1,073 research outputs found

    A Nonclassical Dihydrogen Adduct of S = Ā½ Fe(I)

    Get PDF
    We have exploited the capacity of the ā€œ(SiP^(iPr)_3)Fe(I)ā€ scaffold to accommodate additional axial ligands and characterized the mononuclear S = 1/2 H_2 adduct complex (SiP^(iPr)_3)Fe^I(H_2). EPR and ENDOR data, in the context of X-ray structural results, revealed that this complex provides a highly unusual example of an open-shell metal complex that binds dihydrogen as a ligand. The H2 ligand at 2 K dynamically reorients within the ligand-binding pocket, tunneling among the energy minima created by strong interactions with the three Feā€“P bonds

    Q-band electron nuclear double resonance (ENDOR) and X-band EPR of the sulfobetaine 12 heat-treated cytochrome c oxidase complex

    Get PDF
    Heat treatment of the bovine cytochrome c oxidase complex in the zwitterionic detergent sulfobetaine 12 (SB-12) results in loss of subunit III and the appearance of a type II copper center as characterized by electron paramagnetic resonance (EPR) spectroscopy. Previous authors (Nilsson, T., Copeland, R. A., Smith, P. A., and Chan, S. I. (1988) Biochemistry 27, 8254-8260) have interpreted this type II copper center as a modified version of the CuA site. By using electron nuclear double resonance spectroscopy, it is found that the CuA proton and nitrogen resonances remain present in the SB-12 heat-treated enzyme and that three new nitrogen resonances appear having hyperfine coupling constants consistent with histidine ligation. These hyperfine coupling constants correlate well with those recently found for the CuB histidines from the cytochrome aa3-600 quinol oxidase from Bacillus subtilis (Fann, Y. C., Ahmed, I., Blackburn, N. J., Boswell, J. S., Verkhovskaya, M. L., Hoffman, B. M., and Wikstrƶm, M. (1995) Biochemistry 34, 10245-10255). In addition, the total EPR-detectable copper concentration per enzyme molecule approximately doubles upon SB-12 heat treatment. Finally, the observed type II copper EPR spectrum is virtually indistinguishable from the EPR spectrum of CuB of the as-isolated cytochrome bo3 complex from Escherichia coli. These data indicate that the type II copper species that appears results from a breaking of the strong antiferromagnetic coupling of the heme a3-CuB binuclear center

    Allosteric Control of O2 Reactivity in Rieske Oxygenases

    Get PDF
    Oxygen is Natureā€™s perfect reagent. On one hand, it is potentially a very strong oxidant. On the other hand, this potential is caged because the two highest energy valence electrons of the O2 molecule are unpaired. As a result, O2 is relatively unreactive with most other molecules, as almost all of these have paired electrons. Consequently, by modulating the properties of the O2 valence electrons, Nature can generate a reactive species under controlled conditions, catalyzing difficult reactions while still rigorously enforcing specificity. Special sets of enzymes termed oxygenases and oxidases have evolved to perform this task

    Advanced paramagnetic resonance spectroscopies of ironā€“sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM)

    Get PDF
    AbstractThe advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed ironā€“sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases

    Composition and Structure of the Inorganic Core of Relaxed Intermediate

    Get PDF
    Activation of the diferrous center of the Ī²2 (R2) subunit of the class 1a Escherichia coli ribonucleotide reductases by reaction with O2 followed by one-electron reduction yields a spin-coupled, paramagnetic Fe(III)/Fe(IV) intermediate, denoted X, whose identity has been sought by multiple investigators for over a quarter of a century. To determine the composition and structure of X, the present study has applied 57Fe, 14,15N, 17O, and 1H electron nuclear double resonance (ENDOR) measurements combined with quantitative measurements of 17O and 1H electron paramagnetic resonance line-broadening studies to wild-type X, which is very short-lived, and to X prepared with the Y122F mutant, which has a lifetime of many seconds. Previous studies have established that over several seconds the as-formed X(Y122F) relaxes to an equilibrium structure. The present study focuses on the relaxed structure. It establishes that the inorganic core of relaxed X has the composition [(OHā€“)FeIIIā€“Oā€“FeIV]: there is no second inorganic oxygenic bridge, neither oxo nor hydroxo. Geometric analysis of the 14N ENDOR data, together with recent extended X-ray absorption fine structure measurements of the Feā€“Fe distance (Dassama, L. M.; et al. J. Am. Chem. Soc. 2013, 135, 16758), supports the view that X contains a ā€œdiamond-coreā€ Fe(III)/Fe(IV) center, with the irons bridged by two ligands. One bridging ligand is the oxo bridge (OBr) derived from O2 gas. Given the absence of a second inorganic oxygenic bridge, the second bridging ligand must be protein derived, and is most plausibly assigned as a carboxyl oxygen from E238.United States. National Institutes of Health (GM 111097)United States. National Institutes of Health (GM 29595

    Electron Transfer Precedes ATP Hydrolysis during Nitrogenase Catalysis

    Get PDF
    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 sāˆ’1, 25 Ā°C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 sāˆ’1, 25 Ā°C), (ii) ATP hydrolysis (kATP = 70 sāˆ’1, 25 Ā°C), (iii) Phosphate release (kPi = 16 sāˆ’1, 25 Ā°C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 sāˆ’1, 25 Ā°C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and proteinā€“protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein

    Responses of Mn\u3csup\u3e2+\u3c/sup\u3e Speciation in \u3cem\u3eDeinococcus radiodurans\u3c/em\u3e and \u3cem\u3eEscherichia coli\u3c/em\u3e to Ī³-Radiation by Advanced Paramagnetic Resonance Methods

    Get PDF
    The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of Ī³-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) ā€œantioxidantā€ Mn2+ā€“metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)ā€“scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn2+ speciation in D. radiodurans and E. coli cells and their responses to 10 kGy Ī³-irradiation. The Mn2+ of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn2+ of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn2+ speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn2+ complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn2+ speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants
    • ā€¦
    corecore