirrophore (Fig. 22A, B). Cirrus dorsalis absent.

Dorsal plates poorly sclerotized, with an indistinct Pseudechiniscus-type sculpturing, i.e. endocuticular pillars visible as faint dark densely packed dots in PCM (Fig. 22A) and bumps in NCM (Fig. 22B). Capituli (heads) of pillars barely visible in SEM (Fig. 26D). No epicuticular ridges or epicuticular ornamentation visible under SEM; however, irregularly distributed, epicuticular rings (circular and oval structures with thick rims) are visible (Fig. 26D, arrowheads). Generally, the sculpture is poorly developed and barely identifiable in LCM. The cephalic plate is large and pentapartite, with two small anterior portions, a central keel-like portion and two larger trapezoid posterior portions (Figs 22A, B, 25A). The cervical (neck) plate is not visible in LCM and indistinctly merged with the anterior margin of the scapular plate. The scapular plate solid, undivided by sutures (Figs 22A, B, 25A). Three median plates, all weakly outlined and unipartite (Figs 22A, B, 25A), with three pairs of lateral intersegmental platelets flanking their borders (Fig. 25A). Two pairs of large segmental plates without incisions or sutures (Figs 22A, B, 23A, 25A). Caudal (terminal) plate large, without incisions (Figs 22A, B, 23A, 25A).

Figure 22. Habitus of Hypechiniscus flavus (LCM): A, holotype \uparrow, dorsal view (PCM); B, holotype \oplus_{\uparrow}, dorsal view (NCM); C, allotype δ^{λ}, dorsal view (PCM). All scale bars $=50 \mu \mathrm{~m}$.

Figure 23. Habitus of Hypechiniscus flavus (SEM): A, paratype \uparrow, lateral view; B, paratype ϕ_{q}, ventral view. All scale bars $=50 \mu \mathrm{~m}$.

Ventral cuticle with a clear species-specific pattern of predominantly epicuticular thickenings reaching the lateroventral sides of the body (Figs 23B, 25B). Endocuticular pillars generally overlap with the thickenings, and only occasionally fill the surface between them (Fig. 25B). The largest pillars occur in the centromedian portion of the venter.

Pedal plates, belts of pillars, pulvini and dentate collar IV absent (Fig. 23A). Markedly sclerotized areas at the inner side of all legs below the claws present. A small spine or papilla on leg I absent (LCM and SEM). A papilla on leg IV present (Fig. 23A). Claws on legs I-IV of equal heights. External claws on all legs smooth (Fig. 24). Internal claws with small spurs positioned at c. one-quarter of the claw height and
strongly bent downwards. Pseudoaccessory points absent (Fig. 24B).

Males and sexually dimorphic traits (i.e. from the second instar onwards; measurements and statistics in Table 17): Males almost identical to ㅇ¢, i.e. sexual dimorphismisrudimentary, asevenclavaeareofsimilar lengths and shapes in both sexes (compare Fig. 22A, B with Fig. 22C). ơ * are significantly different from 여 in body size, estimated both as mean body length \pm SD: $173 \pm 12 \mu \mathrm{~m}$ vs. $205 \pm 13 \mu \mathrm{~m}$ (one-tailed Welch's t-test with $N_{\text {оя }}=15$ and $N_{\text {ơ } 8}=15: t_{28}=7.14$; $P<0.001$) and as average scapular plate length: $18.5 \pm 1.5 \mu \mathrm{~m}$ vs. $21.9 \pm 1.2 \mu \mathrm{~m}\left(t_{52}=6.81 ; P<0.001\right)$. In contrast to females, claws IV in males are clearly
higher than claws I-III (e.g. claw I mean height \pm SD: $9.2 \pm 0.9 \mu \mathrm{~m}$ vs. claw IV mean height $\pm \mathrm{SD}$: $\left.10.7 \pm 1.0 \mu \mathrm{~m} ; N=15 ; t_{28}=-4.33 ; P<0.001\right)$. The $b s$ ratio ranges also overlap ($0.34-0.41$ in $N=12$ す̋ $\begin{gathered}\text { vs. }\end{gathered}$ $0.34-0.43$ in $N=12$ 우).

Juveniles (i.e. the second instar, sexually immature females; measurements and statistics in Table 18): Except for the lack of a gonopore, no qualitative differences with respect to females. Smaller than adult females (compare Tables 16 and 18).

Figure 24. Claws of Hypechiniscus flavus: A, claws I (PCM, allotype); B, claws II (SEM). Note that the cuticle margin is tightly adjacent to the claws. All scale bars in $\mu \mathrm{m}$.

Figure 25. Schematic depiction of morphology of Hypechiniscus flavus: A, dorsum; B, venter.

Figure 26. Differences in dorsal plate sculpturing between various members of the genus Hypechiniscus Thulin, 1928 (SEM): A, focus in the following microphotographs was on the scapular or the first segmental plates of the body armour (H. gladiator here); B, H. gladiator; C, H. daedalus; D, H. flavus, arrowheads indicate epicuticular rings; E, H. geminus; F, Hypechiniscus cataractus. All scale bars $=5 \mu \mathrm{~m}$, with the exception of A .

Larvae (i.e. the first instar; measurements and statistics in Table 18): Gonopore and anus absent. Dorsal sculpturing weakly developed. Clearly smaller than juveniles.

Eggs: One to four round, white eggs per exuvia.
Genetic markers: Single haplotypes were presented for 18S rRNA, 28S rRNA and COI in Jørgensen et al. (2011); see Table 3 for details.

Type material: Holotype (adult female, slide JP.006.13), allotype (adult male, slide JP.008.03) and 87 paratypes (48 웅, 14 ơ $^{\star}, 24$ juveniles, 1 larva on slides JP.006.13-20, JP.008.01-9). Slides JP.006.1320, JP.008.01-3 (12q¢, 8 ơ $^{\top}$, 5 juveniles) deposited in UJ, slides JP.008.04-5 deposited in NHMD (9오, 1ठ, 7 juveniles), slide JP.008.06 (9qя) deposited in CU and slides JP.008.07-9 (18¢ㅇ, 5 ơð $^{\star}, 12$ juveniles, 1 larva) deposited in NMNS.
Table 16. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult females of Hypechiniscus flavus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Holotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	15	186	-	229	810	-	1068	205	936	13	69	208	920
Scapular plate length	15	20.0	-	23.7		-		21.9	-	1.2	-	22.6	-
Head appendages lengths													
Cirrus internus	13	7.9	-	11.0	35.3	-	49.8	9.5	43.0	0.9	4.3	10.6	46.9
Cephalic papilla	15	4.9	-	8.5	20.7	-	37.6	5.9	26.9	0.9	4.0	8.5	37.6
Cirrus externus	14	12.6	-	19.3	59.2	-	81.5	16.0	72.5	1.7	6.4	16.5	73.0
Clava	15	3.7	-	6.0	17.5	-	26.5	4.7	21.5	0.6	2.7	6.0	26.5
Cirrus A	15	17.3	-	24.8	78.2	-	107.8	20.3	92.4	2.3	9.8	21.8	96.5
Cirrus A/Body length ratio	15	8\%	-	13\%		-		10\%	-	1\%	-	10\%	-
Body appendages lengths													
Papilla on leg IV length	13	2.2	-	3.6	9.5	-	17.6	2.9	13.5	0.5	2.5	2.4	10.6
Claw I heights													
Branch	15	8.7	-	10.9	40.8	-	50.2	9.7	44.3	0.6	2.7	10.3	45.6
Spur	11	1.3	-	2.3	6.0	-	11.5	1.7	7.7	0.3	1.7	2.2	9.7
Spur/branch height ratio	11	14\%	-	25\%		-		17\%	-	3\%	-	21\%	-
Claw II heights													
Branch	15	8.3	-	10.7	39.0	-	50.0	9.7	44.4	0.6	3.4	10.7	47.3
Spur	11	1.2	-	2.0	5.2	-	8.8	1.5	7.1	0.2	1.1	2.0	8.8
Spur/branch height ratio	11	12\%	-	19\%		-		16\%	-	2\%	-	19\%	-
Claw III heights													
Branch	15	8.5	-	10.5	36.9	-	51.0	9.7	44.3	0.6	3.7	10.5	46.5
Spur	9	1.2	-	1.7	5.6	-	8.3	1.6	7.3	0.2	0.8	?	?
Spur/branch height ratio	9	13\%	-	20\%		-		17\%	-	2\%	-	?	-
Claw IV heights													
Branch	15	9.1	-	12.2	42.7	-	56.5	10.8	49.2	0.8	4.1	11.6	51.3
Spur	4	1.9	-	2.1	8.2	-	9.1	2.0	8.5	0.1	0.4	?	?
Spur/branch height ratio	4	16\%	-	19\%		-		18\%	-	1\%	-	?	-

Table 17. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the adult males of Hypechiniscus flavus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Allotype	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	15	153	-	201	785	-	1175	173	937	12	92	201	1005
Scapular plate length	15	16.0	-	20.9		-		18.5	-	1.5	-	20.0	-
Head appendages lengths													
Cirrus internus	12	7.0	-	9.6	35.9	-	52.7	8.3	44.8	0.8	5.0	8.4	42.0
Cephalic papilla	15	4.8	-	9.0	25.6	-	43.5	6.5	35.2	1.1	4.5	7.0	35.0
Cirrus externus	14	9.8	-	18.8	61.3	-	93.5	14.7	79.4	2.4	10.9	14.8	74.0
Clava	15	3.4	-	7.0	21.0	-	34.8	5.4	28.9	0.9	4.0	5.8	29.0
Cirrus A	12	15.0	-	21.4	85.2	-	123.8	18.2	99.1	1.7	12.5	18.5	92.5
Cirrus A/Body length ratio	12	8\%	-	13\%		-		10\%	-	1\%	-	9\%	-
Body appendages lengths													
Papilla on leg IV length	12	2.1	-	3.6	12.8	-	18.5	2.8	15.1	0.4	2.0	?	?
Claw I heights													
Branch	15	7.2	-	10.7	36.9	-	56.4	9.2	49.9	0.9	4.5	9.9	49.5
Spur	10	1.3	-	1.7	7.3	-	8.7	1.5	7.9	0.1	0.5	1.5	7.5
Spur/branch height ratio	10	15\%	-	18\%		-		16\%	-	1\%	-	21\%	-
Claw II heights													
Branch	14	6.9	-	10.2	43.1	-	56.0	9.1	48.8	0.9	3.1	10.2	51.0
Spur	11	1.0	-	2.0	6.3	-	9.9	1.5	7.9	0.3	1.2	1.3	6.5
Spur/branch height ratio	11	13\%	-	21\%		-		16\%	-	2\%	-	19\%	-
Claw III heights													
Branch	13	6.6	-	10.3	41.3	-	55.1	9.1	48.7	1.0	4.1	10.3	51.5
Spur	7	1.0	-	2.0	5.1	-	9.9	1.6	8.0	0.3	1.7	1.6	8.0
Spur/branch height ratio	7	12\%	-	21\%		-		16\%	-	3\%	-	16\%	-
Claw IV heights													
Branch	15	8.1	-	12.0	47.7	-	63.6	10.7	58.1	1.0	4.2	11.4	57.0
Spur	3	1.9	-	2.1	9.9	-	10.5	2.0	10.2	0.1	0.3	2.1	10.5
Spur/branch height ratio	3	16\%	-	18\%		-		18\%	-	1\%	-	18\%	-

Table 18. Measurements (in $\mu \mathrm{m}$) of selected morphological structures of the juveniles and a larva of Hypechiniscus flavus (type series) mounted in Hoyer's medium. N, number of specimens/structures measured; RANGE refers to the smallest and the largest structure among all measured specimens; SD, standard deviation; $s p$, the proportion between the length of a given structure and the length of the scapular plate

CHARACTER	N	RANGE						MEAN		SD		Larva	
		$\mu \mathrm{m}$			$s p$			$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$	$\mu \mathrm{m}$	$s p$
Body length	4	137	-	152	856	-	968	143	901	7	54	114	1009
Scapular plate length	4	15.5	-	16.2		-		15.9	-	0.3	-	11.3	-
Head appendages lengths													
Cirrus internus	4	6.1	-	6.2	38.3	-	39.5	6.2	39.0	0.1	0.6	4.8	42.5
Cephalic papilla	4	4.5	-	5.5	27.8	-	35.0	4.9	30.9	0.4	3.0	4.0	35.4
Cirrus externus	4	9.7	-	10.9	61.8	-	68.1	10.2	64.3	0.5	2.7	8.5	75.2
Clava	3	3.7	-	4.2	22.8	-	26.8	3.9	24.4	0.3	2.0	?	?
Cirrus A	4	15.5	-	17.4	97.5	-	110.8	16.2	102.1	0.9	5.9	9.6	85.0
Cirrus A/Body length ratio	4	11\%	-	12\%		-		11\%	-	0\%	-	8\%	-
Body appendages lengths													
Papilla on leg IV length	1	2.3	-	2.3	14.8	-	14.8	2.3	14.8	?	?	1.6	14.2
Claw I heights													
Branch	4	7.1	-	8.3	44.4	-	52.9	7.7	48.4	0.6	4.0	6.4	56.6
Spur	2	1.1	-	1.2	7.1	-	7.6	1.2	7.4	0.1	0.4	0.9	8.0
Spur/branch height ratio	2	14\%	-	15\%		-		15\%	-	1\%	-	14\%	-
Claw II heights													
Branch	4	7.4	-	7.9	45.7	-	51.0	7.7	48.5	0.2	2.3	6.2	54.9
Spur	1	1.1	-	1.1	7.1	-	7.1	1.1	7.1	?	?	0.9	8.0
Spur/branch height ratio	1	14\%	-	14\%		-		14\%	-	?	-	15\%	-
Claw III heights													
Branch	4	7.4	-	7.8	45.7	-	48.8	7.5	47.5	0.2	1.4	6.6	58.4
Spur	2	0.9	-	1.1	5.7	-	7.1	1.0	6.4	0.1	1.0	1.0	8.8
Spur/branch height ratio	2	12\%	-	15\%		-		13\%	-	2\%	-	15\%	-
Claw IV heights													
Branch	4	7.6	-	9.3	46.9	-	59.2	8.5	53.5	0.7	5.3	7.4	65.5
Spur	2	1.0	-	1.3	6.2	-	8.4	1.2	7.3	0.2	1.6	1.1	9.7
Spur/branch height ratio	2	13\%	-	15\%		-		14\%	-	1\%	-	15\%	-

Type locality: $35^{\circ} 56^{\prime} 32^{\prime \prime} \mathrm{N}, 138^{\circ} 20^{\prime} 46^{\prime \prime} \mathrm{E}, 2510 \mathrm{~m}$ a.s.l.: Japan, Honshu, Mount Amigasa (see Supporting Information, Fig. S3); Japanese stone pine (Pinus pumila) zone; moss from rocks and fallen tree trunks. The species was accompanied by H. geminus, Stellariscus pseudelegans and a Pilatobius sp. nov.

Additional locality: $36^{\circ} 03^{\prime} 31^{\prime \prime} \mathrm{N}, 138^{\circ} 20^{\prime} 43 " \mathrm{E}, 2127$ m a.s.l.: Japan, Honshu, Mugikusa Pass; mixed forest composed of Northern Japanese hemlock [Tsuga diversifolia (Maxim.) Mast.] and Maries' fir (Abies mariesii Mast.), with the admixture of Japanese larch [Larix kaempferi (Lamb.) Carrière] and Erman's birch (Betula ermanii Cham.); moss from rocks and fallen tree trunks. The new species was found with Echiniscus clevelandi Beasley, 1999, Echiniscus laterosetosus Ito, 1993, Adorybiotus granulatus (Richters, 1903) and a Pilatobius sp. nov.

Etymology: From Latin flavus = yellow. Underlining the unusual body colour of the new species. An adjective in the nominative singular.

Phenotypic differential diagnosis: The species is separated from all other known Hypechiniscus spp. based on the intensively yellow body colour (Fig. 7), which is atypical for this genus. Moreover, the species is separated from the gladiator group by the absence of the cirrus dorsalis and it differs from the remaining members of the exarmatus group:

- H. cataractus by endocuticular pillars visible in LCM (greyish dorsal plates with no apparent pillars visible in LCM in H. cataractus; compare Figs 16 with 22).
- H. exarmatus by median plates m1-2 undivided (both plates divided by a longitudinal suture in H. exarmatus).

Genetic differential diagnosis: Uncorrected p-distances between H. flavus and other species are as follows [not computable for 28 S rRNA since different fragments were sequenced in Jørgensen et al. (2011) and in the present study]:

- 18S rRNA: from 3.8\% (H. exarmatus and H. geminus, MT809238, HM193378) to 5.8% (H. cataractus, MT809233).

Genetically verified geographic distribution: Eastern Palaearctic: Japan.

Morphometric diversity in Hypechiniscus
The first and the second principal components explained a significant portion of the variance (65% for ㅇ¢ and 63% for $0^{\circ} \sigma^{*}$, whereas each of the subsequent components explained $<10 \%$ of the variance. The PC1 (composed mainly of claw and claw spurs dimensions) and PC2 (comprising predominantly lengths of peribuccal appendages, primary clavae and cirri A) suggested that $¢ ¢+$ of H. cataractus are significantly different from the remaining Hypechiniscus spp. (Fig. 27A), whereas ơ of H. cataractus and H. gladiator are distinct both from each other and from the remaining Hypechiniscus spp. (Fig. 27B). The variability in morphometric traits largely overlapped for 앙 of H. flavus and H. geminus (Fig. 27A) and for ơo of H. daedalus and H. flavus (Fig. 27B). All traits constituting PC1 and PC2 were subjected to

Figure 27. Graphs illustrating the relationships between the first two principal components (PC1-PC2) revealed by the PCA for five Hypechiniscus spp. Polygonal shapes indicate the range of variability found in a given species, each represented by a neotype/type population. Colours correspond to those in Figure 1.

ANOVA tests, which revealed that differences in lengths of primary clavae and cirri A between $ㅇ+¢$ of Hypechiniscus spp. were non-significant, and thus were excluded from Tukey's testing, and the variances of cirrus internus lengths for đơ were heterogeneous ($P<0.05$ in Levene's test), so this trait was not taken into consideration in ANOVA for this sex. The results of the ANOVAs (A) and Tukey's tests (T) for the remaining traits are discussed in the next paragraphs.

Hypechiniscus spp. are not homogenous in terms of the body size (A: body length: $\uparrow \odot: \mathrm{F}_{63,4}=25.53$, $\mathrm{ơ}^{\mathbf{o}}$: $\mathrm{F}_{57,4}=11.11, P \ll 0.001$ in both cases). Hypechiniscus gladiator is the largest species, as the post-hoc Tukey's tests revealed that $\circ+\%$ and ${ }^{\star} 0^{\star}$ of the species are always statistically longer than its congeners ($\mathrm{T}: P<0.002$). 여 of H. cataractus were found to be smaller than 아 of H. flavus (T: $P<0.01$). Apart from the above, no further disparities were found. In the case of | |
| :---: |
| of the | remaining four species, no differences were revealed.

Figure 28. Box plot charts for the relative values ($s p$) of four cephalic appendages in five Hypechiniscus spp.: A, cirrus
 represent the interquartile range, whereas the intersection in each box is the median. The whiskers present the variability range of each morphometric trait, excluding outliers marked by filled circles. Population colour codes correspond to those in Figure 1.

Figure 29．Box plot charts for the relative values（ $s p$ ）of claws in five Hypechiniscus spp．：A，claw III branches（ q ）；B，claw I branches（ δ^{\top} ）；C，spur III（ \uparrow ）；D，spur I（ δ^{*} ）．Boxes represent the interquartile range，whereas the intersection in each box －the median．The whiskers illustrate the variability range of each morphometric trait，excluding outliers marked by filled circles．Population colour codes correspond to those in Figure 1.

In relative terms（i．e．$s p$ index values），the lengths of cephalic appendages were highly discriminative for some of the analysed Hypechiniscus spp．Specifically， cirrus internus was always the longest in $9 \circ+$ of H．daedalus（A： $\mathrm{F}_{53,4}=9.68, P \ll 0.001$ ；T：$P \ll 0.01$ ； Fig．28A），cephalic papilla was always the longest in ơす of H．cataractus（A： $\mathrm{F}_{53,4}=14.57, P \ll 0.001$ ；T： $P<0.02$ ；Fig．28D），and cirrus externus was always the shortest in 우 of H ．geminus（ $\mathrm{A}: \mathrm{F}_{55,4}=17.67$ ， $P \ll 0.001$ ；T：$P \ll 0.001$ ；Fig．28E）．The relative clava length（A： $\mathrm{F}_{54,4}=11.69, P \ll 0.001$ ）differentiates ơ ơ of H ．cataractus from all remaining spp．（T：$P<0.01$ ）with the exception of ${ }^{\star 0}$ of of H ．flavus（Fig．28B）．The clava length is also useful for separating đすす of H ．geminus from the remaining spp．（ $\mathrm{T}: P<0.001$ ）except for ${ }^{\circ}{ }^{\circ}$ of H ．daedalus（Fig．28B）．The relative length of the cephalic papilla is useful for the separation of $ㅇ+$ of H．daedalus（A： $\mathrm{F}_{60,4}=8.04, P \ll 0.01$ ；T：$P \ll 0.001$ ； Fig．28C），except for the pair H ．daedalus $-H$. cataractus， which overlap significantly（T：$P>0.05$ ）．Finally，ơす of H ．gladiator and H ．geminus have relatively the
shortest cirri externi（A： $\mathrm{F}_{51,4}=20.87, P \ll 0.01 ; \mathrm{T}$ ： $P<0.05$ ；Fig．28F）．

The relative heights of claws and spurs exhibited a slightly different pattern of interspecific variability between sexes．In the case of $\circ ᄋ+, H$ ．cataractus had the shortest claws（e．g．claws III－A： $\mathrm{F}_{59,4}=24.82$ ， $P \ll 0.001$ ；T：$P \ll 0.001$ ；Fig．29A）and H．gladiator －the longest（T：$P \ll 0.001$ ），except for the pair H．gladiator $-H$ ．daedalus（T：$P>0.05$ ）．There were no such disparities for đ̋ð（e．g．claws I－A： $\mathrm{F}_{52,4}=11.20$ ， $P \ll 0.001$ ；Fig．29B），in which Tukey＇s tests revealed H．cataractus has shorter claws than H ．gladiator and H ．flavus（T：$P \ll 0.001$ ），and H ．gladiator has longer claws than H ．cataractus and H ．daedalus（ T ： $P \ll 0.02$ ）．Claw spurs，in turn，are consistently longer in $¢ \varrho$ of H ．gladiator and H．daedalus（e．g．spurs III $-\mathrm{A}: \mathrm{F}_{41,4}=46.92, P \ll 0.001$ ；T：$P \ll 0.001$ ；Fig．29C） than in the three other species．In $\delta^{\circ} 0, H$ ．gladiator has relatively longer spurs than the other species（e．g． spurs I－A： $\mathrm{F}_{35,4}=43.16, P \ll 0.001$ ；T：$P \ll 0.001$ ； Fig．29D）．

DISCUSSION

Species diversity and intrageneric phylogeny

Tardigrade taxonomy is progressively entering its 'golden age' since many of the old nominal taxa have been integratively redescribed (e.g. see Gąsiorek et al., 2017, 2018b, 2019b; Grobys et al., 2020 for heterotardigrade cases) and, as a consequence, an extraordinarily rich and undescribed diversity in each lineage of this phylum is being uncovered. Considering this, the doubling of the number of Hypechiniscus spp. in the present study is not startling. Although limno-terrestrial tardigrade diversity had been estimated to be mostly delineated (Bartels et al., 2016), the key assumption that the number of known higher taxa is stable turned out to be wrong, as it has increased dramatically in recent years. There are two counteracting factors that influence the number of recognized water bear species: (1) a high number of synonymies or dubious taxa that remain unidentifiable due to inadequate descriptions, especially in the most speciose genera, such as Echiniscus or Isohypsibius (Degmaetal.,2009-20), that lead to taxonomicinflation; (2) recently presented cases of species complexes that can be readily resolved in detail under the integrative taxonomy framework (e.g. Stec et al., 2018; Guidetti et al., 2019). Each of these complexes most likely contain tens of undescribed species, e.g. in Macrobiotus (Kaczmarek \& Michalczyk, 2017), Milnesium (Morek \& Michalczyk, 2020) or Pseudechiniscus (Cesari et al., 2020). Consequently, the total number of tardigrade species awaits new estimations with improved taxonomic data, i.e. excluding dubious taxa and including the recently uncovered candidate species.

The addition of statistical delimitation of species to the nowadays more commonly applied combination of molecular and morphological methods seems needed not only in the case of Hypechiniscus, but for other taxa too (Morek et al., 2019). Crucially, as phenotypic differences between the Hypechiniscus spp. exist, the genus is a classic example of pseudocryptic speciation (Sáez et al., 2003). In contrast to the representatives of the paraphyletic exarmatus morphogroup, the members of the crown gladiator group are more difficult to tell apart, likely because they are the youngest species and the divergence between them is not as deep as between H. flavus, H. exarmatus and H. cataractus (see: Aguilée et al., 2018). The morphological homogeneity within the gladiator group, contrasting with evident variability in the exarmatus morphogroup, is demonstrated, for example, by identical dorsal patterns in SEM in H. gladiator, H. daedalus and H. geminus versus divergent cuticle phenotypes in H. flavus and H. cataractus observed in SEM. On the other hand, ventral patterns are species-specific and
no general trend for either simplification or additional reinforcement of the venter by epicuticular thickenings is seen, as species equipped with these structures are phylogenetically intermingled with species devoid of such thickenings (Fig. 1). The presence of these thickenings seems to be plesiomorphic, whereas the loss of epicuticular elements on the ventral surface represents advanced convergence, e.g. as found in H. gladiator and H. cataractus (this hypothesis is strongly supported by the absence of such epicuticular thickenings in other genera, with the exception of Pseudechiniscus).

Morphometry constitutes one of the cornerstones of tardigrade taxonomy (Kristensen \& Hallas, 1980; Pilato 1981; Bartels et al., 2011; Fontoura \& Morais, 2011; Kosztyła et al., 2016; Morek et al., 2019; Santos et al., 2019; Surmacz et al., 2020). Morphometric delimitation of the sexes of different Hypechiniscus spp. is sufficient to delineate all currently known species (Figs 27-29). The traits used in the ANOVAs and post hoc tests corroborate the recent analyses of the genus Nebularmis (Gąsiorek et al., 2019b), which also utilized claw heights. Interestingly, claw spurs, which were pointed out by Murray (1907) and Kristensen (1987) as relevant in the distinction between H. exarmatus and H. gladiator, are consistently higher (and more massive) in the latter than in the four other species analysed in this study. Moreover, spur heights separate the sexes in the similar species H. gladiator and H. geminus. Finally, there are no differences between members of the gladiator group in the length of the cirrus dorsalis, making this trait, together with the cirrus A length, taxonomically uninformative.

MORPHOLOGY IN THE CONTEXT OF ECHINISCID PHYLOGENY

Hypechiniscus is a unique echiniscid genus in terms of morphological characters (Thulin, 1928; Kristensen, 1987). Specifically, the Pseudechiniscustype sculpturing in a genus without pseudosegmental plates, the autapomorphic development of cirrus dorsalis in some of its members and an unusual claw curvature distinguish Hypechiniscus from other echiniscids. The majority of Hypechiniscus spp. have hyaline white or grey-white body, but H. flavus is intensely yellow because of a carotenoid pigment, the presence of which is typical for echiniscids. Thanks to the untangling of the Hypechiniscus phylogeny, H. flavus would appear to be basal with regard to the rest of the Hypechiniscus spp., indicating that translucence or white colour is a derived character, a synapomorphy of the remaining species, whereas yellow is a retained plesiomorphy of H. flavus. With the odd exception of H. cataractus, which exhibits
minute claws with a classic echiniscid curvature similar to Pseudechiniscus (which may be an example of regressive evolution caused by an adaptation to a specific habitat of the tropical rainforest), the shape of claws and claw spurs also represents an advanced trait in the genus. Of particular interest is the presence of pseudoaccessory points, identifiable only in SEM, which are upwardly directed extensions of the epicuticle on the back side of claw branches (Figs 5C, $9 B, 13 C$) in the three species of the gladiator group analysed in this study (a state unknown in H. papillifer and H. fengi). In contrast, H. flavus and H. cataractus do not exhibit these structures; thus the examination of H. exarmatus in SEM is also needed to confirm the synapomorphic character of this trait in the gladiator group. Another trait associated with limbs is the presence of papillae, which can often be tricky to determine in Hypechiniscus spp. due to their small size. All species, apart from H. fengi, have papillae on leg IV (Sun \& Li, 2013), although sometimes these structures can be difficult to identify in LCM. Given that H. fengi has not been examined under SEM, the lack of papilla IV needs to be treated as uncertain. The rudimentary papilla I in H. daedalus, detectable only in SEM, supports the hypothesis regarding the plesiomorphic nature of the presence of papillae, or triangular spines, on legs I in echiniscids (Tumanov, 2020). Notably, H. papillifer, recorded from the Alps, exhibits papillae on legs II-IV (Robotti, 1972), which suggests that preservation of these receptors on legs I-III in the course of evolution may be a conservative trait in Hypechiniscus.

The position of Hypechiniscus in echiniscid phylogeny has been independently confirmed several times, with the overall congruent placement of this genus as a sister-taxon of the remaining Echiniscuslike genera (Jørgensen et al., 2011; Cesari et al., 2020). Gąsiorek et al. (2018c) inferred Stellariscus, an endemic East-Asian genus for which genetic data are yet to be obtained, as sister to Hypechiniscus, using morphological traits. Both genera share many characters with Pseudechiniscus, which, however, belongs to the echiniscid lineage defined by the presence of the pseudosegmental plate IV'. First, Hypechiniscus possesses a type of sculpturing that is highly atypical for Echiniscus-like genera, i.e. having only endocuticular pillars that are visible as dark dots in PCM and small bumps/granules in NCM and SEM, and lacking pores. This is a character common to all three genera, although in Stellariscus and Pseudechiniscus the capituli (heads) of these pillars are often connected by striae (Gaasiorek et al., 2018c; Tumanov, 2020), which are absent in Hypechiniscus. All three genera exhibit black crystalline eye spots, although it seems that they can dissolve in the smallest representatives and juvenile stages after
mounting in Hoyer's medium. Dorsal plates are very weakly sclerotized in Hypechiniscus and in the majority of Pseudechiniscus spp., thus they are prone to deformation during mounting or preparation for SEM. This property has the potential to give rise to a number of various artefacts, such as 'spines' formed at the edges of dorsal plates in the form spinulosa (Iharos, 1973), or false divisions of some plates, such as the scapular plate (Tumanov, 2020). Moreover, our study showed that, similarly to Pseudechiniscus (Grobys et al., 2020;Tumanov, 2020), the ventral ornamentation pattern is one of the most discriminative taxonomic criteria in Hypechiniscus. Whereas Stellariscus has the typical spine I, the evidence shown herein, and by Tumanov (2020) for Pseudechiniscus, suggests that this receptor was present on legs I in ancestors of both Hypechiniscus and Pseudechiniscus, and that it was later reduced.

In light of the described novel characters found in Hypechiniscus, the generic diagnosis is amended as follows: Small to medium-sized ($<300 \mu \mathrm{~m}$) echiniscids with black ovoid or rectangular eyes. Cephalic plate subdivided into five or six portions. Other dorsal plates regularly subdivided into smaller portions by sutures or incisions, which may result in pseudodivisions (e.g. of median plates). Dorsal sculpturing of the Pseudechiniscus type, i.e. composed solely of endocuticular pillars that may protrude through epicuticle, forming small granules. Ventral sculpturing always present, but ventral plates absent. Clavae elongated (dactyloid). Rigid buccal tube without stylet supports, pharynx with short calcified placoids. Dioecious.

REPRODUCTION AND SEXUAL DIMORPHISM

Although males developing directly from larvae, in contrast to females that eclose from juveniles, were first observed in Hypechiniscus (Bertolani et al., 1984), such heterochrony in sexual maturation does not occur exclusively in this genus. This phenomenon was further described in Antechiniscus, Pseudechiniscus and Bryodelphax by Kristensen (1987). The morphometric data shown herein, and in Claxton (2001), corroborate this supposition for the first two genera, however data are lacking for Pseudechiniscus and the only available descriptions of dioecious Bryodelphax species with separate measurements for all instars, B. instabilis Gasiorek \& Degma, 2018 and B. nigripunctatus Degma et al., 2020 in Gasiorek et al. (2020), do not allow for drawing a conclusion whether males develop directly from larvae or from juveniles. Conversely, the recent erection of Stellariscus contributes to this issue, again highlighting that males probably develop from larvae (Gassiorek et al., 2018c). All above-mentioned genera (except for Hypechiniscus) share an important
characteristic: their average body size is considerably below or around $200 \mu \mathrm{~m}$, making them one of the smallest echiniscids. Finally, although Testechiniscus meridionalis (Murray, 1906) was treated as having males developing faster than females in Gasiorek et al. (2018c), the data from Gasiorek et al. (2018b) indicate that both sexes develop from juveniles. Accelerated sexual maturation of males, or male progenesis, in microscopic animals has been documented in other representatives of microfauna, e.g. rotifers (Ricci \& Melone, 1998) and copepods (Østergaard et al., 2005). Progenesis in such r-selected microinvertebrates is usually considered to be a side-effect of short generation time and increasing reproduction rate, in which longer lived females are inseminated by their faster developing offspring (Lewontin, 1965). Another hypothesis was postulated for benthic polychaetes, namely that progenesis is an adaptation to counteract high mate search costs (Westheide, 1984), which can be a good explanation for tardigrades, which are often characterized by low population sizes (when a population is defined as a group of conspecific individuals inhabiting a single moss/lichen cushion) and patchy distribution.
Sexual dimorphism in Hypechiniscus is rudimentary, but not uniformly reduced. Specifically, three levels of reduction canbedistinguished:(I) moderate attenuation
of secondary dimorphic traits, where a number of qualitative and quantitative criteria separate males from females (e.g. slender body shape, usually weaker/ less discernible ventral sculpturing pattern, swollen cephalic papillae and/or shorter claws in males of H. gladiator, H. flavus and H. cataractus); (II) strong attenuation of secondary dimorphic traits, where a few qualitative and quantitative criteria separate males and females (e.g. slender body shape and swollen cephalic papillae in males of H. exarmatus); and (III) only primary sexual dimorphism differentiates the sexes (i.e. the presence of a circular gonopore in males and a sexpartite rosette in females in H. daedalus and H. geminus). The reduction of sexual dimorphism in Hypechiniscus is intriguing given that the genus is characterized by heterochrony - males develop directly from larvae, whereas there is a typical juvenile (second) stage between larvae and sexually mature females (Bertolani et al., 1984; Kristensen, 1987). Also, the morphometric data presented in this revision support the earlier observations, as there are clear morphometric gaps between juveniles and females but the body size ranges for juveniles and males overlap (compare relevant morphometric tables above). Progenetic males are usually anatomically simplified (Ricci \& Melone, 1998), thus the faster sexual maturation of males should entail the elaboration

TAXONOMIC KEY

The key provided below is based solely on qualitative traits of sexually mature (adult) specimens that are readily detectable in vivo or under LCM. While this is the usual practice in modern echiniscid taxonomy, previous authors did not distinguish between different life stages, therefore larvae and juveniles are excluded from the key since they are not known for every species.

1. Cirrus dorsalis presen 2 (the gladiator group)
-. Cirrus dorsalis absent. 6 (the exarmatus group)
2(1). External claws with secondary spurs directed upwards, papillae present on legs II-IIIH. papillifer
-. External claws smooth, papillae absent on legs II-III .3
3(2). Papillae not detectable in LCM on any legs .. H. fengi
-. Papillae detectable in LCM on legs IV only .. 4
4(3). Only dorsal endocuticular pillars visible in LCM ...H. gladiator
-. Both dorsal endocuticular pillars and epicuticular ornamentation visible in LCM...................................... 5
5(4). Ventral endocuticular pillars concentrated in the central portion of the body, forming roughly uniform shape.
H. geminus sp. nov.
-. Ventral endocuticular pillars concentrated in the central portion of the body, but clearly subdivided into regular areas joined by only thin strips of pillars
H. daedalus sp. nov.

6(1). Yellow body colour, epicuticular thickenings on ventral cuticle overlap with belts of endocuticular pillars in most parts \qquad H. flavus sp. nov.
-. Translucent or whitish body colour, epicuticular thickenings on ventral cuticle do not overlap with belts of endocuticular pillars or thickenings absent
.. 7
7(6). Endocuticular pillars on the dorsal side visible in LCM ..H. exarmatus
-. Endocuticular pillars on the dorsal side absent in LCM ..H. cataractus sp. nov.
of sexual dimorphism. Interestingly, however, this is not the case in Hypechiniscus, whereas in the gonochoristic Echiniscus spp., in which both sexes develop from juveniles, the dimorphism is evident mainly in qualitative traits (Claxton, 1996; Claxton \& Dastych, 2017; Gąsiorek \& Michalczyk, 2020b). This interesting conundrum remains temporarily unexplained. Although there are differences in ventral ornamentation patterns between the sexes, pillars are usually faint in males, thus the resulting patterns are difficult to determine.

BIOGEOGRAPHY

For decades, tardigrade biogeography was not a subject of research as tardigrade species were assumed to be cosmopolitan (Artois et al., 2011) under the 'Everything is everywhere but environment selects' hypothesis (Beijerinck, 1913), thus no biogeographic patterns were expected to be uncovered and scrutinized. However, tardigrade biogeography is nowadays a field of lively debate with some studies reporting limited genus/ species distributions (Kristensen, 1987; Pilato \& Binda, 2001; Gąsiorek et al., 2016, 2020; Guidetti et al., 2017; Morek \& Michalczyk, 2020), while others suggest more complex patterns, both because of the undersampling of many regions of the globe and the patchy distribution of tardigrades in many microhabitats (Meyer, 2006; Degma et al., 2011; Gąsiorek et al., 2019a, b; Guidetti et al., 2019). The presence of many similar (pseudocryptic or cryptic) species further impedes unravelling real faunal composition of a given area and blurs the biogeographic and phylogeographic patterns, which have been observed in various groups [e.g. in insects by Gill et al. (2016); crustaceans by Terossi et al. (2017); annelids by Cerca et al.(2020) and in tardigrades by Gasiorek et al. (2019a) or Morek \& Michalczyk (2020)]. The present study questions the majority of the old records of H. gladiator and H. exarmatus and explicitly shows that some of the earlier records of these two taxa represent new species [H. geminus reported as H. gladiator and H. flavus reported as H. exarmatus by Jørgensen et al. (2011)]. Moreover, there are further questions regarding the potential extent of geographic distributions of both species. As H . gladiator appears to exhibit a preference for cold, mountainous locales of the Western Palaearctic, it is somewhat surprising that this species has not been found in the Polish Tatras (Gasiorek \& Degma, 2018), where climate conditions are similar to those in the Alps. Currently, the locality in Öland reported in this study constitutes the easternmost trustworthy record of this species. The records of H. gladiator from the Korean Peninsula (Iharos, 1973) are likely erroneous and are more likely to represent H. geminus (described from Japan), H. fengi (known from south-eastern China; Sun \& Li,
2013) or perhaps they may be yet another new species. Similar caution should be applied to records from North America (Meyer, 2013; Kaczmarek et al., 2016), as they potentially represent H. daedalus. Analogously, records of H. exarmatus from South America (Grigarick et al., 1983, Oreella breviclava therein), Australia (Claxton, 2004) and New Zealand (Horning et al., 1978), most likely belong to new taxa. To summarize, current data suggest limited distributions and weak dispersal abilities of Hypechiniscus species. This, combined with an apparent absence of species in environments that should support them, indicate that species in the genus Hypechiniscus are not cosmopolitan, but seem to be geographically structured.

ACKNOWLEDGEMENTS

Sample collectors are gratefully acknowledged (alphabetically): Nate Gross, Mackenzie McClay, Małgorzata Mitan and Małgorzata Osielczak. Brent McGuirt kindly allowed the use of the photograph showing the habitat of Hypechiniscus daedalus. Two reviewers and the Editor in Chief, Dr Maarten Christenhusz, are thanked for improving the manuscript. The study was supported by the Polish Ministry of Science and Higher Education via the Diamond Grant (DI2015 014945 to PG, supervised by ŁM), by the Preludium grant funded by the National Science Centre (grant no. 2019/33/N/NZ8/02777 to PG, supervised by ŁM), the SYNTHESYS programme (grants no. HU-TAF-2224 to ŁM and DK-TAF-6332 to PG) and by the Carlsberg Foundation (grant no. CF160236 to RMK, from which the short internship of PG at NHMD was financed). Some of the analyses were carried out with the equipment purchased from the Sonata Bis programme of the Polish National Science Centre (grant no. 2016/22/E/NZ8/00417 to ŁM). PG was supported by the START stipend from the Foundation for Polish Science (FNP) and the Etiuda stipend (2020/36/T/NZ8/00360) from the National Science Centre. Open-access publication of this article was funded by the BioS Priority Research Area under the programme "Excellence Initiative - Research University" at the Jagiellonian University in Kraków, Poland. The authors declare no conflict of interest.

REFERENCES

Aguilée R, Gascuel F, Lambert A, Ferriere R. 2018. Clade diversification dynamics and the biotic and abiotic controls of speciation and extinction rates. Nature Communications 9: 3013.
Artois T, Fontaneto D, Hummon WD, McInnes SJ, Todaro MA, Sørensen MV, Zullini A. 2011. Ubiquity of microscopic animals? Evidence from the morphological
approach in species identification. In: Fontaneto D, ed. Biogeography of microscopic organisms: is everything small everywhere? Cambridge: Cambridge University Press, Chapter 13, 244-283.
Bartels PJ, Nelson DR. 2007. An evaluation of species richness estimators for tardigrades of the Great Smoky Mountains National Park, Tennessee and North Carolina, USA. Journal of Limnology 66: 104-110.
Bartels PJ, Nelson DR, Exline RP. 2011. Allometry and the removal of body size effects in the morphometric analysis of tardigrades. Journal of Zoological Systematics and Evolutionary Research 49: 17-25.
Bartels PJ, Apodaca JJ, Mora C, Nelson DR. 2016. A global biodiversity estimate of a poorly known taxon: phylum Tardigrada. Zoological Journal of the Linnean Society 178: 730-736.
Beasley CW. 1999. A new species of Echiniscus (Tardigrada, Echiniscidae) from northern Yunnan Province, China. Zoologischer Anzeiger 238: 135-138.
Beijerinck MW. 1913. De infusies en de ontdekking der backteriën. Jaarboek van de Koninklijke Akademie van Wetenschappen. Amsterdam: Müller.
Bertolani R, Rebecchi L. 1993. A revision of the Macrobiotus hufelandi group (Tardigrada, Macrobiotidae), with some observations on the taxonomic characters of eutardigrades. Zoologica Scripta 22: 127-152.
Bertolani R, Grimaldi de Zio S, d'Addabbo Gallo M, Morone de Lucia MR. 1984. Postembryonic development in heterotardigrades. Monitore Zoologico Italiano 18: 307-320.
Casquet J, Thebaud C, Gillespie RG. 2012. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Molecular Ecology Resources 12: 136-141.
Cerca J, Meyer C, Purschke G, Struck TH. 2020. Delimitation of cryptic species drastically reduces the geographical ranges of marine interstitial ghostworms (Stygocapitella; Annelida, Sedentaria). Molecular Phylogenetics and Evolution 143: 106663.
Cesari M, Bertolani R, Rebecchi L, Guidetti R. 2009. DNA barcoding in Tardigrada: the first case study on Macrobiotus macrocalix Bertolani \& Rebecchi 1993 (Eutardigrada, Macrobiotidae). Molecular Ecology Resources 9: 699-706.
Cesari M, Guidetti R, Rebecchi L, Giovannini I, Bertolani R. 2013. A DNA barcoding approach in the study of tardigrades. Journal of Limnology 72: 182-198.
Cesari M, McInnes SJ, Bertolani R, Rebecchi L, Guidetti R. 2016. Genetic diversity and biogeography of the south polar water bear Acutuncus antarcticus (Eutardigrada: Hypsibiidae) - evidence that it is a truly pan-Antarctic species. Invertebrate Systematics 30: 635-649.
Cesari M, Montanari M, Kristensen RM, Bertolani R, Guidetti R, Rebecchi L. 2020. An integrated study of the biodiversity within the Pseudechiniscus suillus-facettalis group (Heterotardigrada: Echiniscidae). Zoological Journal of the Linnean Society 188: 717-732.
Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65: 997-1008.

Claxton SK. 1996. Sexual dimorphism in Australian Echiniscus (Tardigrada, Echiniscidae) with descriptions of three new species. Zoological Journal of the Linnean Society 116: 13-33.
Claxton SK. 1998. A revision of the genus Minibiotus (Tardigrada: Macrobiotidae) with descriptions of eleven new species from Australia. Records of the Australian Museum 50: 125-160.
Claxton SK. 2001. Antechiniscus in Australia: Description of Antechiniscus moscalisp.n. and redescription of Antechiniscus parvisentus (Horning \& Schuster, 1983) (Heterotardigrada: Echiniscidae). Zoologischer Anzeiger 240: 281-289.
Claxton SK. 2004. The taxonomy and distribution of Australian terrestrial tardigrades. Unpublished Ph.D. Thesis, Macquarie University, Australia, $618+182$.
Claxton SK, Dastych H. 2017. A new bisexual species of Echiniscus C.A.S. Schultze, 1840 (Heterotardigrada: Echiniscidae) from Tasmania, Australia. Entomologie heute 29: 105-119.
da Cunha AX. 1947. Description d'un tardigrade nouveau de la faune portugaise, Parechiniscus unispinosus sp. n. Memórias e Estudos do Museu Zoológico da Universidade de Coimbra 180: 1-6.
Dastych H. 1999. A new species of the genus Mopsechiniscus Du Bois-Reymond Marcus, 1944 (Tardigrada) from the Venezuelan Andes. Acta Biologica Benrodis 10: 91-101.
Dastych H, McInnes SJ, Claxton SK. 1998. Oreella mollis Murray, 1910 (Tardigrada): a redescription and revision of Oreella. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 95: 89-113.
Degma P, Bertolani R, Guidetti R. 2009-20. Actual checklist of Tardigrada species, v.38: 18-08-2020. Available at: https:// doi.org/10.25431/11380_1178608 (accessed 18 August 2020).
Degma P, Katina S, Sabatovičová L. 2011. Horizontal distribution of moisture and Tardigrada in a single moss cushion. Journal of Zoological Systematics and Evolutionary Research 49: 71-77.
Faurby S, Jørgensen A, Kristensen RM, Funch P. 2011. Phylogeography of North Atlantic intertidal tardigrades: refugia, cryptic speciation and the history of the Mid-Atlantic Islands. Journal of Biogeography 38: 1613-1624.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Fontoura P, Morais P. 2011. Assessment of traditional and geometric morphometrics for discriminating cryptic species of the Pseudechiniscus suillus complex (Tardigrada, Echiniscidae). Journal of Zoological Systematics and Evolutionary Research 49: 26-33.
Fox J, Weisberg S. 2011. An $\{R\}$ companion to applied regression, 2nd edn. Thousand Oaks: Sage. Available at: https://socsery.socsci.memaster.ca/jfox/Books/Companion (accessed 01 March 2020).
Gąsiorek P, Degma P. 2018. Three Echiniscidae species (Tardigrada: Heterotardigrada) new to the Polish fauna, with the description of a new gonochoristic Bryodelphax Thulin, 1928. Zootaxa 4410: 77-96.

Gąsiorek P, Michalczyk L. 2020a. Revised Cornechiniscus (Heterotardigrada) and new phylogenetic analyses negate echiniscid subfamilies and tribes. Royal Society Open Science 7: 200581.
Gąsiorek P, Michalczyk Ł. 2020b. Echiniscus siticulosus (Echiniscidae: spinulosus group), a new tardigrade from Western Australian scrub. New Zealand Journal of Zoology 47: 87-105.
Gasiorek P, Stec D, Morek W, Zawierucha K, Kaczmarek $\mathbf{\ell}$, Lachowska-Cierlik D, Michalczyk \mathbf{L}. 2016. An integrative revision of Mesocrista Pilato, 1987 (Tardigrada: Eutardigrada: Hypsibiidae). Journal of Natural History 50: 2803-2828.
Gąsiorek P, Stec D, Morek W, Michalczyk L. 2017. An integrative redescription of Echiniscus testudo (Doyère, 1840), the nominal taxon for the class Heterotardigrada (Ecdysozoa: Panarthropoda: Tardigrada). Zoologischer Anzeiger 270: 107-122.
Gąsiorek P, Stec D, Morek W, Michalczyk L. 2018a. An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada). Zootaxa 4415: 45-75.
Gąsiorek P, Stec D, Zawierucha K, Kristensen RM, Michalczyk Ł. 2018b. Revision of Testechiniscus Kristensen, 1987 (Heterotardigrada: Echiniscidae) refutes the polartemperate distribution of the genus. Zootaxa 4472: 261-297.
Gąsiorek P, Suzuki AC, Kristensen RM, LachowskaCierlik D, Michalczyk L. 2018c. Untangling the Echiniscus Gordian knot: Stellariscus gen. nov. (Heterotardigrada: Echiniscidae) from Far East Asia. Invertebrate Systematics 32: 1234-1247.
Gąsiorek P, Jackson KJ, Meyer HA, Zając K, Nelson DR, Kristensen RM, Michalczyk L. 2019a. Echiniscus virginicus complex: the first case of pseudocryptic allopatry and pantropical distribution in tardigrades. Biological Journal of the Linnean Society 128: 789-805.
Gąsiorek P, Blagden B, Michalczyk L. 2019b. Towards a better understanding of echiniscid intraspecific variability: a redescription of Nebularmis reticulatus (Murray, 1905) (Heterotardigrada: Echiniscoidea). Zoologischer Anzeiger 283: 242-255.
Gąsiorek P, Vončina K, Degma P, Michalczyk L. 2020. Small is beautiful: the first phylogenetic analysis of Bryodelphax Thulin, 1928 (Heterotardigrada, Echiniscidae). Zoosystematics and Evolution 96: 217-236.
Gill BA, Kondratieff BC, Casner KL, Encalada AC, Flecker AS, Gannon DG, Ghalambor CK, Guayasamin JM, Poff NL, Simmons MP, Thomas SA, Zamudio KR, Funk WC. 2016. Cryptic species diversity reveals biogeographic support for the 'mountain passes are higher in the tropics' hypothesis. Proceedings of the Royal Society B: Biological Sciences 283: 20160553.
Grigarick AA, Schuster RO, Nelson DR. 1983. Heterotardigrada of Venezuela (Tardigrada). Pan-Pacific Entomologist 59: 64-77.
Grobys D, Roszkowska M, Gawlak M, Kmita H, Kepel A, Kepel M, Parnikoza I, Bartylak T, Kaczmarek L. 2020. High diversity in the Pseudechiniscus suillus-facettalis
complex (Heterotardigrada; Echiniscidae) with remarks on the morphology of the genus Pseudechiniscus. Zoological Journal of the Linnean Society 188: 733-752.
Guidetti R, Bertolani R, Nelson DR. 1999. Ecological and faunistic studies on tardigrades in leaf litter of beech forests. Zoologischer Anzeiger 238: 215-223.
Guidetti R, Jönsson KI, Kristensen RM. 2015. Tardigrades of Sweden; an updated check-list. Zootaxa 3981: 491-507.
Guidetti R, Rebecchi L, Bertolani R, Jönsson KI, Kristensen RM, Cesari M. 2016. Morphological and molecular analyses on Richtersius (Eutardigrada) diversity reveal its new systematic position and lead to the establishment of a new genus and a new family within Macrobiotoidea. Zoological Journal of the Linnean Society 178: 834-845.
Guidetti R, McInnes SJ, Cesari M, Rebecchi L, RotaStabelli O. 2017. Evolutionary scenarios for the origin of an Antarctic tardigrade species based on molecular clock analyses and biogeographic data. Contributions to Zoology 86: 97-110.
Guidetti R, Cesari M, Bertolani R, Altiero T, Rebecchi L. 2019. High diversity in species, reproductive modes and distribution within the Paramacrobiotus richtersi complex (Eutardigrada, Macrobiotidae). Zoological Letters 5: 1.
Guil N, Sanchez-Moreno S. 2013. Fine-scale patterns in micrometazoans: tardigrade diversity, community composition and trophic dynamics in leaf litter. Systematics and Biodiversity 11: 181-193.
Higgins RP. 1960. Some tardigrades from the Piedmont of North Carolina. Journal of the Elisha Mitchell Scientific Society 76: 29-35.
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518-522.
Horning DS, Schuster RO, Grigarick AA. 1978. Tardigrada of New Zealand. New Zealand Journal of Zoology 5: 185-280.
ICZN. 1999. International code of zoological nomenclature, fourth ed. London: The International Trust for Zoological Nomenclature, 306.
Iharos G. 1973. Angaben zur geographischen Verbreitung der Tardigraden. Opuscula Zoologica, Budapest 12: 73-86.
Ito M. 1993. Taxonomic study on the class Heterotardigrada (Tardigrada) from the Northern Slope of Mt. Fuji, Central Japan. Edaphologia 50: 1-13.
Jackson KJA, Meyer HA. 2019. Morphological and genetic analysis of Milnesium cf. granulatum (Tardigrada: Milnesiidae) from Northeastern North America. Zootaxa 4604: 497-510.
Jørgensen A, Møbjerg N, Kristensen RM. 2011. Phylogeny and evolution of the Echiniscidae (Echiniscoidea, Tardigrada) - an investigation of the congruence between molecules and morphology. Journal of Zoological Systematics and Evolutionary Research 49: 6-16.
Jørgensen A, Kristensen RM, Møbjerg N. 2018. Phylogeny and integrative taxonomy of Tardigrada. In: Schill RO, ed. Water bears: the biology of tardigrades. Zoological monographs. New York: Springer, 95-114.

Kaczmarek Ł, Michalczyk Ł, McInnes SJ. 2016. Annotated zoogeography of non-marine Tardigrada. Part III: North America and Greenland. Zootaxa 4203: 1-249.
Kaczmarek L, Michalczyk L. 2017. The Macrobiotus hufelandi group (Tardigrada) revisited. Zootaxa 4363: 101-123.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589.
Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286-298.
Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.
Kendall-Fite K, Nelson DR. 1996. Two new species of tardigrades from Short Mountain, Tennessee, U.S.A. Zoological Journal of the Linnean Society 116: 205-214.
Kosztyła P, Stec D, Morek W, Gasiorek P, Zawierucha K, Michno K, Ufir K, Małek D, Hlebowicz K, Laska A, Dudziak M, Frohme M, Prokop ZM, Kaczmarek L, Michalczyk Ł. 2016. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zoological Journal of the Linnean Society 178: 765-775.
Kristensen RM. 1987. Generic revision of the Echiniscidae (Heterotardigrada), with a discussion of the origin of the family. In: Bertolani R, ed. Biology of Tardigrades. Selected Symposia and Monographs U.Z.I. 1: 261-335.
Kristensen RM, Hallas TE. 1980. The tidal genus Echiniscoides and its variability, with erection of Echiniscoididae fam. n. (Tardigrada). Zoologica Scripta 9: 113-127.
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772-773.
Lewontin RC. 1965. Selection for colonizing ability. In: Baker HG, Stebbins GL, eds. The genetics of colonizing species: Proceedings of the First International Union of Biological Sciences Symposia on General Biology. New York and London: Academic Press, 77-94.
Lisi O. 2011. Remarks on Doryphoribius flavus (Iharos, 1966), and description of three new species (Tardigrada, Hypsibiidae). Zootaxa 2834: 17-32.
Maucei W. 1986. Tardigrada. Fauna d`Italia. Bologna: Edizioni Calderini.
Maucci W. 1996. Tardigrada of the Arctic tundra with descriptions of two new species. Zoological Journal of the Linnean Society 116: 185-204.
McInnes SJ. 1994. Zoogeographic distribution of terrestrial/ freshwater tardigrades from current literature. Journal of Natural History 28: 257-352.
Meyer HA. 2006. Small-scale spatial distribution variability in terrestrial tardigrade populations. Hydrobiologia 558: 133-139.

Meyer HA. 2013. Terrestrial and freshwater Tardigrada of the Americas. Zootaxa 3747: 1-71.
Michalczyk L, Kaczmarek Ł. 2013. The Tardigrada Register: a comprehensive online data repository for tardigrade taxonomy. Journal of Limnology 72: 175-181.
Michalczyk L, Wełnicz W, Frohme M, Kaczmarek L. 2012. Redescriptions of three Milnesium Doyère, 1840 taxa (Tardigrada: Eutardigrada: Milnesiidae), including the nominal species for the genus. Zootaxa 3154: 1-20.
Mironov SV, Dabert J, Dabert M. 2012. A new feather mite species of the genus Proctophyllodes Robin, 1877 (Astigmata: Proctophyllodidae) from the long-tailed tit Aegithalos caudatus (Passeriformes: Aegithalidae): morphological description with DNA barcode data. Zootaxa 3253: 54-61.
Morek W, Michalczyk Ł. 2020. First extensive multilocus phylogeny of the genus Milnesium (Tardigrada) reveals no congruence between genetic markers and morphological traits. Zoological Journal of the Linnean Society 188: 681-693.
Morek W, Stec D, Gąsiorek P, Michalczyk L. 2019. Milnesium tardigradum Doyère, 1840: the first integrative study of interpopulation variability in a tardigrade species. Journal of Zoological Systematics and Evolutionary Research 57: 1-23.
Morgan CI. 1977. An annotated catalogue of Tardigrada in the collections of the Royal Scottish Museum, Edinburgh. Natural History 5: 1-29.
Morgan CI, King PE. 1976. British tardigrades. Synopses of the British Fauna 9: 1-133.
Morikawa K. 1951. Notes on four interesting Echiniscus (Tardigrada) from Japan. Annotationes Zoologicae Japonenses 24: 108-110.
Murray J. 1905. The Tardigrada of the Scottish Lochs. Transactions of the Royal Society of Edinburgh 41: 677-698.
Murray J. 1906. Scottish national Antarctic expedition: Tardigrada of the South Orkneys. Transactions of the Royal Society of Edinburgh 45: 323-334.
Murray J. 1907. Scottish Tardigrada, collected by the lake survey. Transactions of the Royal Society Edinburgh 45: 641-668.
Murray J. 1911. Clare Island survey. Arctiscoida. Proceedings of the Royal Irish Academy 31: 1-16.
Nelson DR. 1975. Ecological distribution of tardigrades on Roan Mountain, Tennessee - North Carolina. In: Higgins RP, ed. Proceedings of the first international symposium on Tardigrades. Memorie dell''stituto Italiano di Idrobiologia, Pallanza Supplement 32: 225-276.
Nelson DR, Bartels PJ. 2007. 'Smoky bears' - tardigrades of the Great Smoky Mountains National Park. Southeastern Naturalist 6: 229-238.
Nelson DR, Bartels PJ. 2013. Species richness of soil and leaf litter tardigrades in the Great Smoky Mountains National Park (North Carolina/Tennessee, USA). Journal of Limnology 72: 144-151.
Nelson DR, Bartels PJ, Fegley SR. 2020. Environmental correlates of tardigrade community structure in mosses
and lichens in the Great Smoky Mountains National Park (Tennessee and North Carolina, USA). Zoological Journal of the Linnean Society 188: 913-924.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.
Østergaard P, Boxshall GA, Quicke DLJ. 2005. Dwarfs or giants? Sexual size dimorphism in Chondracanthidae (Copepoda, Poecilostomatoida). Crustaceana 78: 397-408.
Petersen B. 1951. The tardigrade fauna of Greenland. Meddelelser om Grønland 150: 1-94.
Pilato G. 1981. Analisi di nuovi caratteri nello studio degli Eutardigradi. Animalia 8: 51-57.
Pilato G, Binda MG. 2001. Biogeography and limnoterrestrial tardigrades: Are they truly incompatible binomials? Zoologischer Anzeiger 240: 511-516.
Ramazzotti G. 1956. Tre nuove specie di tardigradi ed altre specie poco comuni. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano 95: 284-291.
Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v.1.6. Available at: https://beast.bio.ed.ac.uk/Tracer (accessed 01 February 2020).
Refaat M. 2007. Treatment of missing values. Chapter 11. In: Refaat M, ed. Data preparation for data mining using SAS. San Franisco: Morgan Kaufmann Publishers, 171-206.
Ricci C, Melone G. 1998. Dwarf males in monogonont rotifers. Aquatic Ecology 32: 361-365.
Richters F. 1903. Nordische Tardigraden. Zoologischer Anzeiger 27: 168-172.
Richters F. 1904. Arktische Tardigraden. Fauna Arctica 3: 495-511.
Riggin GT. 1962. Tardigrada of southwest Virginia: with the addition of a description of a new marine species from Florida. Virginia Agricultural Experiment Station Technical Bulletin 152: 1-147.
Robotti C. 1972. Secondo contributo alla conoscenza dei tardigradi del Piemonte, con la descrizione di Echiniscus (Hyp.) papillifer spec. nov. e di Hexapodibius pseudomicronyx spec. nov. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale in Milano 133: 153-162.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
RStudio Team. 2015. RStudio. Boston: Integrated Development for R. RStudio, Inc. Available at: https://www. rstudio.com (accessed 01 March 2020).
Sáez AG, Probert I, Geisen M, Quinn P, Young JR, Medlin LK. 2003. Pseudo-cryptic speciation in coccolithophores. Proceedings of the National Academy of Sciences of the USA 100: 7163-7168.
Santos E, Veiga P, Rubal M, Bartels PJ, da Rocha CMC, Fontoura P. 2019. Batillipes pennaki Marcus, 1946 (Arthrotardigrada: Batillipedidae): deciphering a species complex. Zootaxa 4648: 549-567.

Sellnick M. 1908. Beitrag zur Moosfauna der Faröer. Zoologischer Anzeiger 33: 208-212.
Séméria Y. 1994. Une espèce nouvelle de tardigrade de Taiwan: Echiniscus pseudelegans, n. sp. (Heterotardigrada Echiniscidae). Bulletin Mensuel de la Société Linnéenne de Lyon 63: 28-30.
Stec D, Smolak R, Kaczmarek L, Michalczyk L. 2015. An integrative description of Macrobiotus paulinae sp. nov. (Tardigrada: Eutardigrada: Macrobiotidae: hufelandi group) from Kenya. Zootaxa 4052: 501-526.
Stec D, Gasiorek P, Morek W, Kosztyła P, Zawierucha K, Michno K, Kaczmarek L, Prokop ZM, Michalczyk L. 2016. Estimating optimal sample size for tardigrade morphometry. Zoological Journal of the Linnean Society 178: 776-784.
Stec D, Zawierucha K, Michalczyk L. 2017. An integrative description of Ramazzottius subanomalus (Biserov, 1985) (Tardigrada) from Poland. Zootaxa 4300: 403-420.
Stec D, Morek W, Gąsiorek P, Michalczyk L. 2018. Unmasking hidden species diversity within the Ramazzottius oberhaeuseri complex, with an integrative redescription of the nominal species for the family Ramazzottiidae (Tardigrada: Eutardigrada: Parachela). Systematics and Biodiversity 16: 357-376.
Sun X, Li X. 2013. A new species of genus Hypechiniscus (Heterotardigrada: Echiniscidae) from China. Proceedings of the Biological Society of Washington 126: 240-244.
Surmacz B, Morek W, Michalczyk L. 2020. What to do when ontogenetic tracking is unavailable: a morphometric method to classify instars in Milnesium (Tardigrada). Zoological Journal of the Linnean Society 188: 797-808.
Tang Y, Horikoshi M, Li W. 2016. Ggfortify: unified interface to visualize statistical result of popular R packages. R Journal 8: 474-485.
Tarter DC, Nelson DR. 1990. An altitudinal comparison of the tardigrade fauna (phylum Tardigrada) from mosses on Spruce Mountain, West Virginia. Proceedings of the West Virginia Academy of Science 62: 134-150.
Tarter DC, Nelson DR. 1994. Preliminary list of tardigrades (phylum: Tardigrada) from mosses and liverworts in the Monongahela National Forest. Proceedings of the West Virginia Academy of Science 66: 34.
Terossi M, De Grave S, Mantellato FL. 2017. Global biogeography, cryptic species and systematic issues in the shrimp genus Hippolyte Leach, 1814 (Decapoda: Caridea: Hippolytidae) by multimarker analyses. Scientific Reports 7: 6697.
Thulin G. 1911. Beiträge zur Kenntnis der Tardigradenfauna Schwedens. Arkiv för Zoologi 7: 1-60.
Thulin G. 1928. Über die Phylogenie und das System der Tardigraden. Hereditas 11: 207-266.
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: 232-235.
Trygvadóttir BV, Kristensen RM. 2013. A zoogeographic study of the limnoterrestrial tardigrade fauna on the Faroe Islands. Journal of Limnology 72: 113-122.

Tumanov DV. 2020. Analysis of non-morphometric morphological characters used in the taxonomy of the genus Pseudechiniscus (Tardigrada: Echiniscidae). Zoological Journal of the Linnean Society 188: 753-775.
Utsugi K, Hiraoka T. 1997. The relationship between mosses and tardigrades from Tanzawa Mountains. Bryological Research 7: 83-84.
Utsugi K, Nunomura N, Hiraoka T, Nanai N. 1995. On terrestrial tardigrades and mosses in Toyama Prefecture. Proceedings of the Japanese Society of Systematic Zoology 54: 85-86.

Wełnicz W, Grohme MA, Kaczmarek \mathbf{L}, Schill RO, Frohme M. 2011. ITS-2 and 18S rRNA data from Macrobiotus polonicus and Milnesium tardigradum (Eutardigrada, Tardigrada). Journal of Zoological Systematics and Evolutionary Research 49: 34-39.
Westheide W. 1984. The concept of reproduction in polychaetes with small body size: adaptations in interstitial species. Fortschritte der Zoologie 29: 265-287.
Zeller C. 2010. Untersuchung der Phylogenie von Tardigraden anhand der Genabschnitte 18S rDNA und Cytochrom c Oxidase Untereinheit 1 (COXI). Unpublished M.Sc. Thesis, Technische Hochschule Wildau, Wildau, 105.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site.
Figure S1. The type locality of \boldsymbol{H}. daedalus sp. nov. in Purchase Knob (North Carolina).
Figure S2. The additional locality of \boldsymbol{H}. daedalus sp. nov. in Roan Mountain (Tennessee).
Figure S3. The type locality of \boldsymbol{H}. geminus sp. nov. and \boldsymbol{H}. flavus sp. nov. in Mount Amigasa (Honshu).
Figure S4. The type locality of \boldsymbol{H}. cataractus sp. nov. in Bako Peninsula (Borneo).

[^0]: *Corresponding authors. E-mail: piotr.lukas.gasiorek@gmail. com; LM@tardigrada.net
 [Version of record, published online 11 December 2020; http://zoobank.org/ urn:lsid:zoobank. org:pub:A8DBCFD2-DAA6-44D3-A2E9-974C7575039C]

[^1]: *Sequences of H. flavus and H. geminus were reported in Jørgensen et al. (2011) as belonging to H. exarmatus and H. gladiator, respectively.

