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The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR)
and electron spin echo envelopemodulation (ESEEM) spectroscopies, provide unique insights into the structure,
coordination chemistry, and biochemicalmechanism of nature'swidely distributed iron–sulfur cluster (FeS) pro-
teins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their
application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This
article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
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1. Introduction

Iron–sulfur proteins share an important history with paramagnetic
resonance techniques. Indeed, FeS proteins were first identified by
Helmut Beinert with the use of electron paramagnetic resonance (EPR)
spectroscopy [1–4]. This review will assume some familiarity with the
basics of EPR, and will thus focus on the advanced EPR techniques,
electron nuclear double resonance (ENDOR) and electron spin echo
envelope modulation (ESEEM) spectroscopies, and their contributions
towards extending our understanding of the roles played by FeS
proteins. These spectroscopic techniqueswere invented roughly concur-
rently with the discovery of FeS proteins (i.e., late 1950s–early 1960s)
[3–6], and ENDOR was applied to two-iron ferredoxins (2Fe-Fds) not
long thereafter [7,8].

This review first provides an overview of the multiple forms in
which ENDOR and ESEEM spectroscopies are currently practiced, and
then describes in detail specific cases where these techniques have
yielded important insights into the structure and biochemical action of
iron–sulfur proteins. The emphasis is on more recent work; however,
as appropriate we will detail studies that, beginning in the 1980s,
teins: Analysis, structure, func-

n).
initiated the application of these techniques to FeS proteins, and that
provide the foundation for recent studies.

The techniques of ENDOR and ESEEM spectroscopies aid in the un-
derstanding of various characteristics of metal ions and FeS clusters in
biology such as: electronic and magnetic properties, enzyme mecha-
nism, structure (coordination geometry, valence, and ligand identifica-
tion with or without substrate/product/inhibitors) and protein
dynamics. EPR spectra of metalloproteins are often too broad to resolve
the interactions that contain the desired biochemical and physical infor-
mation. In these cases, ENDOR and ESEEM spectroscopies provide this
information at significantly higher resolution than from EPR alone.

The interactions of a metalloprotein's unpaired electron spin(s) (S)
and a nuclear spin (I), are measured by their hyperfine couplings, de-
noted A. A large number of biochemically relevant nuclei have non-
zero nuclear spin (I N 0) with examples arising from amino acid resi-
dues, cofactors, or substrates/inhibitors including naturally abundant
isotopes such as: 1H, 14N, 19F, 31P, and those requiring isotopic enrich-
ment such as: 2H (D), 13C, 15N, 17O, and 33S. Many metallic elements
have non-zero spin isotopes of which 57Fe (I = 1/2, 2.2% abundance)
is themost relevant here. For larger hyperfine couplings, or interactions
where the intrinsic linewidth of the EPR spectrum is narrow, these elec-
tron–nuclear interactions can be directly observed in the EPR spectrum.
An example is the observation of hyperfine coupling from63,65Cu (I=3/2,
together 100% abundance) in Type II copper centers, and even in this case,
the coupling is resolved only in the g|| region. More often than not, and in
particular in the case of iron–sulfur proteins, the EPR linewidth of
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Abbreviations

Spectroscopic terms
CW continuous wave
EPR electron paramagnetic resonance
ENDOR electron nuclear double resonance
ESEEM electron spin echo envelope modulation
hfc hyperfine coupling
HYSCORE hyperfine sublevel correlation
PESTRE Pulsed ENDOR Saturation and Recovery
RF radiofrequency

Biochemical terms
Aae Aquifex aeolicus
AdoMet/SAM S-adenosylmethionine
BioB/BS Biotin synthase
CoM coenzyme M, mercaptoethane sulfonate
CoB coenzyme B, 7-mercaptoheptanoyl-L-threonine

phosphate
Fd ferredoxin
FeMo-co iron molybdenum cofactor of nitrogenase
FeS iron–sulfur
5′-GTP guanosine 5′-triphosphate
Hdr heterodisulfide reductase
HiPIP high potential iron–sulfur protein
HMBPP (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate
5′-ITP inosine 5′-triphosphate
MDTB 9-mercaptodethiobiotin
MEcPP 2-C-methyl-D-erythritol-2,4-cyclodiphosphate
MiaB,RimO Radical S-adenosylmethioninemethylthiotransferase

(MTTase) enzymes
MoaA Molybdenum cofactor biosynthetic enzyme
PFL-AE Pyruvate formate lyase-activating enzyme
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metalloprotein centers is sufficiently broad that small but important elec-
tron–nuclear hyperfine couplings are unresolved. To determine these hy-
perfine couplings and identify the nuclei of origin requires ENDOR and
ESEEM spectroscopies, which will be described in the next section. The
hyperfine information gainedmay identify nucleiwithin the coordination
sphere, characterize bonding structure, determine bond order, and esti-
mate electron–nuclear spin distances. These complementary advanced
EPR techniques each are capable of resolving hyperfine couplings;where-
as ENDOR spectroscopy is able to detect a wide a range of hyperfine cou-
plings, from as little as ~10−1 MHz up to N102 MHz, ESEEM techniques
are typically limited to smaller hyperfine values, A b 10 MHz. Each tech-
nique can identify the nuclei present with ENDOR having the advantage
of being broad-banded, but ESEEM spectroscopy has the advantage of
being able to ‘count’ the number of equivalent nuclei (as in NMR).

2. Techniques

2.1. EPR

The electronic paramagnetic resonance (EPR) spectrumprovides the
first information associated with the FeS center: its electronic spin state
(S≥ 1/2,with S=1/2 and 3/2 being themost amenable to study), iron d
orbital configuration, FeS cluster oxidation state, and general molecular
framework of the FeS cluster are established, and described inmore de-
tail elsewhere [9–11]. This information arises from the associated elec-
tron energy levels and their interaction with an externally applied
magnetic field. In recording an EPR spectrum, the magnetic field, B, is
swept while a microwave field of fixed energy (E= hν; ν= frequency;
typically ~9 GHz (X-band) or 35 GHz (Q-band)), is applied, and
resonant transitions occur at field positions characteristic to the elec-
tronic structure, which are described in terms of a g tensor (or matrix).
In general, the three components of the g tensor (typically, gx, gy, gz, or, if
one is reluctant to choose a geometrical designation, g1, g2, g3, or gmin,
gmid, gmax) depend on the electronic structure, electron spin interac-
tions, and the relative orientation of the molecule within the magnetic
field. The individual g values that make up the g tensor may be viewed
as deviations of the unpaired electron(s) from that of a ‘true’ free elec-
tronwithout any other interactions, which is ge=2.00232…. These de-
viations result from the orbital aspects of the unpaired electron(s),
which interact with the spin aspects of the electron. As the number of
electrons in the paramagnetic center increases, these spin-orbital inter-
actions increase, and are thus more significant for FeS clusters
(i.e., paramagnetic 3d ions) than for, say, organic radical species (para-
magnetic 2s, 2p molecules).

2.2. ENDOR

The paramagnetic centers of FeS clusters in nature create unique
spectroscopic probes for both electronic and structural coordination
characterization by EPR (discussed in detail elsewhere in this special
issue) and electron nuclear double resonance (ENDOR) spectroscopies
[4,12–16]. In principle, any system with non-zero electron spin, S N 0,
not only Kramers (S half-integer) but also non-Kramers states (S inte-
ger), can be EPR active and give advanced paramagnetic resonance re-
sponses. However, we focus here on what is perhaps the most
common spin state in FeS proteins, andwhich is by far themost amena-
ble to study by EPR and advanced techniques, namely S=1/2. This un-
paired electron spin of the FeS center paired with either its own iron
nuclear spin(s), with spins of nuclei within the coordination sphere
and of substrates/products/inhibitors allow one to generate a wealth
of information for the FeS center. First, the electronic information of
the iron ions may be determined through ENDOR hyperfine measure-
ments of the 57Fe nuclei [17–20]. This sole magnetically active isotope
of iron is present in only 2.15% natural abundance, and thus, isotopic en-
richment in 57Fe is usually desirable [1,2]. Secondly, onemay answer the
question of what atoms, either through natural abundance or isotopic
labeling, are within the first and second coordination sphere of the FeS
cluster. These include isotopes such as 1H, 13C, 15N, 19F, 31P, 57Fe (all I =
1/2), 2H, 14N (both I= 1), 33S (I= 3/2), and 17O, 95,97Mo (all I= 5/2).

While the EPR spectrum provides us with much preliminary infor-
mation, including an orientation frame with which to view our mole-
cule, much of the information desired, namely the electron–nuclear
hyperfine and quadrupole interactions are small in energy and thus un-
resolved within the broad linewidth of the FeS cluster's EPR spectrum.
ENDOR spectroscopy, by virtue of the higher resolution and lower ener-
gy scale of the NMR experiment, directly measures these interactions
governed by the nuclear spin Hamiltonian, HN:

HN ¼ gNβNI � B
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nuclear Zeeman

þ S�A�I
|ffl{zffl}

hyperfine

þ I�P�I
|ffl{zffl}

quadrupole

ð1Þ

whereβN is the Bohrmagneton,which is a constant for all nuclei, gN is the
nuclear g value, unique to each isotope, I is the isotope's nuclear spin, and
B is the magnetic field. The orientation dependent hyperfine interaction,
A, depends on the electronic spin, S, and the nuclear spin of the isotope
being measured, I. For a given S, the quantized spin angular momentum
levels are:MS = [−S, (−S + 1), …, 0, …, (S − 1), S], with an analogous
situation for I (MI=[−I, (−I+1),…, 0,…, (I− 1), I]). Allowed EPR tran-
sitions involve a change in electronic spin level: ΔMS = ±1, ΔMI = 0,
while ENDOR (i.e., NMR) transitions are:ΔMS=0, ΔMI=±1. Fig. 1 out-
lines the allowed EPR and ENDOR transitions of an S = 1/2, I= 1/2 sys-
tem, where solid lines a and b satisfy the ΔMS =±1, ΔMI = 0 selection
rule for EPR, while solid lines c and d satisfy the selection rules ΔMS =
0, ΔMI = ±1 for ENDOR spectroscopy. Lines e and f are ΔMS = ±1,
ΔMI = 1 forbidden EPR transitions.



~
~

~
~

+1/2

-1/2

+1/2

-1/2

+1/2

-1/2
+gnβn/2

-gnβn/2

+gnβn/2

-gnβn/2

+gnβn/2

-gnβn/2

MS

MI

Electron
Zeeman

Nuclear
Zeeman

Electron-Nuclear
Hyperfine

a b

c

d

e f
νe (G) 

a ebf

cd

νn (MHz)

A

A

cd

A/2 (MHz)

2νn

EPR

ENDOR

-hA/4

+hA/4

+hA/4

-hA/4

Fig. 1.Energy level diagramderived from thenuclear spinHamiltonian (Eq. (1)) for an S=1/2, I=1/2 system. Solid lines represent allowedEPR (a, b) and ENDOR/ESEEM(c, d) transitions
and dashed lines represent forbidden EPR (e, f) transitions. The stick representations (right) display the transition observed for EPR spectra (top) and for ENDOR spectra in ‘weak’ νn cen-
tered (middle) and ‘strong’ A/2 centered (bottom) coupling patterns.
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ENDOR spectra are collected at static magnetic fields, each field de-
fining a single EPR resonance among all possible, fixing the nuclear Zee-
man portion of the nuclear Hamiltonian. Nuclei at this fixed magnetic
field will resonate at a Larmor frequency, νN, determined by: hνN =
gNβNB, which scales with magnetic field, B. An unpaired electron spin
creates an large internal field that perturbs any nearby magnetically ac-
tive nuclear spins, much like the significantly smaller internal field in-
teractions between nuclear spins created in traditional NMR
experiments measured by their chemical shift. Just as a 500 MHz 1H
NMR spectrum measures the deviation of protons from their Larmor
frequency, νN (1H) = 500 MHz, at a magnetic field of 120 kG (12 T),
ENDOR will measure proton interactions with large electronic spins
which increases the internal magnetic field felt by the surrounding nu-
clear spins [16]. For ENDOR, this internal field is measured as a hyper-
fine coupling interaction tensor, A. The observed ENDOR transitions
may appear as Larmor centered, νN, split by the hyperfine coupling, A,
when the internal field is smaller than the external field: νN N A/2 —

or — when the internal field is larger than external field: νN b A/2, the
transitions with appear centered at half of the hyperfine coupling and
split by 2νN. These two possibilities are given by the following (first-
order) equation:

v� ¼ vn �
A
2

����
����: ð2Þ

The right panel of Fig. 1 explores the ‘weak’ Larmor-centered and
‘strong’ A/2-centered hyperfine coupling patterns for an S = 1/2, I =
1/2 spin system — the simplest ENDOR-active spin system.

The hyperfine coupling (hfc), A, interaction for a particular nucleus
contains a wealth of information. This is because hfc is related to elec-
tron spin delocalization onto a given nucleus, and hence, bonding infor-
mation, geometry, and structural information. Thematrix,A, can thus be
decomposed into two components: A = Aloc + T. The first component,
Aloc, is the local contribution to the observed hyperfine coupling and it
depends on the nuclear properties of the nucleus observed. Various in-
teractions of this nucleus with the electron spin are ‘contained’ within
Aloc, including covalent bonding interactions and isotropic hyperfine
coupling arising in general from electron spin density in s-orbitals at
the nucleus. Ideally, the collection of Aloc of all nuclei for ametallocenter
yields a complete composition of the covalent bonding network elec-
tron spin in the first coordination sphere. For the atoms involved in
the ‘covalent’ bonded network, in-depth analysis of Aloc can yield rich
inorganic information, such as: i) valency of themetal ions [21], ii) cova-
lency of the ligands [22] and iii) the coordination geometry of the
metallocenter. The second term, T, garners the non-local, dipolar cou-
pling information of atoms near the metallocenter, covalently bonded
or not. Dipolar couplings allow for distance estimates between the nu-
clear and electron spin, and other geometric constraints such as angles
and coordinates [14,23].

Atoms of nuclear spin I ≥ 1 possess a non-spherical atomic nucleus
and are referred to as quadrupolar nuclei. In contrast to nuclei with
I= 1/2, for which theMI =±1/2 values are equal in energy (degener-
ate) in the absence of an externalmagneticfield, regardless of their elec-
tronic environment, nuclei with, e.g., I=1 (as in 14N) haveMI =0, ±1
levels, whichmay have differingnuclear energymagnitudes, even in the
absence of external magnetic field [9]. All that is required is an internal
electric field gradient, which can result from an unequal charge distribu-
tion around the quadrupolar nucleus, which could be the consequence
of an imbalance of p orbital valence electrons about the nucleus [24].
This ‘charge distribution’ is measured and observed as an additional
splitting of the ENDOR transitions described above. In this case of qua-
drupolar splitting, denoted as P (or sometimes Q), each ENDOR peak is
further split by the quadrupolemoment into 2I lines dictated by the fol-
lowing (first-order) equation:

v� MIð Þ ¼ vN � A
2
� 3P 2MI−1ð Þ

2

����
���� ð3Þ

applicable when the quadrupole splitting is much smaller than the hy-
perfine [9]. For an S = 1/2, I = 1 system, the same ENDOR selection
rules, ΔMS = 0, ΔMI = ±1, still apply, however, the possible splitting
pattern is nowmore complex, as seen in Fig. 2. For an axial quadrupole
tensor, P=[−Px/2,−Py/2, Pz], the allowed ENDOR transitions are as fol-
lows: e and f of theMS=+1/2manifold, and d and g of theMS=−1/2
manifold. The hyperfine can once again be in a ‘weak’ or ‘strong’ cou-
pling regime as described earlier, however, for each, the observed quad-
rupole splitting is the same, 3P (Fig. 2). The quadrupole coupling
information thus obtained can be extremely powerful in determining
bonding information and bond order, critical for distinguishing
e.g., sp2 imidazole nitrogens from other protein nitrogenous species
[24,25].

Many of the FeS protein samples studied by EPR and ENDOR spec-
troscopy are in a frozen solution and therefore are a randomdistribution
of all possible orientations in the magnetic or lab frame, hence the
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probability distribution of the field to alignwith any given orientation is
equivalent. As each of the hyperfine, A, and quadrupole, P, tensors are
orientation dependent, the deconvolution and mapping of complete
tensors onto the electronic g tensor is performed through analysis of
2D field-frequency ENDOR spectra [16,26–29]. ENDOR spectra collected
at the magnetic field edges of the rhombic EPR spectrum typically re-
semble a ‘single-crystal-like’ position, therefore one is observing only
a single map of the A and P tensors along a single axis of the g tensor.
ENDOR spectra of the 2Dfield-frequency between these field edges rep-
resent a mathematical subset of orientations of hyperfine and quadru-
pole. Through the correspondence of magnetic field (g values) and
angular section, the absolute values and orientations of each A and P
may be mapped onto the relative molecular frame provided by the g
tensor.

ENDOR spectra may be collected with ‘continuous-wave’ (CW) mi-
crowave instrumentation by holding the magnetic field static while
sweeping an applied radiofrequency (RF). The classic CW method for
ENDOR acquisition involves field modulation and phase-sensitive de-
tection with an RF sweep, and has superior sensitivity to the currently
more popular pulsed ENDOR techniques [14]. However, pulsed
ENDOR techniques frequently are able to give better-resolved ENDOR
line shapes, and to resolve weaker hyperfine couplings [30,31].

Pulsed ENDOR techniques consist of microwave pulse sequences
with the incorporation of RF pulses. There are two fundamental pulsed
ENDOR techniques, named after their inventors, Mims [6] and Davies
[32], respectively. The Mims ENDOR pulse sequence is based on the
three-pulse (each 90° pulse is represented byπ/2 in the sequence) stim-
ulated electron spin echo (ESE) sequence: π/2–τ–π/2–T–π/2–τ–echo
(Fig. 3). To achieve ENDOR, an RF pulse is applied during time T. The
Mims sequence can be used for large couplings but ismost useful for re-
solving small hyperfine couplings, generally less than 4 MHz. Its sensi-
tivity is a joint function of the hyperfine coupling being interrogated,
A, and the interval, τ:

ENDOR∝ 1− cos πAτð Þð Þ=2: ð4Þ

TheMims ENDOR sequence thus is affected by ‘blind spots’ (i.e., points
at which the S/N is essentially zero), when A= n/τ, where n = 0, 1, …,
integer [33].
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The presence of blind spots can sometimes be advantageous as they
can allow suppression of signals with specific hyperfine coupling, po-
tentially simplifying spectra [33]. The first two ‘non-selective’ micro-
wave pulses of the stimulated pulse sequence are responsible for the
holes created in Mims ENDOR as the π/2–τ–π/2 sequence creates a ‘po-
larization grating’ within the inhomogeneous EPR line where the
ENDOR is detected [34].

For larger hyperfine couplings, generally greater than 4 MHz, the
Davies ENDOR sequence, π–T–π/2–τ–π–τ–echo, where the RF is applied
once again at time T, is employed (Fig. 3) [32]. The preparation micro-
wave π pulse is first applied to ‘flip’ the electron spin and then the RF
pulse is applied during time T to then excite andmix nuclear transitions
that match the RF pulse frequency. A Hahn echo sequence (i.e., the orig-
inally invented ESE sequence; described inmore detail in the ESEEM sec-
tion below): π/2–τ–π–τ–echo, is then applied and directly detects the
NMR polarization of the EPR transition created by the RF pulse, yielding
the ENDOR measurement. In contrast to the Mims pulse sequence; the
Davies ENDOR detection is described by the function [33,35],

ENDOR A MHzð Þ; tp μsð Þ
� �

∝
1:4 tp

� �

0:72 þ Atp
� �2 ð5Þ

where tp is the separation in time between the first two pulses. For the
Davies ENDOR response, the ‘hole in the middle,’ appears as A goes to
zero, but otherwise the ENDOR response does not have ‘blind spots’.

These two pulse sequences have set the foundation for development
of additional techniques. The Remote-EchoMims (ReMims) ‘four-pulse’
sequence (Fig. 3) developed by Doan allows for the collection of
distortion-free ENDOR spectra of nuclei with hyperfine coupling greater
than typically obtainable by the Mims pulse sequence, and is useful to
bridge the gap in hyperfine coupling between traditional Mims and
Davies ENDOR methods [36].

Another pulsed ENDOR ‘trick’ for deconvolution of ENDOR spectra
and to ease the process of assignments of overlapping peaks is the em-
ployment of TRIPLE spectroscopy (where TRIPLE is not an acronym for
anything and is sometimes referred to as double ENDOR) [34,37]. As it
is considered a ‘pump–probe’ technique, the TRIPLE technique may be
able to resolve and confirm nuclei hyperfine coupling assignments. A
second ‘pump’ RF pulse of a constant frequency is added before the var-
iable ‘probe’ RF pulse of the ENDOR pulse sequence. When the pump
frequency matches a ENDOR transition of a ν+ transition of a given nu-
clei, for example, the irradiationwill cause an intensity change of the ν−
transition, correlating the ν−/ν+ pair for a single hyperfine coupling.

Relative signs of a hyperfine tensor for individual nuclei can
sometimes be found through the analysis and simulation of 2D
field-frequency ENDOR patterns, when a through-space dipole inter-
action gives a reference sign (e.g. [38,39]). Likewise TRIPLE can
sometimes be used to determine relative hyperfine signs of multiple
nuclei in a system through the so-called implicit TRIPLE effect [40].
First established on the low-spin FeIII (S = 1/2) center of the non-
heme enzyme nitrile hydratase [40], the implicit TRIPLE effect has
been extended to FeS clusters [41]. Whereas the determination of
relative 57Fe hyperfine coupling signs has been well established in
ENDOR, recently multi-pulse sequences have been developed to
obtain absolute sign information, starting with the work of
Bennebroek and Schmidt [42–44]. Most recently, a robust and
reliable multi-pulse sequence has been developed by Doan, the
Pulsed ENDOR Saturation Recovery (PESTRE) protocol, which deter-
mines absolute signs of hyperfine couplings in conjunction with
corresponding ENDOR measurements, described below [45,46]. No
longer does the assignment of absolute signs of 57Fe hyperfine
couplings of FeS clusters depend solely on high field Mössbauer
measurements [20].
2.3. ESEEM

Electron spin echo envelope modulation spectroscopy (ESEEM)
[47–49] is a microwave-only pulsed technique that has the ability
to resolve small hyperfine and quadrupole couplings that may not
be resolved using other advanced techniques such as ENDOR spec-
troscopy, and has the experimental advantage of simplicity as no
separate RF equipment is required, unlike for ENDOR [50]. ESEEM,
as the name implies, employs the detection of a spin echo by a two
pulse (primary echo), π/2–τ–π–τ–echo, or a three pulse (stimulated
echo) sequence, described later. The basic two pulse sequence, often
employed for ‘electron-spin-echo-detected’ EPR spectra, will create
what is also often referred to as a Hahn spin echo [51]. After the π/
2 pulse flips electron spins into the orthogonal plane of the magnetic
field vector, the electron spins dephase at a relaxation rate, T1e, char-
acteristic of the electron spin system. For transition metal ions at
temperatures below 10 K, typical T1e times are on the order of
10 μs. The electron spin is allowed to ‘dephase’ during a time τ before
it is flipped again by π. The electron spin has memory and will begin
to ‘rephase’much like the previous ‘dephasing’ but now in the oppo-
site axis direction so as to develop an echowhich appears at the same
time interval for the original dephasing, τ. By varying τ, the
‘dephasing’ behavior of the electron spin is detected.

As in ENDOR, the electron and nuclear Zeeman effects dominate the
spectrum and will dominate the electron spin echo's intensity. Howev-
er, electron–nuclear hyperfine and quadrupole interactions also con-
tribute to the echo intensity, and they are better exploited by varying
τ over a series of applied pulse sequences.When τ is varied, the echo in-
tensity of each pulse sequence of a given step in time, τ, is measured,
forming a time-domain spectrum. Primarily, the phase memory of the
system is observed as exponential decay of the echo intensity as τ in-
creases. Of central interest, periodic modulation(s) of the electron spin
echo by nuclear interactions appear within the time domain spectrum.
Thismodulation created bynuclear hyperfine and/or quadrupole transi-
tions is of central interest in the ESEEM experiment, therefore deeper
modulation is desired for increased S/N. The relaxation decay of the
echo is subtracted from the time domain spectrum followed by subse-
quent processing (windowing, zero filling, etc. — the same “tricks” as
used in FT-NMR) before the final Fourier transform that yields a fre-
quency domain spectrum for easier observation of the hyperfine and
quadrupole couplings.

ESEEM spectroscopy has the advantage over ENDOR spectroscopy of
being able to quantify the nuclearmodulation depth so as to ‘count’ sim-
ilar nuclei, provided they have similar hyperfine and quadrupole cou-
pling parameters [25]. In contrast, ENDOR signal intensities are
difficult to correlate with number of nuclei. For example, this quantita-
tive ability of ESEEM has been extremely useful in the determining the
number of imidazole ligands of a given metallocenter [25].

The transitions observed in ESEEM vary slightly from those of
ENDOR. As ENDOR spectroscopy follows its selection rules more rigor-
ously, ESEEM techniques exploit both allowed and ‘semi-forbidden’
transitions [34]. For S = 1/2, I = 1/2 cases, maximum modulation
depth within the ESEEM time-domain spectrum is obtained when the
microwave energy ‘matches’ the Hamiltonian energy (Eq. (1)), taking
into specific consideration the second and third terms, the hyperfine
and quadrupole interactions, respectively. ESEEM transitions observed
for I = 1/2 nuclei are a result of only the anisotropic portion of the
hyperfine tensor (primarily T; see definition for A given above). Many
anisotropic nuclei that may be of interest, e.g., 1H couplings of metal-
bound 1HxO species, have very broad lines, so that themodulation is fre-
quently lost within the dead time of the instrument, making ESEEM of
I= 1/2 systems often difficult [50]. However, 15N (I= 1/2) isotopic la-
beling can beuseful for analyzingweaker 14N couplings, because the 15N
ESEEM can yield a more direct estimate of the dipolar contribution,
which can then be used in interpreting the 14N ESEEM data, which con-
tain isotropic and quadrupole couplings, as discussed next.
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For S= 1/2, I= 1 cases, frequently histidine 14N systems at X-band
(~9.5 GHz), the quadrupole term now plays a significant role [25]. The
off-diagonal matrix elements introduced by the rhombic quadrupole
tensor allows for more significant mixing of the quantum states, and
semi-forbidden ΔMI = ±2, double quantum, transitions to occur, such
as h, i, j, and k in Fig. 2. The semi-forbidden transitions in Fig. 2 are com-
bination differences between the allowed EPR and ENDOR transitions,
creating unique observable transitions for the ESEEM experiment. In
the opposite view, when both allowed EPR and semi-forbidden ESEEM
transitions are excited in the ESEEM experiment, their frequencies will
beat against each other and result in single transitions at the ENDOR fre-
quencies, for example i (EPR) − h (semi-forbidden) = f (ENDOR).

Three-pulse ESEEM, which has the sequence: π/2–τ–π/2–ΔT–π/
2–τ–echo (Fig. 3), is often simpler to analyze as it contains only the prin-
cipal ENDOR (NMR) frequencies and semi-forbidden transitions, while
lacking the sum and difference peaks of transitions observed in a two-
pulse ESEEM experiment. While greater signal intensity is achieved
with the three-pulse ESEEM sequence as compared to the two-pulse
ESEEMsequence for disordered (frozen solution) systems, themain dis-
advantage of three-pulse ESEEM is the inclusion of ‘blind-spots’ as a
function of τ. These holes are caused by the same ‘polarization grating’,
π/2–τ–π/2, of the stimulated echo as seen in theMims ENDOR spectros-
copy, however, the hole pattern has no dependence on A, only on τ,
therefore, multiple three pulse ESEEM spectra of varying τ should be
collected to ensure proper assignments.

2.4. HYSCORE

The development of three-pulse ESEEM techniques led to its exten-
sion into a two-dimensional form [52], much as what had occurred ear-
lier in NMR spectroscopy. This 2D ESEEM is referred to as hyperfine
sublevel correlation (HYSCORE) spectroscopy, and is produced by the
addition of a ‘mixing pulse’ to create a four-pulse ESEEM sequence
[53]. While 3-pulse ESEEM works well for some disordered systems, it
often loses much of the fast decaying modulation amplitude, quicker
than the electron spin decay. This is much more of a problem for larger
coupling with significant hyperfine anisotropy. Because of instrument
dead time, most, if not all, of the nuclear modulation is often lost before
data collection begins. The addition of a fourthπ pulse to the three pulse
sequence alleviates this problem by transferring nuclear spin coherence
from one manifold to the other and prolonging the modulation decay
time. The addition of this π pulse between the second and third π/2
pulses of the three-pulse sequence, π/2–τ–π/2–T1–π–T2–π/2–τ–echo
(Fig. 3), creates two separate ‘evolution’ periods before and after the π
pulse, termed T1 and T2. The π pulse takes the nuclear coherence devel-
oped in theMS=±1/2 electron manifold during the first evolution pe-
riod, T1, and mixes it between the electron spin manifolds. The nuclear
spin coherence now evolves in the opposite MS = ±1/2 electron spin
manifold, and a nuclear coherence transfer echo is created at T1 = T2.
The nuclear coherence transfer echo is most easily observed in the fre-
quency domain spectrum along the diagonal of T1 = T2. The last π/2
pulse transfers the nuclear coherences to electron coherences for detec-
tion as an electron spin echo. The key aspect of the HYSCORE experi-
ment is that the final electron spin echo produced has been
modulated by the nuclear spins, similar to the ESEEM experiment, how-
ever, the mixing pulse helps extend the electron spin relaxation decay
time. For disordered (frozen solution) systems, HYSCORE therefore
has improved sensitivity relative to 2D three-pulse ESEEM
spectroscopy.

The typical four-pulse ESEEM experiment is done in a 2D fashion
(HYSCORE) where T1 and T2 are incremented independently of each
other and the final product therefore correlates the nuclear frequencies
with the mixing of the electron spin manifolds. The 2D time domain
spectrum is processed in a similar fashion as described earlier for
ESEEM; a 2D Fourier transform results in four quadrants, where, as
with ENDOR, two coupling regimes are possible, either a strong
(A N νN) or weak coupling (νN N A) regime; however, all peaks are not
observed in a single quadrant. For ‘weak’ couplings of powder samples,
peaks are once again Larmor centered perpendicular to the frequency
diagonal in the first (+,+) and third (−,−) quadrants. For stronger
couplings, cross peaks appear in the second and fourth quadrants, occa-
sionally labeled as (+,−) and (−,+), respectively. This process allows
for the readout and interpretation of multiple nuclei in a single spec-
trum that may have been unmanageable in a single ESEEM experiment.
The powder pattern responses do not easily translate to complete hy-
perfine and quadrupole tensors. Complete line shape analysis and sim-
ulations at multiplemagnetic field positions is the only true way to fully
resolve A and P tensor values and their respective orientation to g,
reviewed extensively elsewhere [50,54–57].

HYSCORE is most useful to resolve broad hyperfine lines that three-
pulse ESEEM often fails to detect. The ability of HYSCORE to detect large
anisotropic couplings of I = 1/2 nuclei such as 1H and 13C is a result of
the added πmixing pulse, as these couplings are no longer lost through
destructive interference which occurs in the three pulse experiment. Of
course, HYSCORE still retains ‘blind-spots’ with τ time dependencies;
therefore careful experimental and/or simulation considerations must
be made.

2.5. Advanced EPR techniques applied to non-Kramers (integer-spin)
systems

The above description of ENDOR, ESEEM, and HYSCORE techniques
uses as examples the Kramers, S = 1/2, state the most common and
spectrally rewarding of the possible spin states of FeS clusters. However,
FeS clusters can also be found in higher spin states. Resting state nitro-
genase has S= 3/2, and has been extensively studied by ENDOR as de-
scribed elsewhere in this review and in other reviews [58–60]. For
completeness it is useful to note that ENDOR and ESEEM can be produc-
tively applied to favorable integer spin states, primarily S≥ 2,which can
be found in 3Fe-red clusters, [Fe3S4]0, and has recently been identified in
catalytic turnover states of nitrogenase [60–62]. It has been known for
many years that integer-spin (non-Kramers) states having S ≥ 2 with
negative zero-field splitting parameter D (so that the spin ground dou-
blet is |S, ±MS〉 = ±S) exhibit EPR spectra, generally at low fields [63,
64]. More recently, it was shown that ENDOR and ESEEM of such EPR
signals can be highly informative [65–67].

3. Advanced EPR studies of FeS clusters in iron–sulfur and
related proteins

This section describes advanced EPR studies that focus on the FeS
cluster itself, using as probes primarily the Fe ions themselves (enriched
in 57Fe), but also 1H nuclei located on coordinated thiolates that directly
provide information on their nearby Fe ion. As discussed subsequently
the inorganic sulfides can also be studied upon enrichment in 33S
(I = 3/2, 0.75% natural abundance). In the case of heterometallic clus-
ters, such as in nitrogenase FeMo-co, other nuclei can be studied, such
as 95Mo (I= 5/2, 15.9% natural abundance, and enriched) and the cen-
tral ion of FeMo-co, now identified as a carbide, due in part to enrich-
ment in 13C [68–70].

3.1. 57Fe ENDOR

It is of interest to note that 57Fe studies of FeS clusters not only initi-
ated the use of ENDOR in characterizing metalloenzymes [7], but were
themotivation [71] for the development of the theory andmethodology
for determining hyperfine interactions tensors through the simulation
of 2D field-frequency patterns of ENDOR spectra collected across the
EPR envelope of the center under study [16,26,27], as well as the devel-
opment of the most robust method for determining hyperfine signs,
PESTRE [45].
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3.1.1. 2Fe-ferredoxins
The exchange coupling of the two iron spins, S= 2 FeII and S = 5/2

FeIII ions, in an EPR observable reduced [2Fe2S]+ cluster result in either
a ferromagnetically [72] coupled ground state, which yields a total spin,
S = 9/2, or an antiferromagnetically coupled ground state, which gives
S = 1/2 [73]. The observed g tensor for the antiferromagnetically
coupled state is given by

g ¼ 7
3
gIII−

4
3
gII ð6Þ

where gIII and gII are the individual g tensors of the ferric and ferrous
centers, respectively. The low-spin S = 1/2 ground state is more com-
monly observed for [2Fe2S] clusters. Fig. 4 presents Q-band (35 GHz)
EPR spectra of three, representative FeS proteins with S = 1/2 ground
states, including [2Fe2S]+ cluster from Aquifex aeolicus Fd1 (Fig. 4A)
which has a significantly rhombic signal with g values straddling 2.0
Fig. 4.Q-band (35GHz) EPR spectra of three, representative FeS proteins. The spectrawere
all recorded at 2 K under “rapid passage” conditions, so that the experimental spectrum
appears as an absorption lineshape. A digital derivative spectrum is displayed above
each experimental spectrum, which gives the familiar presentation of EPR spectra. The in-
tensities of all spectra have been arbitrarily scaled for ease of viewing. The abscissa is given
in descending g value scale (corresponding to increasingmagnetic field) to allow compar-
ison among spectra recorded at slightly different microwave frequencies. The g values of
the FeS clusters are indicated on each spectrum. A) Aquifex aeolicus Fd1 reduced 2Fe-Fd,
[2Fe2S]+, recorded at 35.028GHz; B)Desulfovibrio gigas reduced 4Fe-Fd, [4Fe4S]+, record-
ed at 34.946GHz; In (B), the presence of a small amount of adventitiousMn(II), a common
occurrence inmetalloprotein samples, is indicated. This narrow line sextet (55Mn, I=5/2,
100%) is accentuated in the derivative presentation. An unknown radical (g≈ 2.00) is also
present in very small amount and is indicated by an asterisk. C) Halorhodospira halophila
(formerly Ectothiorhodospira halophila) oxidizedHiPIP, [4Fe4S]3+, recorded at 34.958 GHz.
(g = [2.05, 1.95, 1.89], giso = 1.96). The spectra were all recorded at
2 K under “rapid passage” conditions [74], so that the experimental
spectrum appears as an absorption line shape. In addition, for each pro-
tein, a numerical derivative spectrum is also provided, which thus has
the first derivative line shape of an EPR spectrum recorded under
“slow passage” conditions, as is the case for typically reported spectra.
Each format has advantages and disadvantages. The absorption
lineshape is better for observation of broad lines and gives a better
idea as to the actual amount of signal. The first derivative lineshape is
better for observation of narrow lines. This can easily be seen in
Fig. 4B,wherein the spectral signature of a small amount of adventitious
Mn(II), which appears as a sextet due to hyperfine coupling to 55Mn
(I = 5/2, 100%) is greatly accentuated in the numerical derivative pre-
sentation, even though the Mn(II) is actually present in very low con-
centration, as shown by the experimental, absorption lineshape,
which is dominated by the much broader [4Fe4S]+ EPR signal.

Either of the S=1/2 or 9/2 paramagnetic states for [2Fe2S]+ clusters
are amenable to ENDOR characterization of both the 57Fe centers and of
coordinated ligands and other nearby molecules. Both 57Fe ENDOR and
magnetic Mössbauer spectroscopies may characterize the electronic
structure of the iron ions of a given FeS center [64,75]. Each technique
has distinct advantages and disadvantages. As discussed elsewhere
[13,14,20,76], Mössbauer is able to detect all Fe sites in a given sample,
while ENDOR observes only those interacting with unpaired elec-
tron(s). This fact alone can lead to complementary information being
providedby the two techniques. For example,Mössbauer is able to char-
acterize the diamagnetic, reduced [2Fe2S]0 S=0 ground state, inacces-
sible by ENDOR, as well as other paramagnetic, or integer-spin systems
(S= 1, 2,…), which are more difficult, but not impossible (vide supra)
to study by EPR and ENDOR.However,Mössbauermay be overwhelmed
whenmultiple FeS clusters residewithin a protein, severely convoluting
a spectrum. ENDOR, in contrast, has the advantage of being ‘blind’ to
diamagnetic species and can select among paramagnetic FeS clusters
whose EPR envelopes do not overlap. Indeed, the spin state selection
of ENDORplays a critical role in the study of some complex FeS systems.
Amore subtle distinction is that Mössbauer can determine 57Fe quadru-
pole splitting that is unattainable through ENDOR spectroscopy as this
information arises from the nuclear excited state of 57Fe (I = 3/2),
accessed by the γ-ray energy employed byMössbauer [77]. Traditional-
ly, an advantage of Mössbauer is that it allowed determination of the
sign of hyperfine couplings, along with their magnitudes, while such
sign information was not obtainable from ENDOR. However, as
discussed above, newly developed ENDOR protocols for determining
absolute hyperfine signs [20,45,46] have “leveled the playing field” be-
tween the two techniques in this regard.

The g tensor for [2Fe2S] clusters may be used to classify clusters into
families and determine electronic characteristics [20], however it is the
57Fe hyperfine couplings that provide thedeepest insight into their elec-
tronic structure and ENDOR spectroscopy has the added advantage of
being able to map the g tensor orientation onto the molecular frame.

The [2Fe2S]+ clusters from A. aeolicus (Aae) ferredoxins (Fd1, Fd5,
and Fd5) are cysteine coordinated and belong to a giso = 1.96 subclass
of 2Fe ferredoxins [20]. By grouping [2Fe2S] proteins into subclasses
of related electronic structure, various ligand-field energies may be de-
termined from EPR parameters as shown recently for Fd1, Fd4, and Fd5
from Aae. Such [2Fe2S]+ clusters exhibit fairly isotropic FeIII coupling,
while the hyperfine coupling of the FeII ion is very anisotropic with its
strongest hyperfine coupling along g1. The constituent FeIII ion in a
[2Fe2S]+ cluster is relatively insensitive to its coordination environ-
ment, which is expected due to the spherical electron distribution of
its high-spin d5 (half-filled) electronic configuration [18,20,78,79]. In
contrast, the ligand field of the FeII ion is very sensitive to its coordina-
tion environment as a result of the unsymmetrical electron distribution
of its high-spin d6 configuration. The differences in the average of g
values for different classes of [2Fe2S] clusters reflect the environment
of the FeII site [80]. The dictates the ligand field energy d6, FeII ion
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controls the rhombic splitting of the clusterg tensor,which is proportion-
al to the mixing of pure d(z2)(5A1) (axial compression) or d(x2–y2)(5B1)
(axial elongation) states of FeII for D2d symmetry. For giso = 1.96 class
of [2Fe2S] proteins, the various ligand-field energies of the FeII ion in its
ground state may be determined from fitting the g values to a diagonal-
ized energy matrix for two pure z2 and x2–y2 states (diagonal terms)
and the amount of rhombic crystal field mixing (off-diagonal terms)
due to a rhombic crystal-field distortion (D2h ➔ C2v). Thus, the plot of
rhombic splitting versus canonical g values yields the ligand-field param-
eters for a given class of [2Fe2S] clusters. Fig. 5 presents a solution to
Eqs. (6) and (8) with ligand-field parameters given in the figure caption.

tan2η ¼ − 2εmix

εz2−εx2−y2
ð7Þ

gIIx ηð Þ ¼ ge−
8λ
ΔEyz

sin2 ηþ π
3

� �
¼ ge þ ΔgIIx ηð Þ;

gIIy ηð Þ ¼ ge−
8λ
ΔExz

sin2 η−π
3

� �
¼ ge þ ΔgIIy ηð Þ;

gIIz ηð Þ ¼ ge−
8λ
ΔExy

sin2η ¼ ge þ ΔgIIz ηð Þ:

ð8Þ

The amount of orbital mixing is proportional to the rhombic splitting
of g,Δg⊥= g3− g2, and is a function of thefictitious angle 2η (Fig. 5) [20].

As the EPR spectrum is influenced by the symmetry of the FeS clus-
ter, the same is obviously true for the iron hyperfine couplings. High
precision ENDOR of the 57Fe hfc of Fd1, Fd4, and Fd5 fromAae reveal iso-
tropic FeIII hyperfine couplings, matching those previously established
by Mössbauer spectroscopy. The FeII hyperfine couplings are vastly dif-
ferent for Fd1 and Fd5 which happen to be remarkably similar in struc-
ture. Further investigation of the slight differences in the structural,
electronic, hyperfine properties of characterized ferredoxin proteins
needs to be done to achieve a more general understanding of the
mixed valent [2Fe–2S] cluster. Understanding of the simplest FeS cluster
serves as a building block for understanding higher nuclearity FeS
clusters.
0 1 2 3 4 5 6 7 8
1.88

1.92

1.96

2.00

2.04

g

η

12 8 6 4/ /// ππ ππ

Fd1

Fd4
Fd5

g

g

g

y

x

z

Fig. 5. ‘Bertrand plot’ of g tensor components against Δg⊥ (×100) for various [2Fe–2S] pro-
teins of the giso =1.96 subclass. Dashed lines represent values from Eqs. (6)–(8) calculated
with the parameters λ = −60 cm−1, ΔExy = 15,000 cm−1, ΔExz = ΔEyz = 5000 cm−1,
g(57FeIII) = 2.01.
Reprinted from Fig. 5 of Cutsail et al. [20] with kind permission from Springer Science and
Business Media © 2012 SBIC.
3.1.2. 4Fe-ferredoxin overview
Various oxidation states of [4Fe4S] clusters are observed, ranging

from the 3+ state seen in oxidized high potential iron–sulfur protein
(HiPIP-ox), to 2+, 1+, and 0. Only 3+, S = 1/2, and 1+, S = 1/2 or
S = 3/2, cluster oxidation states possess paramagnetic ground spin
states and are amenable to typical advanced EPR spectroscopies
[81–83]. The other, diamagnetic 2+, S = 0, and 0, S = 4, oxidation
states may be observed through Mössbauer spectroscopy. The ground
spin states are most conveniently explained by antiferromagnetic cou-
pling of [2Fe2S] cluster pairs (the so-called 2–2 model), ([2Fe2S]2+,
S = 5; [2Fe2S]+, S = 9/2; [2Fe2S]0, S = 4) and the FeII S = 2 and/or
FeIII S = 5/2 ion(s). The common [4Fe4S]3+ S = 1/2 state is the result
of an [2Fe2S]+ (Fe2.5–Fe2.5) S = 9/2 pair antiferromagnetically coupled
with two FeIII S = 5/2 ions. The two electron reduced [4Fe4S]+ is com-
posed also of an [2Fe2S]+ (Fe2.5–Fe2.5) S=9/2 pair however it is antifer-
romagnetically coupledwith two FeII S=2 ions [18,84]. Examples of an
oxidized HiPIP [4Fe4S]3+ and a reduced [4Fe4S]+ are exhibited in Fig. 4.
The oxidized HiPIP [4Fe4S]3+ exhibits an axial, narrow linewidth signal,
with g values above 2.0 (g|| = 2.14, g⊥ = 2.04, giso = 2.07) and the re-
duced 4Fe–Fe [4Fe4S]+ has a broader linewidth, slightly rhombic signal
with g values straddling 2.0 (g = [2.07, 1.94, 1. 91], giso = 1.97). It
should be noted, as can be seen by comparison of Fig. 4A and C, that it
is essentially impossible to distinguish solely by EPR between 4Fe-red
and 2Fe-red centers. As described below, the specific nature of the cou-
pling can be variable and more intricate than indicated here.

3.1.3. 4Fe-ferredoxin models
The synthesis of small molecule model compounds of the active site

center of ferredoxins and other FeS cluster species was a great achieve-
ment of inorganic chemistry that has been extensively reviewed else-
where [85–87]. Of relevance here is the use made of several synthetic
ferredoxins for detailed EPR and ENDOR studies by Gloux, Lamotte,
Mouesca, and co-workers in Grenoble [18,88–93]. The synthetically ac-
cessible cluster, [Fe4S4(SR)4]2− (where R=Ph (–C6H5), Bz (–CH2C6H5))
is diamagnetic and corresponds to the 4Fe-ox (or HiPIP-red) protein
cluster forms. These workers were able to generate EPR active forms
of the synthetic clusters by low-temperature γ-irradiation of single
crystals, this process, which has also been used extensively with
metalloproteins in frozen solution [94–96], generates free electrons
which can then reduce the FeS center to generate [Fe4S4(SR)4]3−, the
analog to the 4Fe-red cluster. In addition, oxidized clusters, [Fe4S4(SR)
4]1−, can also be concurrently generated, analogous to the HiPIP-ox
form. The different EPR signatures of these species allowed their
deconvolution in single-crystal EPR spectra [90,92,97]. In these synthet-
ic clusters, the only ENDOR active nucleus is 1H, with themethylene hy-
drogen atoms of the benzylthiolato (or related) ligands serving as
models for the β-H atoms of cysteinyl ligands in FeS clusters [89,93].
Nevertheless, 1H ENDOR has provided a wealth of information on the
electronic structure of these 4Fe4S model compounds. All eight 1H hy-
perfine tensors were fully determined for [Fe4S4(SCH2C6D5)4]1−,
wherein the benzene ring deuteration assisted in simplifying the 1H
X-band ENDOR spectra. The results on hydrogen dipolar coupling and
spin distribution within the cluster could be related to those from para-
magnetic NMR and allowed a proposal to bemade as to the specific spin
coupling state, namely |Smixed-valence, Sferric, Stotal〉 = |7/2, 3, 1/2〉, as op-
posed to |9/2, 4, 1/2〉 [89], (note that in some 2Fe-Fds, Smixed-valence =
Sferric + Sferrous = 5/2 + 2 = 9/2, and 0 ≤ Sferric ≤ 10 (+5/2 + 5/2)).
The same parent compound, in the reduced form generated by γ-
irradiation was later studied by Q-band 1H ENDOR [98]. It was possible
to determine the full hyperfine tensors of all eight benzyl methylene hy-
drogen atoms, plus three more tensors from 1H nuclei on adjacent mol-
ecules. Analogously to the earlier study, the spin distribution within the
4Fe-red model cluster was determined, including the spin projection
onto each Fe ion, which is crucial for understanding hyperfine coupling
to bound substrate in enzymatic FeS clusters. In this cluster, the spin cou-
pling ground state was determined to be |S34, S134, Stotal〉 = |4, 2, 1/2〉,



Fig. 6. The 57Fe ENDOR of the [4Fe4S] cluster of the HdrB subunit taken at Q- and X-band
frequencies with A/2 centered goalposts in red of length equal to 2νN. The higher frequen-
cy, Q-band (34 GHz) ENDOR generated better separation of the 57Fe hyperfine as 2νN is
much greater from the higher magnetic field than that employed at X-band (9 GHz) fre-
quency. 57Fe ENDOR reprinted from Fig. 2 of Fielding et al. [106] with kind permission
from Springer Science and Business Media © 2013 SBIC.
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using the so-called ‘3–1’ scheme,wherein the three formally ferrous ions
(FeII1, FeII3, and FeII4) are coupled to give first S34 (0 ≤ S34 ≤ 4; here
4) and then S134 = S34 − S2 = 4− 2 in this case, which is then antifer-
romagnetically coupled to the ferric ion: Stotal= S134− S2= |4− 5/2|=
1/2. An alternate, and widely used coupling scheme (vide supra), al-
though considered less physically sound for [Fe4S4]+ by Moriaud et al.
[105], is the ‘2–2’ scheme which is analogous to that used above for
[Fe4S4]3+, namely, Smixed-valence = S12 = 9/2 (or lower) and Sferrous =
S34 = 4 (or lower), with Stotal = S12 − S34 = |9/2 − 4| = 1/2. Using
the 2–2 model, the [Fe4S4(SCH2C6D5)4]3−, is best represented as |
Smixed-valence, Sferrous, Stotal〉=|S12, S34, Stotal〉=|7/2/, 3, 1/2〉; the spin cou-
pling scheme analogous to that for the HiPIP-ox model cluster.

The Grenoble workers were also able to prepare [57Fe4S4(SCH2C6H5)
4]2−, and made 57Fe X-band ENDOR measurements of γ-irradiated spe-
cies that allowed the determination of the full 57Fe hyperfine coupling
tensors of all four Fe sites in a [Fe4S4]3+ cluster [88]. Subsequently, thanks
to the advantages provided by Q-band ENDOR, namely shifting the 1H
ENDOR resonances far from those of 57Fe as well as providing greater g
value dispersion, Moriaud et al. [105] were able to study successfully a
4Fe-redmodel, [57Fe4S4(SCH2C6H5)4]3−, and determined the full 57Fe hy-
perfine tensors in this cluster as well [88]. These landmark experimental
results onmodel compounds have been crucial in subsequent theoretical
studies of FeS cluster electronic structure [91], and have been extremely
helpful in providing benchmarks for understanding biological FeS clusters
for which such high precision single-crystal ENDOR studies are not
feasible.

3.1.4. Heterodisulfide reductase
During the final methane forming step by methanogenic archaea, a

mixed disulfide of coenzyme M (CoM, mercaptoethane sulfonate) and
coenzyme B (CoB, 7-mercaptoheptanoyl-L-threonine phosphate),
CoM–S–S–CoB, is formed [99].Methanogens fromMethanothermobacter
marburgensis do not contain cytochromes and must reduce CoM–S–S–
CoB by other means, as the regeneration of the individual CoM–SH
and CoB–SH thiols is needed for continued methane formation [100].
The exothermic reductionof this disulfide is performedbyheterodisulfide
reductase (Hdr), a part of the proposed hydrogenase–heterodisulfide re-
ductase complex, MvhADG–HdrABC [99]. Hdr is composed of three sub-
units, HdrA containing a FAD bonding motif as found from primary
sequence data and four [4Fe4S] cluster binding sites, based again on the
primary sequence. HdrC contains two additional [4Fe4S] binding sites.
The subunit of disulfide reduction, HdrB, contains a bound [4Fe4S] cluster
in a C-terminal CCG motif (CX31–39CCGX35–36CXXC) and a bound zinc to
the N-terminal CCG domain [101].

HdrABC in the presence of only CoM (CoM–HdrABC) exhibits an EPR
signal below 50 K from a paramagnetic S = 1/2 species which has g
values similar to those of the oxidized form of HdrB. This S=1/2 signal
of CoM–HdrABC is lost upon the addition and reaction of CoB–SH,which
reduces the [4Fe4S] cluster. The reduction of the FeS cluster observed by
EPR, hyperfine broadenings of the EPR signal from 57Fe enriched en-
zyme [102] and 33S-labeled CoM–SH [103], combined with variable-
temperature magnetic circular dichroism (VT-MCD) experiments
[104], led to the suggested [4Fe4S]3+ formal charge of the CoM sub-
strate bound cluster in the CoM–HdrABC complex.

Previous 9 and 95 (W-band) GHz ENDOR of CoM–Hdr exhibited un-
usually isotropic 57Fe couplings of four distinct iron responses for an
[4Fe4S] cluster, with respective signs implied from polarized patterns
of the W-band ENDOR responses [105]. The cluster is observed only
under oxidizing conditions, with two iron hyperfine couplings resem-
bling an (Fe2.5+–Fe2.5+) pair [18], indicating the cluster is [4Fe4S]3+,
however, this is not supported by the observed average of Hdr–CoM g
values, giso b 2.0, which contrasts to what is observed for well-known
[4Fe4S]3+ clusters, such as oxidized HiPIPs, which have g values N2.0
[92] (see Fig. 4).

The 34 GHz 57Fe ENDOR spectra of CoM–HdrABC and HdrB in an ox-
idized form (HdrBoxid) (Fig. 6), unambiguously resolve all four iron sites
of the [4Fe4S] cluster [106] and provide improved resolution over the
earlierW-band results [105]. Using the hyperfine sign results previously
found for CoM–HdrABC from 95 GHz ENDOR spectroscopy [105], a
mixed valence pair, Fe2.5+–Fe2.5+, with isotropic coupling of approxi-
mately −30 MHz is observed, along with a ferric pair, FeIII–FeIII, with
coupling of approximately +20 MHz, which together are typical for
an [4Fe4S]3+ S = 1/2 cluster and have been observed previously for
other HiPIP proteins [18] and are almost identical to that of the oxidized
HiPIP [4Fe4S]3+ cluster in Chromatium vinosum measured by
Mössbauer spectroscopy [107].

These 57Fe hyperfine couplings are in the ‘strong coupling’ regime
where the ENDOR response at each microwave frequency is centered
at A/2. The increased separation of the ENDOR ν+/− doublets at
Q-band frequency and correspondingly higher magnetic fields yielded
higher resolution of the four iron hyperfine couplings compared to the
situation at X-band measurements, Fig. 6.

3.1.5. Hydrogenase
The hydrogenase enzymes consist of three classes, separated by their

metal cofactor active sites: the mononuclear iron [Fe]-, diiron [FeFe]-,
and the [NiFe]-hydrogenases [108]. The active site of the [FeFe] enzymes
is shown in Fig. 7. Both [FeFe] and [NiFe]-hydrogenases contain multiple
FeS clusters for electron delivery to their active sites, however the [FeFe]-
hydrogenase uniquely contains an [4Fe4S] cluster that is completely
cysteinyl coordinated and is bound to the proximal iron (Fep) of the ac-
tive site diiron center (H-cluster) through a cysteine thiolate bridge
conserved throughout the [FeFe] hydrogenases [109,110]. The proximal
(to the [4Fe4S] cluster) iron, Fep, and the distal iron, Fed, each contain CO
and CN− exogenous ligands, and are bridged by a CO and two thiolate
bridges from a dithiolate moiety, unique to [FeFe]-hydrogenases [108].



Fig. 7. Hydrogenase active site structure; iron-only [FeFe] hydrogenase.

Fig. 8. Q-band TRIPLE spectra of the 57Fe-enriched H-cluster of the [FeFe] hydrogenase in
57
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While the advanced EPR spectroscopic characterization of hydroge-
nase has provided an abundance of information including ligand un-
paired spin density [111], thiolate bridge atom identification
[112–115], cluster assembly [113,116–121], and model complexes
[122–124], all extensively reviewed elsewhere [108,116,125], we will
briefly show the particular example of the 57Fe ENDOR and HYSCORE
work of the [4Fe4S] cluster of the [FeFe]-hydrogenase [41]. This study
determined that the Fep of the paramagnetic [Fe1+–Fe2+] oxidized H-
center is in the FeI oxidation state and binds to the cuboidal [4Fe4S] clus-
ter, while the distal iron, Fed, alternates between FeI (reduction) and FeII

(oxidation) states. It is the paramagnetic FepI (3d7) ion that is the source
of unpaired electron spin density that contributes to all iron hyperfine
values observed for the formally diamagnetic [4Fe4S]2+ center via
spin density distribution across the entire 6Fe center [41]. All six iron
hyperfine values were determined, the four of the [4Fe4S] cluster
through ENDOR spectroscopy, with their overlapping, orientation-
dependent pattern deconvoluted through the use of pulsed Davies
TRIPLE experiments (See Fig. 8), a ‘pump–probe’ technique [37]. The
weaker hyperfine values of the [FeFe] active site were determined
through HYSCORE spectroscopy [41]. This tour de force combination of
advanced EPR techniques has fully characterized the iron electronic
structure of the [FeFe]-hydrogenase.
the Hox–CO state (where an exogenous CO ligand is bound). (A) Reference Fe ENDOR
spectrumwith simulated components A1

CO, A2
CO, A3

CO, and A4
CO of the cuboidal [4Fe4S] clus-

ter. (B) Difference (TRIPLE ENDOR) Q-band spectra for various pump frequencies (second
RF pulse) at frequencies indicated by arrows, with color of the arrows corresponds to the
HFI components of the ENDOR spectrum (panel A), which were predominantly excited.
The triangles in B assign the peaks in the difference TRIPLE spectra to the hyperfine cou-
plings of the ENDOR spectrum using the same color code as in A.
Reprinted with permission from Silakov et al. [41] Copyright 2007 American Chemical
Society.
3.1.6. Nitrogenase
ENDOR and ESEEM spectroscopies have been applied extensively to

the “Everest of metalloenzymes” in an effort to shine light on biological
reduction of dinitrogen to ammonia [14,58–60,126]. The complex
mixed-metal active site of nitrogen reduction by nitrogenase, FeMo-co
(Fe7S9CMo). As noted above, the early development of orientation-
selective ENDOR occurred in the context of X-band 57Fe field-
modulated CW ENDOR studies of the resting-state (S = 3/2) FeMo-co.
The hyperfine tensors thus derived [127–129] were later used for the
Mössbauer analysis [130]. More recently, 35 GHz 57Fe ENDOR was
used to identify the different CO-bound inhibitor states [131,132].

Most recently, 35 GHz Davies pulsed 57Fe ENDOR was combined
with the PESTRE techniques to allow the characterization of all seven
of the Fe sites in an S = 1/2 hydrogen turnover state of FeMo-co that
has accumulated four electrons/protons, stored as two hydrides that
bridge Fe and two protons [46]. 57Fe ENDOR studies yield the hyperfine
tensors for five Fe sites of this intermediate and the couplingmagnitude
of a sixth. TRIPLE ENDOR provided valuable assistance in decomposing
overlapping 57Fe responses. Pulsed ENDOR Saturation and Recovery
(PESTRE) allowed a direct measurement of the hyperfine signs, Fig. 9.
The PESTRE protocol employs three stages of Davies microwave pulse
sequences: (I) no applied RF, to establish an electron spin echo baseline;
(II) applied RF at the frequency of the probed ENDOR transition, applied
to saturate the response; and (III) RF frequency turned off, to monitor
the ESE relaxation behavior which is characteristic of the ratio of A/gn.
A particular benefit of this technique is that it does not require compar-
ison of the intensities of ν+ and ν− branches of an ENDOR spectrum,
giving reliable sign information from a single branch.

Through the use of a sum-rule on the spin projection coefficients
[18], the magnitude and sign of all seven Fe sites are found. The signifi-
cance of these measurements is to account for the four additional
electrons of the E4 state compared to resting state (E0), using the
Lowe–Thorneley scheme for nitrogenase intermediates [133]. The 57Fe
hyperfine character reveals that the formal redox state of the E4 inter-
mediate is the same as the resting state cluster, although it has four ad-
ditional electrons. Therefore, these additional electronsmust be ‘stored’
on 2 of the 4 protons of the E4 intermediate as bridging hydrides, yield-
ing critical insight into the nitrogenase mechanism.



Fig. 9. Determination of signs of hyperfine couplings at g2 by PESTRE technique at Q-band.
Top: Davies ENDOR spectrum indicating the ENDOR peaks being interrogated. The goal-
posts here are color coded to indicate sign of hyperfine coupling: blue, negative; red, pos-
itive; black, undetermined. Center: PESTRE traces, presented as thedifference between the
observed ESE signal and theBSL (ΔESE) recorded at: upper set: peaks A (black trace) and C
(purple trace); middle set: B (black trace) and D (purple trace); lower: F (purple trace).
Bottom: schematic of the PESTRE protocol showing Stage I (RF off, BSL); Stage II (RF on,
ENDOR signal); Stage III (RF off, DRL).
Reprinted with permission from Doan et al. [46] Copyright 2011 American Chemical
Society.

Fig. 10. (Top) Davies 95Mo-ENDOR spectra of 95Mo-enriched (black) and natural-abun-
dance (red) α-70Ile MoFe protein: (top) in the resting state. (E0); (bottom) CW 95Mo
ENDOR of trapped intermediate (E4) state.
Reprinted with permission from Lukoyanov et al. [135] Copyright 2010 American Chem-
ical Society.

Fig. 11. 35 GHz CW EPR spectra (absorption-display) of resting-state FeMo-co and from
freeze-trapped turnover intermediates H and I. Note that resting state FeMo-co has S =
3/2 ground state and effective g values of [4.3, 3.64, 2.0] and the H intermediate has
S = 2 ground state and very high effective g values (low field transitions).
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3.1.7. Other components: heterometal

3.1.7.1. 95Mo ENDOR. The nitrogenase α-70Ile MoFe protein described
above contains two metal-bridging hydrido ligands, as characterized
by 1,2H ENDOR [134]. Although hydride binding only to Fe sites seemed
more plausible, it was important to test the possibility of hydride bind-
ing involving the Mo ion. The Davies ENDOR studies at multiple mag-
netic fields of the 95Mo-enriched intermediate showed that the
isotropic 95Mo hyperfine coupling was extremely small, aiso ≈ 4 MHz,
decreased from that in the resting state (Fig. 10). This aiso value is at
least five-fold less than the lower bound required by the 1,2H ENDOR
measurements for Mo to be involved in forming a Mo–H–Fe, hydride.
These measurements thus led to the conclusion that this catalytically
central intermediate contains two Fe–H–Fe moieties [60].
3.1.7.2. 95Mo NK-ESEEM of a nitrogenase S ≥ 2 catalytic intermediate.
Rapid freezing during turnover of a remodeled nitrogenase MoFe pro-
tein (α-70Val ➔ Ala, α-195His ➔ Gln) with the electron-transfer Fe protein
and with the substrates diazene, methyldiazene (HN_N–CH3), hydra-
zine, NO2

−, or NH2OH each results in the loss of the resting-state signal
from the catalytic FeMo-co and appearance of the signals from two
new signals, Fig. 11 [62]. One signal (denoted I) appears in the vicinity
of g2 and has S=1/2. A second signal (denotedH) is seen as a broad fea-
tureless absorption that begins near zero field and extends to ~5000 G
(at Q-band). Such an EPR signature arises from an FeS cluster in an
integer-spin, ‘non-Kramers (NK)’ state with S ≥ 2 [62,136]. and could
potentially be due to a variety of FeS systems; in nitrogenase, there
are three such possibilities: the catalytically active FeMo-co cluster,
the electron-transfer P-cluster (Fe7S9) also present in theMoFe protein;
and [4Fe4S] cluster in the Fe protein.

NK-ESEEM [65,67] was able to identify the source of the H signals.
NK-ESEEM time-waves of the H signal of 95Mo enriched MoFe protein
produced significant changes of the NK-ESEEM time-wave, which
established that this NK-EPR signal arose from the Mo-containing



Fig. 13. [2Fe2S]+ coordination in a variety of biological systems as indicated.
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FeMo-co in an integer-spin state, and not the all-iron P or [4Fe4S]
clusters [62].

3.1.8. Other components: sulfide
The first 33S ENDOR measurements were performed on the reduced

cluster of aconitase, and analysis of 33S resonances from the [4Fe4S]+

cluster of the enzyme–substrate complex suggested that the sulfur
sites occur as two pairs (Sαl, Sα2; Sβ1, Sβ2) with remarkably small spin
density on sulfur, and even disclosed their spatial relation to the Fe
sites [137]. Fig. 12 summarizes the information from the 57Fe and 33S
studies about the four Fe and four inorganic sulfides, placing it within
the context of the X-ray diffraction structure [138], which showed that
cysteines are bound to the three iron ions that correspond to the three
Fb seen spectroscopically. Subsequently, 33S ENDOR measurements
were performed on the resting-state FeMo-co of nitrogenase [128].
We should also note that the substitution for S by isotopically
enriched77Se (I = 1/2) in a [2Fe2S] cluster was instrumental in deduc-
ing the stoichiometry of these clusters [139].

4. Cluster ligation

4.1. Nitrogenous protein-derived ligands (Rieske and Fra2)

The [2Fe2S] cluster is found inmanyproteins across nature and com-
prises several classes. These include clusters with complete cysteine co-
ordination as in ferredoxins [7,8,20,140–143], or with some degree of
noncysteine coordination. This section focuses on advanced EPR studies
of the protein-derived, non-cysteinyl ligands of the FeS cluster. This sit-
uation was first examined for [2Fe2S] clusters with the Rieske and Fra2
proteins. Single histidine ligation (i.e., (Cys2[FeIIIS2FeII]HisCys)) is found
in the yeast regulatory protein Fra2-Grx3, which has been characterized
by ENDOR [144], and the human protein mitoNEET, and has been well
characterized by advanced EPR [78,145–147]. Double histidine liga-
tion (Cys2[FeIIIS2FeII]His2) occurs in the well studied Rieske proteins
[79,148–152]. These active site structures are all shown in Fig. 13.
We discuss here themore recent example of mitoNEET, and the dem-
onstration that even arginine ligation exists, as in the sulfur atom do-
nating [2Fe2S] cluster of Biotin Synthase [153–156].

4.2. MitoNEET

The homodimeric [2Fe2S] humanmitoNEET protein is located with-
in themitochondrial membrane [147]. This protein is known to interact
with the thiazolidinedione class of diabetes drugs, however its primary
function is currently unknown [145]. This [2Fe2S] cluster attained sig-
nificant bioinorganic interest when it was revealed that it was coordi-
nated by 3Cys 1His amino acids [145], a first among [2Fe2S] proteins,
Fig. 12. Aconitase structure showing disposition of Fe and S ions as deduced from 57Fe
ENDOR/Mossbauer studies and 33S ENDOR studies; structure of citrate bound to the
unique Fea site of the [4Fe4S] cluster as deduced from ENDOR spectroscopy of substrates,
as described below.
differing from the all Cys ferredoxin class and 2Cys 2His Rieske class
(see Fig. 13) [79,149–151,157]. The sole histidine of mitoNEET coordi-
nates to the Fe through the Nδ of the imidazole ring, the same coordina-
tion as observed for each His in Rieske clusters [145].

The multi-frequency EPR and ESEEM work at X- (9.5 GHz), Ka-
(31 GHz), and ‘Q’- (34 GHz) bands elucidated the full structural charac-
teristics the individual clusters and the dipole interaction of the two
S = 1/2 [2Fe2S]+ clusters of the homodimer [78], which are separated
at a distance of 16 Å [145]. As is typically done, the Fe ions are separately
described as a ferric, FeIII S=5/2, and ferrous, FeII S=2, ions and an an-
tiferromagnetically coupled representation results in the observed
S=1/2 ground state [20]. The coupled representation for a [2Fe2S] clus-
ter typically represents a single isolated FeS cluster well, however, the
close proximity of the two [2Fe2S] clusters (~16 Å) of the homodimer
was taken into consideration. The uncoupled representation employed
by Dicus et al. [78] employs the usual Fe ion spin projections (Eq. (6))
[158] and sums of all dipolar interactions of every iron of the two
[2Fe2S] clusters, both inter-cluster and intra-cluster dipole interactions,
6 interactions total. This approachwas advantageous for the assignment
of the [2Fe2S] iron oxidation states as the intra-cluster dipolar distances
vary enough to yield predictable differences in Fe–Fe couplings. Bymap-
ping the Fe–Fe pairs onto the crystal structure the assignment of the FeII

and FeIII oxidation states could be made to the specific iron sites of the
[2Fe2S] clusters. In this model, the FeIII can either be coordinated by
the two cysteines or by one cysteine and one histidine. Only an assign-
mentwhere the FeIII–FeIII intra-cluster pair occupies the inner iron sites,
i.e., those with the least separation (Fig. 14), yields a dipolar coupling
observable by X-band EPR. Therefore the FeII ions occupy the outer
intra-cluster pair and have the single histidine ligand coordinated, as
shown by ‘Fe2’ in Fig. 14 [78].

The small hyperfine interaction of the 14Nδ histidine was amenable
to ESEEM spectroscopy, and multi-frequency microwave instrumenta-
tion allowed for the deepest availablemodulation to be obtained. To ob-
tain the deepest amount of modulation, increased ESEEM signal, one
may aim to bewithin the ‘cancelation regime’where one electronman-
ifold (MS) is nearly canceled. This is the casewhen the hyperfine energy
is (approximately) equal to twice its Larmor frequency [159]. Recall, as
the microwave frequency of instrument is increased, the Larmor fre-
quency of the resonant nuclei scales linearly. For example, the Larmor
frequency of 14N is approximately 1.03 MHz for a g = 2 field position
at X-band (9.5 GHz), but will increase to 3.40 and 3.84 MHz for the
same EPR transition at Ka (31 GHz) and Q-band (35 GHz), respectively.
One of the largest advantages of moving in microwave frequency from
X- up to Q-band is that proton resonances are shifted from the nitrogen
region as the proton, with its large gN value, Larmor frequency moves
from 14 MHz to N50 MHz.

Themid-range frequency ESEEM studies byDicus et al. [78] assigned
the coordinating histidine nitrogen, Nδ, to the FeII ion of the reduced
[2Fe2S]+ cluster of mitoNEET. As 15N lacks a quadrupole moment, the



Fig. 14. Two [2Fe2S] clusters, (iron, orange, sulfur, yellow) of the homodimer human
mitoNEET separated by ~16 Å, related by a rotation around a 2-fold symmetry axis be-
tween the two monomers (green and pink). PDB ID 2QH7.
Reprinted with permission from Dicus et al. [78] Copyright 2010 American Chemical
Society. Fig. 15. The assignment shown of Az alignedwith theN–Fe bond and Pxwith the imidazole

plane normal yields the g tensor orientation for mitoNEET protein (g = [g1, g2, g3] =
[2.007, 1.937, 1.897]). The angle between the g2 axis and the cluster plane normal is 13°,
the g1 axis is 34° offset from the Fe–Fe vector, and g3 is 33° offset from the S–S vector.
Reprinted with permission from Dicus et al. [78] Copyright 2010 American Chemical
Society.
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transitions obtained by ESEEM are a result of only the anisotropic por-
tion of the hyperfine tensor, allowing for a more direct estimate of the
dipolar contribution, which can be used in refining the 14N ESEEM anal-
ysis. The values of (15N)aiso =8.77MHz and T=1.77MHz obtained by
both Ka- and Q-band ESEEM were consistent with both Q-band Davies
ENDOR and HYSCORE spectroscopies, demonstrating the accuracy of
obtaining the 15N hyperfine tensor through ESEEM at either Ka or Q
band microwave frequencies.

The 14N hyperfine parameters are scaled from the 15N ESEEM analy-
sis by their nuclear gyromagnetic ratio |A(14N)/A(15N)| = |gN(14N)/
gN(15N)| = 0.713, which then facilitates extraction of the 14N quadru-
pole parameters. The complete 14N quadrupole tensor, P(14N) and its
relative orientation with respect to the iron sulfur cluster could then
be elucidated by extensive analysis involving field dependent simula-
tions and crystal structure information. From the simulation-deter-
mined P and A orientations with respect to g, assuming a typical
quadrupole tensor orientation for the imidazole nitrogen [24], the ori-
entation of g was mapped on the cluster with its principal component,
g1, lying in the Fe–(μ)S2–Fe plane, offset 33° from the Fe–Fe vector,
Fig. 15. This assignment for mitoNEET is in partial agreement with that
of the original Rieske protein studies, where g1 was also assigned
along the Fe–Fe vector [79]. It also only partially agrees with the later
study on Rieske protein of bovine mitochondrial cytochrome bc1 com-
plex by Bowman et al. [149] who had available a protein crystal. Single
crystal EPR has the ability to definitivelymap a g tensor onto themolec-
ular frame. The Rieske bishistidine ligated [2Fe2S] core in the single-
crystal casewas found to have g1 close to the S–S vector [149]. Ultimate-
ly, single crystal EPR would need to be done on mitoNEET along with
further examples of Rieske clusters to determine g tensor orientations
overall in these systems. Such information would greatly assist compu-
tational studies of electronic structure of [2Fe2S] centers and how
changes in coordination can tune the redox and catalytic properties of
these important systems.

4.3. Biotin synthase

The biotin synthase enzyme (BS, or BioB) contains two FeS clusters.
One is a [4Fe4S] cluster which binds S-adenosylmethionine (SAM or
AdoMet) as observed by crystallography [155] and catalyzes the pro-
duction of 5′-deoxyadenosyl radical (5′-dA•) as performed by the radi-
cal SAM enzyme family, to be discussed later. The [4Fe4S] radical SAM
cluster is not air-stable and is lost within minutes upon exposure to
air and is thus absent from protein purified aerobically. A second single
air-stable [2Fe2S]2+ cluster is observed per monomer of the biotin syn-
thase homodimer isolated and purified from Escherichia coli [153].

Isotopic 15N labeling of the Arg amino acids through the incorpora-
tion of (guanidino-15N2)-L-arginine into the growth media confirms
the ligation of the paramagnetic [2Fe2S]+ cluster by the amino group
of Arg260 (see Fig. 13) and is supported by the previous loss of 14N hy-
perfine coupling observed for the Arg260Met variant by previous 3-
pulse ESEEM spectroscopy and more recent 14/15N HYSCORE studies
(Fig. 16) [153,156]. This unique Arg ligation to a [2Fe2S]+ cluster, also
observed in the crystal structure [155], introduces another [2Fe2S]+

cluster with non-cysteine coordination.

5. Spectroscopy of substrates

The [4Fe4S] clusters servemany functions in nature. Initially charac-
terized solely as electron transfer agents, as in ferredoxins and other
redox enzymes, their roles quickly expanded upon the discovery of
the unique open iron site of the [4Fe4S] cluster of aconitase [160].
Beinert and Kennedy [137,161–163] were the first to characterize an
FeS cluster that catalyzed a chemical reaction, not just electron transfer.
This section focuses on advanced EPR studies of exogenous compounds:
substrates, substrate analogs, or inhibitors, which interact with the FeS
cluster active site of such enzymes, and either have naturally occurring
magnetic nuclei (1H, 14N, 31P) or can be specifically labeled with them
(2H, 13C, 15N, 17O).

5.1. Aconitase

The enzyme aconitase catalyzes the stereospecific interconversion of
citrate and isocitrate via the dehydrated intermediate cis-aconitate,
Fig. 17. The active site contains a [4Fe4S]2+ cluster that can be reduced
to the EPR-active [4Fe4S]+ state with retention of activity. The cluster
does not act in electron transport but rather performs its catalytic func-
tion through interaction with substrate at a specific single iron site of
the cluster (Fea), first identified by Mössbauer [164]. This enzyme was
the test bench whose study not only showed how ENDOR spectroscopy
could determine active-site composition and electronic and geometric



Fig. 16. X-band HYSCORE spectra of biotin synthase paramagnetic intermediate grown in
E. coli with natural abundance arginine (top) and (guanidino-15N2)-L-arginine (bottom).
The 15N coupling observed in the bottom HYSCORE spectrum corresponds to 15N labeling
of the Arg260 residue.
Reprinted with permission from Fugate et al. [153] Copyright 2012 American Chemical
Society.
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structure: ENDOR studies of substrate interactions made decisive con-
tributions to the determination of the enzyme catalytic mechanism.

The first question addressed in the ENDOR investigation of the cata-
lytic role of the cluster in a dehydration/hydration reactionwaswhether
solvent HxO (H2O or OH−) and/or the OH of substrate binds to the clus-
ter. The use of 17O, 1H, and 2H ENDOR showed that the fourth ligand of
Fig. 17.X-band 17O CWENDOR of isotopically labeled substrate at theα, β, and γ carboxyl
positions as indicated in the figure. A 17O ENDOR response is observed only with labeling
of the β carboxyl group.
ENDOR spectra reprinted from Kennedy et al. [162].
Fea in substrate-free enzyme is a hydroxyl ion from solvent, and that
binding of substrate or substrate analogs to Fea causes the hydroxyl to
become protonated to form a boundwater molecule. Note that this rep-
resented the first demonstration of an exogenous ligand bound to an
iron–sulfur cluster. The studies further suggested that the cluster
might simultaneously coordinate the OH of substrate and H2O of the
solvent (Fig. 17).

The second key question was whether one or more carboxylate
groups of substrate bind to the cluster. This was answered through the
use of 17O ENDOR spectroscopy in conjunction with the biochemical bril-
liance of Beinert and Kennedy. Fig. 17 presents ENDOR spectra of
[4Fe4S]+ aconitase in the presence of three citrate isotopologues in
which the three carboxyl groups have been individually labeled with
17O. ENDOR measurements with substrate whose central (β) carboxyl
group is 17O labeled show a strong 17O pattern but no 17O ENDOR signal
was observed when either of the terminal carboxyl groups (α or γ) was
17O labeled (Fig. 17). Thus under the experimental conditions of these
samples, the central carboxyl group binds to Fea, but the two terminal
groups (α or γ) do not bind to the cluster. The end result of these and
other 17O ENDORmeasurementswas that the substrate is bound as a che-
late involving the citrate hydroxyl and a β-carboxyl oxygen, Fig. 12. This
ENDOR-derived structure for the substrate-bound cluster was eventually
corroborated by subsequent X-ray diffraction studies [165].

However, the enzyme also is able to accommodate substrate bound
by the α-carboxyl, as was shown by 17O ENDOR of enzyme that had
bound a 17O-enriched isocitrate analog that lacks the β-carboxylate.
Presumably the addition of the negatively charged carboxyl causes pro-
tonation of the OH– that binds to the cluster in the absence of substrate.
The resulting structure of citrate bound to theunique Fe of the cluster, as
deduced from ENDOR spectroscopy, is shown in Fig. 12.

ENDOR spectroscopy thus showed that the cluster functions as fol-
lows: (i) it helps to position the substrate through the binding of one
carboxyl; (ii) it coordinates and accepts the hydroxyl of substrate during
the dehydration of citrate and isocitrate; (iii) it donates a boundhydrox-
yl during the rehydration of cis-aconitate. To accommodate the stereo-
chemistry of the reaction, cis-aconitate must furthermore disengage
from the active site, rotate 180°, and switch the carboxyl that binds be-
fore completing the catalytic cycle.

5.2. Nitrogenase

The mechanism of nitrogenase has been probed by ENDOR of nu-
merous isotopically labeled substrates [61,166,167]. A detailed discus-
sion of this aspect of the use of ENDOR is beyond the scope of this
review, but has been recently summarized elsewhere [58–60,168].

5.2.1. Radical SAM
Following aconitase, other catalytic [4Fe4S] clusters have been dis-

covered [171], leading to a renaissance of interest in FeS proteins. The
realization that the role of [4Fe4S] clusters extends beyond electron
transfer has been greatly magnified by the discovery of their role in
the radical SAM (S-adenosylmethionine) enzymes. Radical SAM en-
zymes comprise a diverse and rapidly expanding superfamily that has
been recently reviewed (many times) [121,172–180] and is the subject
of other contributions to this Special Issue.

Enzymes of the radical SAM superfamily utilize a [4Fe4S] cluster and
S-adenosylmethionine (SAM) to generate catalytically essential radi-
cals, Fig. 18. A key mechanistic question posed by this family was the
role of the [4Fe4S] cluster bound by a characteristic CX3CX2C motif. As
with aconitase, the clusters of these enzymes have a “unique” iron site
that is not coordinated to the enzyme by a cysteinyl sulfur: does this
Fe have a catalytic function, as is true for aconitase? This question was
answered through theuse of EPR andpulsed 35GHzENDOR spectrosco-
py applied to the radical-SAM enzymes, pyruvate formate-lyase (PFL)
activating enzyme (PFL-AE), and lysine 2–3 aminomutase (LAM) [170,
181,182]. The experiments disclosed that the cluster plays at least a
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dual role: the unique Fe anchors the AdoMet cofactor by chelating the
amino and carboxyl groups of methionine; electron transfer from the
cluster initiates homolytic cleavage of the bond to adenosine.

2H and 13C pulsed ENDOR spectroscopy was performed on
[4Fe4S]+–PFL-AE (S = 1/2) with bound AdoMet (denoted [1+/
AdoMet]) that had been labeled at the methyl position with either 2H
or 13C (see Fig. 19) [181]. The observation of substantial 2H and 13C hy-
perfine couplings from the labels clearly demonstrated that AdoMet
binds adjacent to the 4Fe cluster. The cofactor was shown to bind in
the same geometry to both the 1+and 2+ states of the cluster through
cryoreduction of the frozen [4Fe4S]2+/AdoMet complex to form the
EPR-active reduced (1+) state which was trapped in the structure of
the oxidized (2+) state.

Modeling of the through-space electron–nuclear dipolar interaction
between the cluster electron spin and the methyl-13C and 2H showed
that the shortest distance between an AdoMet methyl proton and an
iron of the cluster is ~3.7(2) Å, with a distance of ~4.9(6) Å from the
methyl carbon to this iron. Most intriguingly, the analysis disclosed a
through-bond (local), isotropic contribution to the 13C interaction,
which requires overlap between orbitals on the cluster and on AdoMet.
Later studies of the same state formed within LAM indicated that the
coupling likely arises from interaction of the SAMsulfurwith the unique
Fe of the cluster.

The coordination sphere of the unique Fe was examined by 35 GHz
pulsed ENDOR spectroscopic studies of PFL-AE complexedwith SAM la-
beled with 17O/13C in the carboxyl group of the methionine fragment,
and with 15N in the amino group [182]. ENDOR signals observed with
all three labels (Fig. 19) showed that both the carboxylato and amino
groups of methionine are coordinated to the unique iron of the
[4Fe4S] cluster in a classical five-membered-ring N/O chelate. The key
structural role of the cluster revealed by ENDOR spectroscopy was sub-
sequently confirmed by X-ray diffraction studies (Fig. 19) [155,177,183,
184].

The formation of the amino-acid chelate to the unique Fe anchors
the methionine end of SAM, thereby fixing the geometry of the
Fig. 18. The various reaction products of the S-Adenosylmethionine (SAM) (red) co-substrate. D
atomprovide thefinal products. Heterolytic cleavageby a nucleophilic base (Nu:) results in cleav
sulfur. Homolytic cleavage of SAM has most commonly been observed in the radical SAM enz
radical (5′-Ado-Met). Homolytic cleavage (such as in Dph2) may occur uniquely at the opposit
ganic radical.
sulfonium linkage for the subsequent initiation of radical chemistry. In
conjunction with the localization of the methylsulfonium moiety near
to the unique Fe, as revealed by the 13C and 2H ENDOR measurements,
these results led to a proposed reaction mechanism in which inner-
sphere electron transfer from the cluster to SAM causes cleavage of
the methionine-sulfonium/adenosyl bond that in part is driven by the
formation of a coordinate bond between the unique Fe and the
thioether sulfur of the methionine product of SAM fragmentation
(Fig. 18). The anchoring of SAM and the methionine product to the
[4Fe4S] cluster in the structure exhibited in Figs. 18 and 19 is a general
bonding motif observed for all radical SAM enzymes.
5.2.2. Heterodisulfide reductase
As introduced earlier, Hdr reduces the disulfide bond of CoM–S–S–

CoB. Isotopic 13C labeling of CoM–SH at the second carbon of
mercaptoethane sulfonate and subsequent oxidation with CoM formed
the singly labeled disulfide product, CoM–S–S–13CH2CH2SO3

– [106]. This
allowed 13CMims ENDOR spectroscopy to yield 13C hyperfine couplings
and confirm the substrate's binding to the [4Fe4S] cluster of HdrB
(Fig. 20). The 13C couplings, [1.8, 1.8, 0.4] MHz, are comparable to
those observed for the 13C hyperfine of methyl–13C–AdoMet binding
to the [4Fe4S] cluster of PFL-AE (vide supra) [181]. These small cou-
plings are expected as the 13C label is one bond away from the S that
is directly interactingwith the FeS cluster [106]. In contrast, an Fe ion di-
rectly bound to 13C would give much larger couplings, Amin = 12 MHz
[185].
5.2.3. The ‘second cluster’ of radical SAM enzymes
Numerous radical SAM enzymes have a ‘second cluster’ in addition

to the 4Fe4S cluster that binds SAM and reductively cleaves it. The
role of the second cluster has also been investigated with advanced
paramagnetic resonance techniques, beginning with the ENDOR study
of MoA.
ifferent reactions, either heterolytic or homolytic cleavage, at the positively charged sulfur
ageof themethyl group bybreaking themethyl–sulfur bond, leaving both electrons on the
yme family, where SAM accepts an electron yielding a methionine and 5′-deoxyadenosyl
e 3-amino-3-carboxypropyl group after accepting an electron and results in a different or-



Fig. 19. Arrangement of [4Fe4S]2+ and SAM (top) with isotopic labels for corresponding
ENDOR spectra below. Q-band Pulsed ENDORof PF-AEwith H2

17O, 13C carboxylato-labeled
and 15N-amino-labeledAdoMet comparedwith data fromanunlabeled samplewith trian-
gle representing each nuclei's Larmor frequency.
Adapted with permission from Walsby et al. [169] and Lees et al. [170] Copyright 2005,
2006 American Chemical Society.

Fig. 20. (Top) A cartoon reaction of the reduction of CoM–S–S–CoB byHdr and the cartoon
MvhADG–HdrABC protein complex with 13C ENDOR of CoM–HdrABC with 13C labeled
CoM (HS13CH2

12CH2SO3
−). (Bottom) 13C ENDOR adapted and reprinted from Fig. 4 of Fiel-

ding et al. [106] with kind permission from Springer Science and Business Media © 2013
SBIC.

1385G.E. Cutsail III et al. / Biochimica et Biophysica Acta 1853 (2015) 1370–1394
5.2.4. MoaA
The enzymes MoaA and MoaC catalyze the first step in the biosyn-

thesis of themolybdenum cofactor (Moco) found in the biologically im-
portant molybdopterin enzymes, such as xanthine oxidase [186]. Each
of these Moa enzymes contain two [4Fe4S]2+,+ clusters. One
[4Fe4S]2+,+ site, cluster I, is found in an N-terminus CX3CX2C motif
and is a characteristic Radical SAM cluster that generates the 5′-dA• rad-
ical to further catalyze the conversion of guanosine 5′-triphosphate
(5′-GTP) substrate to tetrahydropyranopterin [183,187]. The role of
the other cluster, cluster II, was less certain, althoughX-ray crystallogra-
phy clearly indicated that it was involved in substrate 5′-GTP binding
and/or activation. A crystal structure of MoaA with 5′-GTP suggested
that an atom of the purine ring might be coordinating to a unique iron
of the second [4Fe4S] cluster [187], however, ambiguity remained as
to whether it was the exocyclic amino group or nitrogen of the purine
ring that is coordinating. The ambiguity of interaction of the 5′-GTP sub-
strate with cluster II was a perfect candidate for unraveling by ENDOR
spectroscopy.

The radical SAM [4Fe4S] S = 1/2 cluster of MoaA was disrupted
through mutagenesis of its CX3CX2C binding motif cysteines. The CW
EPR and ENDOR signals of this mutant then arise only from cluster II,
the site of 5′-GTP binding. The ENDOR exhibits 14N hyperfine coupling
[188] similar to that found for the amino-nitrogen of the SAM bound
to iron in PFL-AE [182]. Nitrogen coordination is easily confirmed
through global 15N labeling of the 5′-GTP substrate and the observed
15N ENDOR response at the expected shift in frequency as determined
from the ratio of the nuclear gN values: γ = |A(15N)/A(14N)| = |
gN(15N)/gN(14N)|= |1.41| [11,188]. However, given that the 5′-GTP sub-
strate was globally labeled in 15N, the issue of whether it is the purine
ring or amino nitrogens of 5′-GTP that bind to cluster II is not resolved
[187]. Employing an active substrate analog, inosine 5′-triphosphate
(5′-ITP), which lacks the exocyclic amino group at C2 (termed N2) of
5′-GTP, yielded a very similar EPR signal as with the natural substrate
and remarkably similar 14N ENDOR couplings were observed (see Fig.
21). This result confirms that either N1 or N3 of purine rings of both
5′-GTP substrate and 5′-ITP are the sources of nitrogen coordination to
the fourth iron of the [4Fe4S] cluster, not the exocyclic amino group
(in 5′-GTP) [188].



Fig. 22. Proposedmodel for 5′-GTPbinding (C, orange; N, blue; O, red; P, purple) to the Fe4
ion of cluster II (S, yellow; Fe, green). The 5′-GTP model derived by X-ray crystallography
(PDB entry 2FB3) is shown in white.
Reprinted with permission from Lees N. et al. [188] Copyright 2009 American Chemical
Society.

1386 G.E. Cutsail III et al. / Biochimica et Biophysica Acta 1853 (2015) 1370–1394
Both 5′-GTP substrate and 5′-ITP have multiple purine nitrogen
atoms, N1 and N3, and correspondingly multiple nitrogen ENDOR
signals of various couplings [188]. With these differing couplings,
point–dipole distance estimations could bemade for each nitrogen cou-
pling and in conjunctionwith the predicted bound structure fromX-ray
crystallography [187], allowed for the assignment of these couplings.
The strongest coupled nitrogen belongs to N1 of the purine ring, not
the exocyclic amino group, as shown through the use of the substrate
analog. However, signals from two additional nitrogens were anticipat-
ed, one from the purine ring and the other from the exocyclic amino
group, at further distances and thus with weaker couplings. Pulsed
Mims ENDOR for the weaker coupled N2 and N3 of the purine yielded
maximum couplings of (15N)A = 0.5 and 0.2 MHz. The maximum and
minimum dipolar components of each nitrogen measurement yield
point–dipole model estimates of the distance between the nuclear
(15N) spin and the unpaired electron spin of the [4Fe4S]+ cluster.

By maintaining the crystallographically well resolved phosphate
moiety of 5′-GTP in its fixed position, the ribose sugar and purine ring
groups could then be positioned with respect to the [4Fe4S]+ cluster
to match the cluster-nitrogen distance estimates determined by
ENDOR spectroscopy. Fig. 22 superimposes the 5′-GTP model made
through the ENDOR distance measurements upon that from the
previous X-ray crystal structure. One can readily see some differences
and indeed improvements upon the crystal structure. As ENDOR spec-
troscopy is performed on solution ‘powder’ samples, the resulting struc-
ture may differ from that determined by X-ray crystallography of solid
state crystals. In addition to providing another view of active site struc-
ture, ENDOR and other advanced EPR techniques have the potential of
“seeing” these structures in intermediates that may not be easily
crystallized.

5.2.5. Biotin synthase (BS)
BS catalyzes biotin synthesis by formation of a thioether linkage be-

tween the methylene (C6) and methyl (C9) positions of dethiobiotin
(DTB). This sulfur addition is a two step process whereby a 5′-
deoxyadenosyl radical (5′-dA•) is generated by a radical SAM cluster
which next abstracts a hydrogen atom from the methyl group (C9) of
DTB (Fig. 23). The subsequent high-energy 9-dethiobiotinyl radical is
Fig. 21. Chemical schematics of 5′-GTP and 5′-ITP substrates in black and blue, respective-
ly, with corresponding 35 GHz 14N CW-ENDOR of the bound 5′-GTP and 5′-ITP substrates
to MoaA [4Fe4S]+ cluster in black and blue, respectively. The possible amino group coor-
dination at C2 (N2) to the FeS cluster is eliminated as the 14N ENDOR of 5′-ITP do not differ
upon the amino group's removal.
Reprinted with permission from Lees N. et al. [188] Copyright 2009 American Chemical
Society.
quenched by the addition of a sulfur atom to form the stable enzyme in-
termediate 9-mercaptodethiobiotin (MDTB). The introduction of a
second equivalent of AdoMet and the resulting generation of another
5′-dA• radical which abstracts a hydrogen from the methylene group
(C6) to allow for the formation of the thioether group and ring closure.

While the [4Fe4S] cluster of biotin synthase is the site of AdoMet bind-
ing and 5′-dA• radical formation [189], the candidacy of AdoMet as the
sulfur donor to biotin was excluded by isotopic labeling: 35S of 35S-
AdoMet is not incorporated into biotin [190]. After the classification of bi-
otin synthase as a radical SAMenzyme, the origin of the sulfur atom that is
inserted into biotin needed to be answered. The [2Fe2S] cluster, discov-
ered initially by X-ray crystallography [155],was also proposed as the sul-
fur atom source and shown to be the sulfur atom donor to MDTB by
reconstitution of apoenzymewith Fe3+ and 34S2− and by the substitution
of S2− by Se2−, each incorporated as the sulfur (or selenium) atom for the
ring closure of biotin [191,192].

As the formation of biotin is not a single step process, samples frozen
during turnover are amixture of EPR paramagnetic species poised at var-
ious states [156]. The initially proposed binding of the 9-dethiobiotinyl
radical to the [2Fe2S]2+ cluster yields a paramagnetic species, the re-
duced [2Fe2S]+ cluster [156]. The formation of this reduced cluster cre-
ates a new paramagnetic probe for coordination studies of the MDTB
intermediate formation. EPR studies previously showed that the reduc-
tion of the [2Fe2S]2+ cluster was kinetically linked with the production
of MDTB, however they were unable to conclusively determine if the re-
duction of [2Fe2S]2+ cluster andMDTB formation occur at the same time
[156].

Recent HYSCORE studies of biotin synthase under turnover reveals
that the dethiobiotinyl radical, a result of hydrogen abstraction by
5′-dA•, moves ~2.9 Å closer to the μ-sulfide of the [2Fe2S]2+ cluster for
attack and sulfur abstraction [153]. The (9-methyl-13C)-DTB labeled sub-
strate, obtained by biosynthesis, yielded 13C coupling (aiso = 2.9 MHz)
observed byHYSCORE spectroscopy (see Fig. 24). This result is consistent
Fig. 23. Formation of biotin from dethiobiotin (DTB) via a two-step reactionwith an stable
9-mercaptodethiobiotin MDTB intermediate bound to the sulfur donating [2Fe2S]+

cluster.



Fig. 25. Q-band NK-ESEEM spectra in time (left) and frequency (right) domains obtained
for integer spin intermediates of α-70Ala/α-195Gln MoFe protein turnover samples pre-
pared with diazene (black), nitrite (red) and hydroxylamine (green). Upper spectra
were measured for 14N substrate samples, lower — for samples with 15N labeled sub-
strates. Triangles in the frequency domain spectra represent suppressed frequencies n/τ,
n = 1, 2.
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with the newly formed MDTB intermediate remaining bound to the
remnant FeS cluster through the sulfur atom (MDTB–Fe–(μ)S–Fe)
[153], as depicted in Fig. 23. The 13C coupling is reminiscent of that ob-
served for the Fe–S–13C of the radical SAM PFL-AE enzyme [182]. This
work has characterized the transient MDTB structure, and the binding
of substrate to the subsequently remnant Fe–S–Fe cluster [153]. There
is great potential for advanced EPR, such as in further characterization
of the ring closure mechanism. The kinetics of biotin synthase are favor-
ably slow, so rapid-freeze quench techniques can be dispensedwith. Ad-
ditionally, as the [2Fe2S] cluster is the sulfur donor to biotin, the [2Fe2S]
clustermust be regenerated, butwe are unaware of any results on the re-
generationmechanism. Radical SAM enzymes often play a critical role in
the maturation of FeS clusters, maybe the radical SAM character of this
enzyme plays two roles?

5.2.6. MiaB
Recently, several radical SAM enzymes have been identified that cat-

alyze the attachment ofmethylthio groups to transfer RNAs or ribosom-
al proteins. These enzymes are thus called methylthiotransferases
(MTTases) and includeMiaB, MtaB, and RimO [193–198]. Very recently,
MiaB and RimO from Thermotoga maritima (TmMiaB, TmRimO) have
been investigated by advanced EPR techniques [199]. MiaB contains a
radical SAM cluster, but, as described above in MoaA, there is an
additional cluster (cluster II), which is proposed as the site of sulfur
(here as CH3S–) transfer. These workers used both WT and an inactive
MiaB mutant in which the three Cys residues binding the radical SAM
cluster were mutated to alanine, so that only cluster II remained, but
cluster II retained the ability to bind exogenous ligands. In this case,
CH3

77SeNa was used (77Se, I = 1/2, 7.6% natural abundance), which is
an active substrate for theseMTTases. HYSCORE of bothWT andmutant
showed signals due to 77Se interacting with cluster II (A=3.8(5) MHz)
indicating direct binding and thus supporting the accepted mechanism
for MTTases [199].

5.2.7. 14,15N NK-ESEEM of a nitrogenase intermediate common to multiple
substrates

We state above that rapid freezing of a remodeled nitrogenaseMoFe
protein during turnover with each of the substrates, diazene,
methyldiazene (HN_N–CH3), hydrazine, NO2

− and NH2OH results in
trapping of a common NK state, H, with S ≥ 2. The conclusion that all
these substrates react to generate H was arrived at from NK-ESEEM
studies, which showed that the NK intermediates formed with each
substrate give the same time and frequency-domain spectra (Fig. 25)
[62,136]. The NK-ESEEM studies of the intermediates formed with
methyldiazene 14,15N isotopologues plus 1,2H isotopologues further
demonstrated that H corresponds to the nitrogen fixation intermediate
with FeMo-co-bound [NH2]− that is formed upon N–N bond cleavage
[62].
Fig. 24. X-band HYSCORE spectra of the biotin synthase paramagnetic intermediate pre-
pared with (A) natural abundance DTB and (B) (9-methyl-13C)-DTB. The two unique
peaks perpendicular to the ν1 = ν2 diagonal of B are the 13C response.
Reprinted with permission from Fugate et al. [153] Copyright 2012 American Chemical
Society.
5.2.8. Bio-organometallic enzyme intermediates
Perhaps the most remarkable cluster–substrate complexes contain

bio-organometallic moieties, involving Fe–C bonds (and not involving
CN− as seen in hydrogenase!). Thefirst suchwas a state inwhich the ni-
trogenase active site binds the alkene product of alkyne reduction.
Considerably later, this study was used as the foundation for efforts to
assign analogous states of other catalytic [4Fe4S] clusters.
5.2.9. Nitrogenase
Biological ‘nitrogen fixation’, the reductive cleavage of the N2 triple

bond at ambient pressure and temperature to form two NH3, is carried
out by the nitrogenase enzyme system. The catalytic site is a multime-
tallic cluster, denoted FeMo-cofactor (FeMo-co), [Fe7,Mo,S9,C]. In recent
years a number of states have been freeze-trappedwith reduction inter-
mediates of N2 and alternative substrates bound to FeMo-co, and char-
acterized by ENDOR/ESEEM/HYSCORE. The first of these were states
trapped during the reduction of alkynes: acetylene, propargyl alcohol
(HC`C–CH2OH), and propargyl amine (HC`C–CH2NH2).

The as-isolated form of the nitrogenase WTMoFe protein exhibits a
characteristic S=3/2 electron paramagnetic resonance (EPR) spectrum
from resting state FeMo-co. The α-Ala70-remodeled MoFe protein be-
haves similarly, but this mutation allows the use of larger substrates
than just N2 or acetylene. When the α-Ala70-MoFe protein is freeze-
trapped under turnover conditionswith either propargyl alcohol or pro-
pargyl amine, the resting state is converted to one with an S= 1/2 sig-
nal, similar to that observed when acetylene is used as substrate with
WT enzyme. Such a well-defined EPR signal indicated that FeMo-co
had been trapped with a single reduction intermediate bound in high
occupancy, and thus an unprecedented opportunity to explore the
properties of this intermediate by EPR and ENDOR spectroscopies was
given.

13C ENDOR spectroscopy carried out on this intermediate generated
with uniformly 13C-labeled propargyl alcohol gave signals from the
three distinct C atoms of substrate with isotropic coupling to the
FeMo-co spin in order of magnitude: C3 N C2 N C1 (Fig. 26A, C) [126].
This result established that the substrate-derived intermediate was co-
valently bound to metal ion(s) of the FeMo cofactor — that this state is
bio-organometallic. However, even full determination of the 13C tensors



Fig. 26.A)Q-band ReMims andMims pulsed 13C ENDORof the FeMo-cofactor of theα-70AlaMoFe protein under turnoverwith propargyl alcohol (PA13C). B) Quantitative stochasticfield-mod-
ulated ENDOR spectra (1H–SF) of theα-Ala70MoFe protein same as in panel A. The deuteration patterns are indicated; spectra are centered at the 1H frequency and split by the hyperfine cou-
pling. Key observation is that the intensity for the nondeuterated sample (green) is halved when either D2O is used as solvent (blue) or the substrate is deuterated (red) and eliminated when
deuterated substrate is used inD2O(black). These results show that the bound intermediate contains two strongly coupled,magnetically identical protons, one that originates fromsubstrate, the
other from solvent. A third, weakly coupled proton is seen in the red and green spectra originating from the solvent. C) Proposed structure of the trapped propargyl alcohol reduction interme-
diate. D) Proposed structure for the trapped propargyl alcohol reduction intermediate bound to FeMo cofactor. The alkane unit of allyl alcohol is bound to Fe6 of the FeMo cofactor.
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through analysis of 2D field-frequency patterns could not reveal the
structure of the complex.

The nature of the bound intermediate instead was revealed by a
detailed examination of the 1,2H ENDOR responses from the four
isotopomers generated when H- or D-labeled propargyl alcohol
(PA-H; PA-D) were used as substrate during turnover in either H2O or
D2O [200]. Keywas the combined use of a newly developed, quantitative
1H ENDOR technique, stochastic field-modulated (SF) CW ENDOR, in
conjunction with Mims-pulsed 2H ENDOR, to study a strongly-coupled
proton signal (Ha) observed in the PA-H/H2O spectrum (hyperfine cou-
pling of A(1Ha)≈ 20MHz) in the four isotopologs. As shown in Fig. 26B,
the signal observed for PA-H/H2O appears with half intensity in the
spectra of both the PA-H/D2O and PA-D/H2O samples, and it is lost
with the “doubly deuterated” PA-D/D2O sample. Correspondingly the
Mims 2H ENDOR spectrumof PA-D/D2Owas seenwith half the intensity
for PA-H/D2O and PA-D/H2O and was absent for PA-H/H2O. These ob-
servations imply that the Ha doublet in the PA-H/H2O spectrum is the
superposition of doublets from two magnetically identical and hence
symmetry-equivalent (mirror-symmetry) protons, one derived from pro-
pargyl alcohol substrate (Hc) and the other acquired from solvent (Hs)
during reduction. In addition, the experiments disclosed one weakly
coupled proton (Hb) derived from solvent.

Detailed examination of the structures of inorganic model com-
pounds having similar compositions showed that these 1,2H ENDOR
measurements require that this intermediate is a complex of the alkene
product of reduction, allyl alcohol, bound in a three-membered ring
made up of the propargyl alcohol C3 and C2 atoms and a single
Fe atom. Fig. 26C, a structure that can be viewed as either a
ferracyclopropane adduct or aπ complex of the allyl alcohol alkene prod-
uct. Density functional theory (DFT) calculations on FeMo-co subse-
quently confirmed the structure [201]. Further work led to a proposed
detailed bonding geometry of the cofactor-reduction intermediate
shown in Fig. 26D.

This mechanistic insight into the reduction of an organic substrate is
one component of the organometallic character of PA-FeMoco. This
ferracycle structure was crucial in providing the basis for deriving the
mechanism of IspG/IspH, as described next. Such bioorganometallic
species may become more widely found in nature, with advanced EPR
techniques being crucial in their identification.
5.2.10. Isoprene precursor synthesis through organometallic intermediates
The synthesis of isoprene precursors, which include carotenoids, cho-

lesterol, steroid hormones, vitamins, and quinones, by eubacteria and
apicomplexan parasites occurs solely via the methyl–erythritol phos-
phate (MEP) pathway [202,203]. Pathogenic microorganisms such as
the causative agents of anthrax, plague, gastrointestinal ulcers, venereal
diseases, malaria, and tuberculosis also solely depend on the MEP path-
way for isoprenoid precursor production, making the MEP pathway an
attractive target for the development of new drugs [204,205]. The last
two steps in the MEP pathway, shown in Fig. 27, involve the proteins
IspG ((E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase), initial-
ly known as GcpE [206,207], and IspH ((E)-1-hydroxy-2-methylbut-2-
enyl 4-diphosphate reductase), initially known as LytB [208].
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Both IspG and IspH catalyze 2H+/2e− reductions of their substrates
through organometallic intermediates, which have been characterized
through advanced EPR techniques by two separate groups: the collabo-
rative team of Duin (Auburn Univ.) and Hoffman (Northwestern Univ);
and Oldfield (Univ. of Illinois, Urbana-Champaign).

Initial ENDOR andHYSCORE studies byOldfield and colleagues [209]
attempted to shed light on the conversion of 2-C-methyl-D-erythritol-
2,4-cyclodiphosphate (MEcPP) to (E)-4-hydroxy-3-methyl-but-2-enyl
diphosphate (HMBPP) by IspG. To test a previously proposed reaction
mechanism involving an epoxide [206], Oldfield compared the EPR,
ENDOR, and HYSCORE spectroscopic characteristics of IspG with
MEcPP or HMBPP binding, under turnover conditions and with a 2,3-
HMBPP epoxide bound. Through uniform 2H and both uniform and par-
tial 13C isotopic labeling of the MEcPP, the binding of substrate to the
unique fourth iron was narrowed to occur via either 2C — or — 3C. A
similar π/σ binding scheme for propargyl alcohol (PA) to the 7Fe9SMoC
cluster (FeMo-co) of nitrogenase had earlier been described byHoffman
et al.; C1 exhibits 13C couplings of aiso = 3.7 MHz [200]. Taking as a
model the work on propargyl alcohol bound to FeMo-co, Oldfield et al.
proposed that the inhibition of IspG by alkynes results from their bind-
ing in an analogous organometallic π/σ fashion.

Duin and Hoffman [210] observed a strong 1H ENDOR response in
IspG with MEcPP, and proposed that it arose from the C2′ methyl
group of MEcPP. This proposal was later confirmed by Oldfield through
use of the isotopologue with 2H at C2′ [185]. Further studies with indi-
vidual atom isotopic labeling confirmed that C2 is the carbon most
strongly coupled to the FeS cluster and the strong 1H response is from
the C2′ methyl group [185]. This supported the structure proposed by
Duin and Hoffman, where “a ferraoxetane with an Fe–C2 bond
(Fig. 28) also considered by Wang et al. [209] although not favored
(by Oldfield), might be expected to have a large coupling to 13C3 and
its α proton….”

Subsequent studies by Oldfield involved 17O labeling of the hydroxyl
group of MEcPP and the use of HYSCORE spectroscopy, which exhibited
a strongly coupled 17O nucleus [211], indication of a strong Fe–O inter-
action. Taken together, the 1H/2H [210], 13C, and 17O [185] ENDOR data
create a consensus that IspG reacts via the ferraoxetane intermediate
structure of Duin.
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Following the production of HMBPP, IspH catalyzes its reduction into
isopentenyl diphosphate and dimethylallyl diphosphate in ratios of 4:1
to 6:1 during the last step of the methylerythritol phosphate pathway
[212].

Initial characterization of IspH inhibitors by Oldfield yielded the
highest inhibition of activity by alkynyl diphosphate, which was pro-
posed to bind to the unique iron of the [4Fe4S] cluster as a π (or π/σ)
metallocycle complex [213]. Later 13C ENDOR spectroscopy, also by
Oldfield [211], revealed couplings once again similar to that observed
for PA bound to nitrogenase. The analogy of the observed couplings
with those for the PA properties, takenwith the alkene inhibition obser-
vation, led Oldfield to propose a π/σ “metallacycle” or η2–alkenyl com-
plex [211].

Later ENDOR spectroscopic studies by Hoffman and colleagues of
freeze-quenched samples of the wild-type and mutant enzymes con-
firmed the binding of theHMBPP substrate to IspH through the observa-
tion of weak 31P hyperfine dipolar couplings, Amax = 0.17 MHz [214]. A
dipolar interaction with no isotropic contributions may be treated as a
point-dipole with the Fe–S cluster as a single point, and allows for reli-
able distance measurements to be made for distant nuclei, yielding an
Fe–31P distance of r ~ 7 Å [214]. These measurements initiated the as-
sembly of the coordination sphere around the [4Fe4S] cluster. Analo-
gous dipolar distance determinations were made for the racemate
mixture of a single 2H label at the same carbon position as the hydroxyl
group is attached, C1 (Fig. 28), of HMBPP. This deuteron creates a new
ENDOR ‘probe’ on the opposite end of the substrate from the 31P of
the phosphate group. Its 2H ENDOR signal gives a calculated distance
of r(Fe–2H) = 3.4 Å, implying that this carbon with the hydroxyl
group is adjacent to site of linkage to the FeS cluster. HMBPP is bound
through either the hydroxyl or as a π complex with a Fe–O linkage of
the freeze-trapped intermediate [214].

Isotopic labeling by Oldfield of the hydroxyl group of HMBPP with
17O yielded weak 17O hyperfine couplings, compared to IspG, imply-
ing the absence of direct Fe–O bonding [215,216]. This eliminated
the possibility of binding through the hydroxyl group for the struc-
ture observed by Oldfield, contrasting with the freeze-trapped struc-
ture proposed by Duin and Hoffman. However, π binding of the allyl
groups is still a viable mechanism, as previously suggested by Duin
and Hoffman [214]. The final mechanism proposed by Oldfield, par-
tially supported by crystallography [217], discarded the possibility
of the ferraoxatane, but instead supports an η-3 allyl anion mecha-
nism. Through the combined methods of crystallography and ad-
vanced EPR, Groll and Oldfield have made additional studies of the
inhibitors of IspG and IspH and their organometallic binding modes
[215–219].

6. Outlook

Advanced EPR techniques, namely ENDOR, and ESEEM and
HYSCORE spectroscopies, have been crucial in understanding FeS
proteins from the early days of their discovery. ENDOR, along with
EPR and Mössbauer, was decisive in understanding the nature of
magnetic coupling in ferredoxin FeS clusters that gave rise to their
varying electron spin states. This in turn was connected to their
redox properties, the only role initially assigned to FeS proteins.
ENDOR also was essential in analyzing more complicated FeS sys-
tems, specifically nitrogenase FeMo-co, wherein the Fe and Mo
sites were identified and quantified. The next phase was the key
role played by ENDOR in demonstrating that an FeS cluster, in the
citric acid cycle enzyme aconitase, was the catalytically active site
for an organic transformation. Since then, advanced EPR techniques
have gone in tandem with the biochemical progress on FeS proteins.
Notable examples include work on unraveling the structure and
mechanism of FeFe hydrogenase and on nitrogenase, wherein the
tools of molecular biology and enzymology allowed the characteriza-
tion of enzyme intermediates that has led to a deeper understanding
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of the mechanism of biological nitrogen fixation, and that an authen-
tic organometallic moiety can exist on an FeS cluster. Another phase
in the saga of FeS proteins is the identification of the radical SAM su-
perfamily, whose membership and variety of chemical catalysis is
constantly growing. Here again, ENDOR and ESEEM and HYSCORE
have all been instrumental in directly providing information that
has allowedmechanism to be proposed for quite intricate organic re-
actions. The preparation of suitable isotopologs of substrates/inhibi-
tors — many of which could be useful for NMR studies in other
contexts, is also an important part of this progress. We conclude by
expressing the belief that as long as biochemists are working on
FeS proteins, practitioners of advanced EPR spectroscopic techniques
can make major contributions to advance this important field.

Conflict of interest statement

The authors do not declare any conflicts of interests.

Acknowledgements

The authors thank JacquesMeyer for helpful conversations and care-
ful reading of this manuscript. The authors also thank JacquesMeyer for
providing the A. aeolicus Fd1 sample, Jose Moura, UNL, Lisbon, Portugal
for the sample of Desulfovibrio gigas Fd, and Mary Claire Kennedy,
Medical College of Wisconsin, for the sample of Ectothiorhodospira
halophila HiPIP. This work was supported by the National Institutes of
Health (GM111097 to B.M.H.) and the National Science Foundation
(MCB-1118613 to B.M.H., and DGE-0824162 to G.E.C.).

References

[1] R.H. Sands, H. Beinert, Studies on mitochondria and submitochondrial particles by
paramagnetic resonance (EPR) spectroscopy, Biochem. Biophys. Res. Commun. 3
(1960) 47–52.

[2] Y.I. Shethna, P.W. Wilson, R.E. Hansen, H. Beinert, Identification by isotopic substi-
tution of EPR signal at g = 1.94 in non-heme iron protein from Azotobacter, Proc.
Natl. Acad. Sci. 52 (1964) 1263–1271.

[3] G. Feher, Observation of nuclear magnetic resonances via the electron spin reso-
nance line, Phys. Rev. 103 (1956) 834–835.

[4] G. Feher, Electron spin resonance experiments on donors in silicon. I. Electronic
structure of donors by the electron nuclear double resonance technique, Phys.
Rev. 114 (1959) 1219–1244.

[5] J. Lambe, N. Laurance, E.C. McIrvine, R.W. Terhune, Mechanisms of double reso-
nance in solids, Phys. Rev. 122 (1961) 1161–1170.

[6] W.B. Mims, Pulsed endor experiments, Proc. R. Soc. Lond. 283 (1965) 452–457.
[7] J. Fritz, R. Anderson, J. Fee, G. Palmer, R.H. Sands, J.C. Tsibris, I.C. Gunsalus, W.H.

Orme-Johnson, H. Beinert, The iron electron-nuclear double resonance (ENDOR)
of two-iron ferredoxins from spinach, parsley, pig adrenal cortex and Pseudomonas
putida, Biochim. Biophys. Acta 253 (1971) 110–133.

[8] R. Anderson, W.R. Dunham, R.H. Sands, A.J. Bearden, H.L. Crespi, On the nature of
the iron sulfur cluster in a deuterated algal ferredoxin, Q. Rev. Biophys. 7 (1975)
443–504.

[9] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover
Publications, New York, 1986.

[10] A. Schweiger, Pulsed electron spin resonance spectroscopy: basic principles, tech-
niques, and examples of applications, Angew. Chem. Int. Ed. Engl. 30 (1991)
265–292.

[11] J. Weil, J. Bolton, Electron Paramagnetic Resonance, 2nd ed., 2011.
[12] K. Möbius, W. Lubitz, ENDOR spectroscopy in photobiology and biochemistry,

Biological Magnetic Resonance, Springer US, Boston, MA, 1987, pp. 129–247.
[13] B.M. Hoffman, Electron nuclear double resonance (ENDOR) of metalloenzymes,

Acc. Chem. Res. 24 (1991) 164–170.
[14] B.M. Hoffman, ENDOR of metalloenzymes, Acc. Chem. Res. 36 (2003) 522–529.
[15] A. Schweiger, Electron nuclear double resonance of transition metal complexes

with organic ligands, Electron Nuclear Double Resonance of Transition Metal
Complexes with Organic Ligands, vol. 51, Springer, Berlin Heidelberg, Berlin,
Heidelberg, 1982, pp. 1–119.

[16] V.J. DeRose, B.M. Hoffman, Protein structure and mechanism studied by electron
nuclear double resonance spectroscopy, in: K. Sauer (Ed.), Methods in Enzymolo-
gy, vol. 246, Academic Press, New York, 1995, pp. 554–589.

[17] L. Noodleman, C.Y. Peng, D.A. Case, J.M. Mouesca, Orbital interactions, electron de-
localization and spin coupling in iron–sulfur clusters, Coord. Chem. Rev. 144
(1995) 199–244.

[18] J.M. Mouesca, L. Noodleman, D.A. Case, B. Lamotte, Spin densities and spin coupling
in iron–sulfur clusters: a new analysis of hyperfine coupling constants, Inorg.
Chem. 34 (1995) 4347–4359.
[19] J. Telser, H. Huang, H.-I. Lee, M.W.W. Adams, B.M. Hoffman, Site valencies and spin
coupling in the 3Fe and 4Fe (S= 1/2) clusters of Pyrococcus furiosus ferredoxin by
57Fe ENDOR, J. Am. Chem. Soc. 120 (1998) 861–870.

[20] G.E. Cutsail III, P.E. Doan, B.M. Hoffman, J. Meyer, J. Telser, EPR and 57Fe ENDOR in-
vestigation of 2Fe ferredoxins from Aquifex aeolicus, JBIC, J. Biol. Inorg. Chem. 17
(2012) 1137–1150.

[21] H.-I. Lee, B.J. Hales, B.M. Hoffman, Metal-ion valencies of the FeMo cofactor in CO-
inhibited and resting state nitrogenase by 57Fe Q-band ENDOR, J. Am. Chem. Soc.
119 (1997) 11395–11400.

[22] P. Manikandan, E.Y. Choi, R. Hille, B.M. Hoffman, 35 GHz ENDOR characterization of
the “very rapid” signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine
(13C8): evidence against direct Mo–C8 interaction, J. Am. Chem. Soc. 123 (2001)
2658–2663.

[23] C.A. Hutchison, D.B. McKay, The determination of hydrogen coordinates in lantha-
num nicotinate dihydrate crystals by Nd+3-proton double resonance, J. Chem.
Phys. 66 (1977) 3311.

[24] E.A.C. Lucken, Nuclear Quadrupole Coupling Constants, Academic P, London, New
York, 1969.

[25] W.B. Mims, J. Peisach, The nuclear modulation effect in electron spin echoes for
complexes of Cu2+ and imidazole with 14N and 15N, J. Chem. Phys. 69 (1978) 4921.

[26] B.M. Hoffman, J. Martinsen, R.A. Venters, General theory of polycrystalline ENDOR
patterns. g and hyperfine tensors of arbitrary symmetry and relative orientation, J.
Magn. Reson. 59 (1984) 110–123.

[27] B.M. Hoffman, R.A. Venters, J. Martinsen, General theory of polycrystalline ENDOR
patterns. Effects of finite EPR and ENDOR component linewidths, J. Magn. Reson.
62 (1985) 537–542.

[28] B.M. Hoffman, R.J. Gurbiel, M.M. Werst, M. Sivaraja, Electron nuclear double
resonance (ENDOR) of metalloenzymes, in: A.J. Hoff (Ed.), Advanced EPR:
Applications in Biology and Biochemistry, Elsevier; Distributors for the U.S.
and Canada, Elsevier Science Pub. Co., Amsterdam; New York New York, NY,
U.S.A., 1989, p. xxii (918 pp.).

[29] P.E. Doan, The past, present, and future of orientation-selected ENDOR analysis:
solving the challenges of dipolar-coupled nuclei, Paramagnetic Resonance of
Metallobiomolecules, ACS Symposium Series, 2003.

[30] B. Epel, A. Poppl, P. Manikandan, S. Vega, D. Goldfarb, The effect of spin relaxation
on ENDOR spectra recorded at highmagnetic fields and low temperatures, J. Magn.
Reson. 148 (2001) 388–397.

[31] B. Epel, D. Arieli, D. Baute, D. Goldfarb, Improving W-band pulsed ENDOR sensitiv-
ity—random acquisition and pulsed special TRIPLE, J. Magn. Reson. 164 (2003)
78–83.

[32] E.R. Davies, A new pulse ENDOR technique, Phys. Lett. A 47 (1974) 1–2.
[33] P.E. Doan, N.S. Lees, M. Shanmugam, B.M. Hoffman, Simulating suppression effects

in pulsed ENDOR, and the ‘hole in the middle’ of Mims and Davies ENDOR spectra,
Appl. Magn. Reson. 37 (2010) 763–779.

[34] A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, Ox-
ford University Press, Oxford, UK; New York, 2001.

[35] C. Fan, P.E. Doan, C.E. Davoust, B.M. Hoffman, Quantitative studies of davies pulsed
ENDOR, J. Magn. Reson. 98 (1992) 62–72.

[36] P.E. Doan, B.M. Hoffman, Making hyperfine selection in Mims ENDOR independent
of deadtime, Chem. Phys. Lett. 269 (1997) 208–214.

[37] C. Gemperle, A. Schweiger, Pulsed electron nuclear double-resonance methodolo-
gy, Chem. Rev. 91 (1991) 1481–1505.

[38] R.A. Kinney, D.G.H. Hetterscheid, B.S. Hanna, R.R. Schrock, B.M. Hoffman, Formation
of {[HIPTN3N]Mo(III)H}− by heterolytic cleavage of H2 as established by EPR and
ENDOR spectroscopy, Inorg. Chem. 49 (2010) 704–713.

[39] Y. Lee, R.A. Kinney, B.M. Hoffman, J.C. Peters, A nonclassical dihydrogen adduct of
S = 1/2 Fe(I), J. Am. Chem. Soc. 133 (2011) 16366–16369.

[40] P.E. Doan, M.J. Nelson, H. Jin, B.M. Hoffman, An implicit TRIPLE effect in Mims
pulsed ENDOR: a sensitive new technique for determining signs of hyperfine cou-
plings, J. Am. Chem. Soc. 118 (1996) 7014–7015.

[41] A. Silakov, E.J. Reijerse, S.P. Albracht, E.C. Hatchikian, W. Lubitz, The electronic
structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio
desulfuricans: a Q-band 57Fe-ENDOR and HYSCORE study, J. Am. Chem. Soc. 129
(2007) 11447–11458.

[42] M.T. Bennebroek, J. Schmidt, Pulsed ENDOR spectroscopy at large thermal spin po-
larizations and the absolute sign of the hyperfine interaction, J. Magn. Reson. 128
(1997) 199–206.

[43] B. Epel, P.Manikandan, P.M.H. Kroneck, D. Goldfarb, High-field ENDOR and the sign
of the hyperfine coupling, Appl. Magn. Reson. 21 (2001) 287–297.

[44] T.C. Yang, B.M. Hoffman, A Davies/Hahn multi-sequence for studies of spin relaxa-
tion in pulsed ENDOR, J. Magn. Reson. 181 (2006) 280–286.

[45] P.E. Doan, Combining steady-state and dynamic methods for determining absolute
signs of hyperfine interactions: pulsed ENDOR saturation and recovery (PESTRE), J.
Magn. Reson. 208 (2011) 76–86.

[46] P.E. Doan, J. Telser, B.M. Barney, R.Y. Igarashi, D.R. Dean, L.C. Seefeldt, B.M. Hoffman,
57Fe ENDOR spectroscopy and ‘electron inventory’ analysis of the nitrogenase E4
intermediate suggest the metal-ion core of FeMo-cofactor cycles through only
one redox couple, J. Am. Chem. Soc. 133 (2011) 17329–17340.

[47] J. Cowen, D. Kaplan, Spin-echomeasurement of the spin–lattice and spin–spin relax-
ation in Ce3+ in lanthanum magnesium nitrate, Phys. Rev. 124 (1961) 1098–1101.

[48] W. Mims, K. Nassau, J. McGee, Spectral diffusion in electron resonance lines, Phys.
Rev. 123 (1961) 2059–2069.

[49] L. Rowan, E. Hahn, W. Mims, Electron-spin-echo envelope modulation, Phys. Rev.
137 (1965) A61–A71.

[50] J. McCracken, Electron spin echo envelope modulation (ESEEM) spectroscopy, En-
cyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd., 2006

http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0005
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0005
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0005
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1060
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1060
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1060
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0010
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0010
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0015
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0015
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0015
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0020
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0020
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0025
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0030
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0030
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0030
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0030
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0035
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0035
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0035
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0040
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0040
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0045
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0045
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0045
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0050
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1065
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1065
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0060
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0060
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0065
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1070
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1070
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1070
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1070
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1075
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1075
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1075
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0085
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0085
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0085
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0090
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0090
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0090
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0090
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0095
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0095
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0095
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0095
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0125
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0125
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0125
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0130
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0130
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0130
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1080
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1085
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1085
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1085
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0140
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0140
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0140
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0150
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0155
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0155
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0155
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1090
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1090
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0165
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0165
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0170
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0170
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0175
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0175
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0180
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0180
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0180
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0180
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0180
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0180
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0185
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0185
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0190
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0190
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0190
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0195
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0195
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0195
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0195
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0195
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0200
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0200
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0200
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0205
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0205
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0210
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0210
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0215
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0215
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0215
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0220
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0220
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0220
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0220
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0220
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0225
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0225
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0225
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0225
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0230
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0230
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0235
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0235
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1170
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1170


1391G.E. Cutsail III et al. / Biochimica et Biophysica Acta 1853 (2015) 1370–1394
[51] E. Hahn, Spin echoes, Phys. Rev. 80 (1950) 580–594.
[52] R.P.J. Merks, R. De Beer, Two-dimensional Fourier transform of electron spin echo

envelope modulation. An alternative for ENDOR, J. Phys. Chem. 83 (1979)
3319–3322.

[53] P. Hofer, A. Grupp, M. Mehring, High-resolution time-domain electron-nuclear-
sublevel spectroscopy by pulsed coherence transfer, Phys. Rev. A 33 (1986)
3519–3522.

[54] S.A. Dikanov, M.K. Bowman, Cross-peak lineshape of two-dimensional ESEEM
spectra in disordered S = 1/2, I = 1/2 spin systems, J. Magn. Reson. Ser. A 116
(1995) 125–128.

[55] S.A. Dikanov, L. Xun, A.B. Karpiel, A.M. Tyryshkin, M.K. Bowman, Orientationally-
selected two-dimensional ESEEM spectroscopy of the Rieske-type iron–sulfur clus-
ter in 2,4,5-trichlorophenoxyacetate monooxygenase from Burkholderia cepacia
AC1100, J. Am. Chem. Soc. 118 (1996) 8408–8416.

[56] Z.L. Madi, S. Van Doorslaer, A. Schweiger, Numerical simulation of one- and two-
dimensional ESEEM experiments, J. Magn. Reson. 154 (2002) 181–191.

[57] S. Stoll, A. Schweiger, Rapid construction of solid-state magnetic resonance powder
spectra from frequencies and amplitudes as applied to ESEEM, J. Magn. Reson. 163
(2003) 248–256.

[58] B.M. Hoffman, D.R. Dean, L.C. Seefeldt, Climbing nitrogenase: toward a mechanism
of enzymatic nitrogen fixation, Acc. Chem. Res. 42 (2009) 609–619.

[59] B.M. Hoffman, D. Lukoyanov, D.R. Dean, L.C. Seefeldt, Nitrogenase: a draft mecha-
nism, Acc. Chem. Res. 46 (2013) 587–595.

[60] B.M. Hoffman, D. Lukoyanov, Z.Y. Yang, D.R. Dean, L.C. Seefeldt, Mechanism of
nitrogen fixation by nitrogenase: the next stage, Chem. Rev. 114 (2014)
4041–4062.

[61] D. Lukoyanov, B.M. Barney, D.R. Dean, L.C. Seefeldt, B.M. Hoffman, Connecting ni-
trogenase intermediates with the kinetic scheme for N2 reduction by a relaxation
protocol and identification of the N2 binding state, Proc. Natl. Acad. Sci. 104
(2007) 1451–1455.

[62] D. Lukoyanov, Z.Y. Yang, B.M. Barney, D.R. Dean, L.C. Seefeldt, B.M. Hoffman, Unifi-
cation of reaction pathway and kinetic scheme for N2 reduction catalyzed by nitro-
genase, Proc. Natl. Acad. Sci. 109 (2012) 5583–5587.

[63] M.P. Hendrich, P.G. Debrunner, Integer-spin electron paramagnetic resonance of
iron proteins, Biophys. J. 56 (1989) 489–506.

[64] E. Munck, K.K. Surerus, M.P. Hendrich, Combining Mössbauer spectroscopy with
integer spin electron paramagnetic resonance, Methods Enzymol. 227 (1993)
463–479.

[65] B.M. Hoffman, ENDOR and ESEEM of a non-Kramers doublet in an integer-spin sys-
tem, J. Phys. Chem. 98 (1994) 11657–11665.

[66] B.M. Hoffman, B.E. Sturgeon, P.E. Doan, V.J. DeRose, K.E. Liu, S.J. Lippard, ESEEM and
ENDOR magnetic resonance studies of the non-Kramers doublet in the integer-
spin diiron(II) forms of two methane monooxygenase hydroxylases and hemery-
thrin azide, J. Am. Chem. Soc. 116 (1994) 6023–6024.

[67] B.E. Sturgeon, P.E. Doan, K.E. Liu, D. Burdi, W.H. Tong, J.M. Nocek, N. Gupta, J.
Stubbe, J. Donald, M. Kurtz, S.J. Lippard, B.M. Hoffman, Non-Kramers ESEEM of
integer-spin diferrous carboxylate-bridged clusters in proteins, J. Am. Chem. Soc.
119 (1997) 375–386.

[68] K.M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M.W. Ribbe, F. Neese, U.
Bergmann, S. DeBeer, X-ray emission spectroscopy evidences a central carbon in
the nitrogenase iron–molybdenum cofactor, Science 334 (2011) 974–977.

[69] T. Spatzal, M. Aksoyoglu, L. Zhang, S.L. Andrade, E. Schleicher, S. Weber, D.C. Rees,
O. Einsle, Evidence for interstitial carbon in nitrogenase FeMo cofactor, Science 334
(2011) 940.

[70] J.A.Wiig, Y. Hu, C.C. Lee, M.W. Ribbe, Radical SAM-dependent carbon insertion into
the nitrogenase M-cluster, Science 337 (2012) 1672–1675.

[71] R.H. Sands, ENDOR and ELDOR on iron–sulfur proteins, in: M.M. Dorio, J.H. Freed
(Eds.), Multiple Electron Resonance Spectroscopy, Plenum Press, New York & Lon-
don, 1979, pp. 331–374.

[72] B.R. Crouse, J. Meyer, M.K. Johnson, Spectroscopic evidence for a reduced Fe2S2
cluster with a S = 9/2 ground state in mutant forms of Clostridium pasteurianum
2Fe ferredoxin, J. Am. Chem. Soc. 117 (1995) 9612–9613.

[73] L. Noodleman, J.G. Norman, J.H. Osborne, A. Aizman, D.A. Case, Models for ferre-
doxins: electronic structures of iron–sulfur clusters with one, two, and four iron
atoms, J. Am. Chem. Soc. 107 (1985) 3418–3426.

[74] C. Mailer, C.P. Taylor, Rapid adiabatic passage EPR of ferricytochrome c: signal en-
hancement and determination of the spin–lattice relaxation time, Biochim.
Biophys. Acta 322 (1973) 195–203.

[75] B.H. Huynh, T.A. Kent, Mössbauer studies of iron proteins, Adv. Inorg. Biochem. 6
(1984) 163–223.

[76] T.A. Kent, J.L. Dreyer, M.C. Kennedy, B.H. Huynh, M.H. Emptage, H. Beinert, E.
Munck, Mössbauer studies of beef heart aconitase: evidence for facile interconver-
sions of iron–sulfur clusters, Proc. Natl. Acad. Sci. 79 (1982) 1096–1100.

[77] G.J. Long, F. Grandjean, Mössbauer Spectroscopy Applied to Inorganic Chemistry,
Plenum Press, New York, 1984.

[78] M.M. Dicus, A. Conlan, R. Nechushtai, P.A. Jennings, M.L. Paddock, R.D. Britt, S. Stoll,
Binding of histidine in the (Cys)3(His)1-coordinated [2Fe–2S] cluster of human
mitoNEET, J. Am. Chem. Soc. 132 (2010) 2037–2049.

[79] R.J. Gurbiel, P.E. Doan, G.T. Gassner, T.J. Macke, D.A. Case, T. Ohnishi, J.A. Fee,
D.P. Ballou, B.M. Hoffman, Active site structure of Rieske-type proteins: elec-
tron nuclear double resonance studies of isotopically labeled phthalate
dioxygenase from Pseudomonas cepacia and Rieske protein from Rhodobacter
capsulatus and molecular modeling studies of a Rieske center, Biochemistry
35 (1996) 7834–7845.

[80] M. Orio, J.M. Mouesca, Variation of average g values and effective exchange cou-
pling constants among [2Fe–2S] clusters: a density functional theory study of the
impact of localization (trapping forces) versus delocalization (double-exchange)
as competing factors, Inorg. Chem. 47 (2008) 5394–5416.

[81] A.H. Priem, A.A. Klaassen, E.J. Reijerse, T.E. Meyer, C. Luchinat, F. Capozzi, W.R.
Dunham, W.R. Hagen, EPR analysis of multiple forms of [4Fe–4S]3+ clusters in
HiPIPs, J. Biol. Inorg. Chem. 10 (2005) 417–424.

[82] R. Grazina, S.R. Pauleta, J.J.G. Moura, I. Moura, Iron–sulfur centers: new roles for an-
cient metal sites, in: J.R. Poeppelmeier (Ed.), Comprehensive Inorganic Chemistry
II, Second editionElsevier, Amsterdam, 2013, pp. 103–148.

[83] M. Belinskii, Spin coupling model for tetrameric iron clusters in ferredoxins. I. The-
ory, exchange levels, g-factors, Chem. Phys. 172 (1993) 189–211.

[84] D.C. Johnson, D.R. Dean, A.D. Smith, M.K. Johnson, Structure, function, and for-
mation of biological iron–sulfur clusters, Annu. Rev. Biochem. 74 (2005)
247–281.

[85] S.C. Lee, R.H. Holm, Speculative synthetic chemistry and the nitrogenase problem,
Proc. Natl. Acad. Sci. 100 (2003) 3595–3600.

[86] R.H. Holm, Trinuclear cuboidal heterometallic cubane-type iron–sulfur clusters:
new structural and reactivity themes in chemistry and biology, Adv. Inorg. Chem.
38 (1992) 1–71.

[87] R.H. Holm, S. Ciurli, J.A. Weigel, Subsite-specific structures and reactions in
native and synthetic (4Fe–4S) cubane-type clusters, Prog. Inorg. Chem. 38
(1990) 1–74.

[88] G. Rius, B. Lamotte, Single-crystal ENDOR study of a 57Fe-enriched iron–sulfur
[Fe4S4]3+ cluster, J. Am. Chem. Soc. 111 (1989) 2464–2469.

[89] J.-M. Mouesca, G. Rius, B. Lamotte, Single-crystal proton ENDOR studies of the
[Fe4S4]3+ cluster: determination of the spin population distribution and proposal
of a model to interpret the 1H NMR paramagnetic shifts in high-potential ferre-
doxins, J. Am. Chem. Soc. 115 (1993) 4714–4731.

[90] J. Gloux, P. Gloux, B. Lamotte, J.-M. Mouesca, G. Rius, The different [Fe4S4]3+ and
[Fe4S4]+ species created by g irradiation in single crystals of the (Et4N)2
[Fe4S4(SBenz)4] model compound: their EPR description and their biological sig-
nificance, J. Am. Chem. Soc. 116 (1994) 1953–1961.

[91] L. Noodleman, D.A. Case, J.M. Mouesca, B. Lamotte, Valence electron delocalization
in polynuclear iron–sulfur clusters, J. Biol. Inorg. Chem. 1 (1996) 177–182.

[92] L. Le Pape, B. Lamotte, J.-M. Mouesca, G. Rius, Paramagnetic states of four iron–four
sulfur clusters. 1. EPR single-crystal study of 3+ and 1+ clusters of an asymmet-
rical model compound and general model for the interpretation of the g-tensors of
these two redox states, J. Am. Chem. Soc. 119 (1997) 9757–9770.

[93] L. Le Pape, B. Lamotte, J.-M. Mouesca, G. Rius, Paramagnetic states of four iron–four
sulfur clusters. 2. Proton ENDOR study of a 1+ state in an asymmetrical cluster, J.
Am. Chem. Soc. 119 (1997) 9771–9781.

[94] R. Davydov, R. Kappl, J. Huttermann, J.A. Peterson, EPR-spectroscopy of reduced
oxyferrous-P450cam, FEBS Lett. 295 (1991) 113–115.

[95] S.A. Dikanov, R.M. Davydov, L. Xun,M.K. Bowman, CW and pulsed EPR characteriza-
tion of the reduced Rieske type iron–sulfur center in 2,4,5-trichlorophenoxyacetate
monoxygenase, J. Magn. Reson. 112 (1996) 289–294.

[96] J. Telser, R. Davydov, C.H. Kim, M.W.W. Adams, B.M. Hoffman, Investigation of the
unusual electronic structure of Pyrococcus furiosus 4Fe ferredoxin by EPR spectros-
copy of protein reduced at ambient and cryogenic temperatures, Inorg. Chem. 38
(1999) 3550–3553.

[97] J. Gloux, P. Gloux, B. Lamotte, G. Rius, Creation and ESR identification, in single crys-
tals, of synthetic analogs of the S=(1/2) states of the Fe4S4 cores of the reduced fer-
redoxins and oxidized high-potential proteins, Phys. Rev. Lett. 54 (1985) 599–602.

[98] F. Moriaud, S. Gambarelli, B. Lamotte, J.-M. Mouesca, Detailed proton Q-band
ENDOR study of the electron spin population distribution in the reduced
[4Fe–4S]1+ state, J. Phys. Chem. B 105 (2001) 9631–9642.

[99] R.K. Thauer, A.K. Kaster, H. Seedorf, W. Buckel, R. Hedderich, Methanogenic ar-
chaea: ecologically relevant differences in energy conservation, Nat. Rev.
Microbiol. 6 (2008) 579–591.

[100] M. Simianu, E. Murakami, J.M. Brewer, S.W. Ragsdale, Purification and properties of
the heme- and iron–sulfur-containing heterodisulfide reductase fromMethanosarcina
thermophila, Biochemistry 37 (1998) 10027–10039.

[101] N. Hamann, G.J.Mander, J.E. Shokes, R.A. Scott,M. Bennati, R. Hedderich, A cysteine-
rich CCG domain contains a novel [4Fe–4S] cluster binding motif as deduced from
studies with subunit B of heterodisulfide reductase from Methanothermobacter
marburgensis, Biochemistry 46 (2007) 12875–12885.

[102] S. Madadi-Kahkesh, E.C. Duin, S. Heim, S.P. Albracht, M.K. Johnson, R. Hedderich, A
paramagnetic species with unique EPR characteristics in the active site of
heterodisulfide reductase from methanogenic archaea, Eur. J. Biochem. 268
(2001) 2566–2577.

[103] E.C. Duin, C. Bauer, B. Jaun, R. Hedderich, Coenzyme M binds to a [4Fe–4S] cluster
in the active site of heterodisulfide reductase as deduced from EPR studies with the
[33S]coenzyme M-treated enzyme, FEBS Lett. 538 (2003) 81–84.

[104] E.C. Duin, S. Madadi-Kahkesh, R. Hedderich, M.D. Clay, M.K. Johnson,
Heterodisulfide reductase from Methanothermobacter marburgensis contains an
active-site [4Fe–4S] cluster that is directly involved in mediating heterodisulfide
reduction, FEBS Lett. 512 (2002) 263–268.

[105] M. Bennati, N. Weiden, K.P. Dinse, R. Hedderich, 57Fe ENDOR spectroscopy on the
iron–sulfur cluster involved in substrate reduction of heterodisulfide reductase, J.
Am. Chem. Soc. 126 (2004) 8378–8379.

[106] A.J. Fielding, K. Parey, U. Ermler, S. Scheller, B. Jaun, M. Bennati, Advanced electron
paramagnetic resonance on the catalytic iron–sulfur cluster bound to the CCG do-
main of heterodisulfide reductase and succinate: quinone reductase, JBIC, J. Biol.
Inorg. Chem. 18 (2013) 905–915.

[107] P. Middleton, D.P. Dickson, C.E. Johnson, J.D. Rush, Interpretation of the Mössbauer
spectra of the high-potential iron protein from Chromatium, Eur. J. Biochem. 104
(1980) 289–296.

http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0245
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0250
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0250
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0250
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0255
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0255
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0255
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0260
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0260
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0260
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0265
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0265
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0265
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0265
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0270
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0270
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0275
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0275
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0275
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0280
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0280
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0285
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0285
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0290
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0290
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0290
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0295
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0295
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0295
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0295
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0295
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0295
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0300
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0300
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0300
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0300
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0305
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0305
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0310
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0310
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0310
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0315
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0315
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0320
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0320
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0320
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0320
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0325
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0325
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0325
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0325
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0330
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0330
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0330
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0335
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0335
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0335
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0340
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0340
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0345
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0345
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0345
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0350
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0350
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0350
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0350
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0355
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0355
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0355
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0360
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0360
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0360
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0365
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0365
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0370
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0370
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0370
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0375
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0375
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0380
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0380
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0380
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0385
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0385
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0385
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0385
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0385
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0385
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0390
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0390
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0390
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0390
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1100
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1105
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0405
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0405
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0410
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0410
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0410
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0415
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0415
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0420
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0420
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0420
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0425
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0425
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0425
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0430
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0430
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0430
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0430
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0430
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0430
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0430
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0435
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0440
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0445
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0445
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0450
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0450
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0450
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0450
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0450
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0450
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0455
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0455
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0455
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0455
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0460
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0460
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0465
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0465
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0465
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0470
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0470
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0470
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0470
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1110
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0475
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0475
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0475
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0475
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0475
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0480
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0480
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0480
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0485
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0485
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0485
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0490
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0490
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0490
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0490
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0495
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0495
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0495
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0495
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0500
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0500
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0500
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0500
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0505
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0505
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0505
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0505
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0510
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0510
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0510
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0510
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0515
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0515
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0515
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0515
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0520
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0520
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0520


1392 G.E. Cutsail III et al. / Biochimica et Biophysica Acta 1853 (2015) 1370–1394
[108] W. Lubitz, H. Ogata, O. Rudiger, E. Reijerse, Hydrogenases, Chem. Rev. 114 (2014)
4081–4148.

[109] J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, X-ray crystal structure of the
Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolu-
tion, Science 282 (1998) 1853–1858.

[110] Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian, J.C. Fontecilla-Camps, Desulfovibrio
desulfuricans iron hydrogenase: the structure shows unusual coordination to an ac-
tive site Fe binuclear center, Structure 7 (1999) 13–23.

[111] A. Silakov, B. Wenk, E. Reijerse, S.P. Albracht, W. Lubitz, Spin distribution of the H-
cluster in the H(ox)–CO state of the [FeFe] hydrogenase from Desulfovibrio
desulfuricans: HYSCORE and ENDOR study of 14N and 13C nuclear interactions, J.
Biol. Inorg. Chem. 14 (2009) 301–313.

[112] J. Esselborn, C. Lambertz, A. Adamska-Venkatesh, T. Simmons, G. Berggren, J. Noth,
J. Siebel, A. Hemschemeier, V. Artero, E. Reijerse, M. Fontecave, W. Lubitz, T. Happe,
Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site
mimic, Nat. Chem. Biol. 9 (2013) 607–609.

[113] G. Berggren, A. Adamska, C. Lambertz, T.R. Simmons, J. Esselborn, M. Atta, S.
Gambarelli, J.M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M.
Fontecave, Biomimetic assembly and activation of [FeFe]-hydrogenases, Nature
499 (2013) 66–69.

[114] A. Silakov, B. Wenk, E. Reijerse, W. Lubitz, 14N HYSCORE investigation of the H-
cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge, Phys.
Chem. Chem. Phys. 11 (2009) 6592–6599.

[115] O.F. Erdem, L. Schwartz, M. Stein, A. Silakov, S. Kaur-Ghumaan, P. Huang, S. Ott, E.J.
Reijerse, W. Lubitz, A model of the [FeFe] hydrogenase active site with a biological-
ly relevant azadithiolate bridge: a spectroscopic and theoretical investigation,
Angew. Chem. Int. Ed. Engl. 50 (2011) 1439–1443.

[116] E.M. Shepard, F. Mus, J.N. Betz, A.S. Byer, B.R. Duffus, J.W. Peters, J.B. Broderick,
[FeFe]-hydrogenase maturation, Biochemistry 53 (2014) 4090–4104.

[117] J.M. Kuchenreuther, W.K. Myers, D.L. Suess, T.A. Stich, V. Pelmenschikov, S.A. Shiigi,
S.P. Cramer, J.R. Swartz, R.D. Britt, S.J. George, The HydG enzyme generates an
Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster, Science
343 (2014) 424–427.

[118] J.M. Kuchenreuther, W.K. Myers, T.A. Stich, S.J. George, Y. Nejatyjahromy, J.R.
Swartz, R.D. Britt, A radical intermediate in tyrosine scission to the CO and CN− li-
gands of FeFe hydrogenase, Science 342 (2013) 472–475.

[119] J.M. Kuchenreuther, Y. Guo, H. Wang, W.K. Myers, S.J. George, C.A. Boyke, Y. Yoda,
E.E. Alp, J. Zhao, R.D. Britt, J.R. Swartz, S.P. Cramer, Nuclear resonance vibrational
spectroscopy and electron paramagnetic resonance spectroscopy of 57Fe-
enriched [FeFe] hydrogenase indicate stepwise assembly of the H-cluster, Bio-
chemistry 52 (2013) 818–826.

[120] P. Berto, M. Di Valentin, L. Cendron, F. Vallese, M. Albertini, E. Salvadori, G.M.
Giacometti, D. Carbonera, P. Costantini, The [4Fe–4S]-cluster coordination of
[FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE
spectroscopies, Biochim. Biophys. Acta 1817 (2012) 2149–2157.

[121] T.A. Stich, W.K. Myers, R.D. Britt, Paramagnetic intermediates generated by
radical S-adenosylmethionine (SAM) enzymes, Acc. Chem. Res. 47 (2014)
2235–2243.

[122] T.R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero, Mimicking hydrog-
enases: from biomimetics to artificial enzymes, Coord. Chem. Rev. 270–271 (2014)
127–150.

[123] C.H. Hsieh, O.F. Erdem, S.D. Harman, M.L. Singleton, E. Reijerse, W. Lubitz, C.V.
Popescu, J.H. Reibenspies, S.M. Brothers, M.B. Hall, M.Y. Darensbourg, Structural
and spectroscopic features of mixed valent Fe(II)Fe(I) complexes and factors relat-
ed to the rotated configuration of diiron hydrogenase, J. Am. Chem. Soc. 134
(2012) 13089–13102.

[124] S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, A
functional [NiFe]hydrogenase mimic that catalyzes electron and hydride transfer
from H2, Science 339 (2013) 682–684.

[125] W. Lubitz, E. Reijerse, M. van Gastel, [NiFe] and [FeFe] hydrogenases studied
by advanced magnetic resonance techniques, Chem. Rev. 107 (2007)
4331–4365.

[126] P.C. Dos Santos, R.Y. Igarashi, H.I. Lee, B.M. Hoffman, L.C. Seefeldt, D.R. Dean, Sub-
strate interactions with the nitrogenase active site, Acc. Chem. Res. 38 (2005)
208–214.

[127] B.M. Hoffman, R.A. Venters, J.E. Roberts, M. Nelson, W.H. Orme-Johnson, 57Fe
ENDOR of the nitrogenase MoFe protein, J. Am. Chem. Soc. 104 (1982)
4711–4712.

[128] R.A. Venters, M.J. Nelson, P.A. Mclean, A.E. True, M.A. Levy, B.M. Hoffman, W.H.
Orme-Johnson, ENDOR of the resting state of nitrogenase molybdenum iron pro-
teins from Azotobacter vinelandii, Klebsiella pneumoniae, and Clostridium
pasteurianum — 1H, 57Fe, 95Mo, and 33S studies, J. Am. Chem. Soc. 108 (1986)
3487–3498.

[129] A.E. True, M.J. Nelson, R.A. Venters, W.H. Orme-Johnson, B.M. Hoffman, 57Fe hyper-
fine coupling tensors of the FeMo cluster in Azotobacter vinelandii MoFe protein:
determination by polycrystalline ENDOR spectroscopy, J. Am. Chem. Soc. 110
(1988) 1935–1943.

[130] S.J. Yoo, H.C. Angove, V. Papaefthymiou, B.K. Burgess, E. Münck, Mössbauer study of
the MoFe protein of nitrogenase from Azotobacter vinelandii using selective 57Fe
enrichment of the M-Centers, J. Am. Chem. Soc. 122 (2000) 4926–4936.

[131] R.C. Pollock, H.-I. Lee, L.M. Cameron, V.J. DeRose, B.J. Hales, W.H. Orme-Johnson,
B.M. Hoffman, Investigation of CO bound to inhibited forms of nitrogenase MoFe
protein by 13C ENDOR, J. Am. Chem. Soc. 117 (1995) 8686–8687.

[132] P.D. Christie, H.I. Lee, L.M. Cameron, B.J. Hales, W.H. OrmeJohnson, B.M. Hoffman,
Identification of the CO-binding cluster in nitrogenase MoFe protein by ENDOR
of Fe-57 isotopomers, J. Am. Chem. Soc. 118 (1996) 8707–8709.
[133] R.N.F. Thorneley, D.J. Lowe, Nitrogenase: substrate binding and activation, J. Biol.
Inorg. Chem. 1 (1996) 576–580.

[134] R.Y. Igarashi, M. Laryukhin, P.C. Dos Santos, H.I. Lee, D.R. Dean, L.C. Seefeldt, B.M.
Hoffman, Trapping H− bound to the nitrogenase FeMo-cofactor active site during
H2 evolution: characterization by ENDOR spectroscopy, J. Am. Chem. Soc. 127
(2005) 6231–6241.

[135] D. Lukoyanov, Z.Y. Yang, D.R. Dean, L.C. Seefeldt, B.M. Hoffman, Is Mo involved in
hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase
MoFe protein? J. Am. Chem. Soc. 132 (2010) 2526–2527.

[136] S. Shaw, D. Lukoyanov, K. Danyal, D.R. Dean, B.M. Hoffman, L.C. Seefeldt, Nitrite and
hydroxylamine as nitrogenase substrates: mechanistic implications for the path-
way of N2 reduction, J. Am. Chem. Soc. 136 (2014) 12776–12783.

[137] M.M. Werst, M.C. Kennedy, A.L.P. Houseman, H. Beinert, B.M. Hoffman, Character-
ization of the iron–sulfur [4Fe–4S]+ cluster at the active site of aconitase by 57Fe,
33S, and 14N electron nuclear double resonance spectroscopy, Biochemistry 29
(1990) 10533–10540.

[138] A.H. Robbins, C.D. Stout, Structure of activated aconitase: formation of the [4Fe–4S]
cluster in the crystal, Proc. Natl. Acad. Sci. 86 (1989) 3639–3643.

[139] W.H. Orme-Johnson, R.E. Hansen, H. Beinert, J.C. Tsibris, R.C. Bartholomaus, I.C.
Gunsalus, On the sulfur components of iron–sulfur proteins. I. The number of
acid-labile sulfur groups sharing an unpaired electron with iron, Proc. Natl. Acad.
Sci. 60 (1968) 368–372.

[140] J. Meyer, Ferredoxins of the third kind, FEBS Lett. 509 (2001) 1–5.
[141] J. Meyer, Iron–sulfur protein folds, iron–sulfur chemistry, and evolution, J. Biol.

Inorg. Chem. 13 (2008) 157–170.
[142] D.O. Hearshen, W.R. Hagen, R.H. Sands, H.J. Grande, H.L. Crespi, I.C. Gunsalus, W.R.

Dunham, An analysis of g strain in the EPR of two [2Fe–2S] ferredoxins. Evidence
for a protein rigidity model, J. Magn. Reson. 69 (1986) 440–459.

[143] A.P. Yeh, X.I. Ambroggio, S.L. Andrade, O. Einsle, C. Chatelet, J. Meyer, D.C. Rees,
High resolution crystal structures of the wild type and Cys-55 → Ser and Cys-
59 → Ser variants of the thioredoxin-like [2Fe–2S] ferredoxin from Aquifex
aeolicus, J. Biol. Chem. 277 (2002) 34499–34507.

[144] H. Li, D.T. Mapolelo, N.N. Dingra, S.G. Naik, N.S. Lees, B.M. Hoffman, P.J. Riggs-
Gelasco, B.H. Huynh, M.K. Johnson, C.E. Outten, The yeast iron regulatory
proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe–
2S] cluster with cysteinyl and histidyl ligation, Biochemistry 48 (2009)
9569–9581.

[145] M.L. Paddock, S.E. Wiley, H.L. Axelrod, A.E. Cohen, M. Roy, E.C. Abresch, D. Capraro,
A.N. Murphy, R. Nechushtai, J.E. Dixon, P.A. Jennings, MitoNEET is a uniquely folded
2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone, Proc.
Natl. Acad. Sci. 104 (2007) 14342–14347.

[146] J.R. Colca,W.G. McDonald, D.J. Waldon, J.W. Leone, J.M. Lull, C.A. Bannow, E.T. Lund,
W.R. Mathews, Identification of a novel mitochondrial protein (“mitoNEET”) cross-
linked specifically by a thiazolidinedione photoprobe, Am. J. Physiol. Endocrinol.
Metab. 286 (2004) E252–E260.

[147] S.E. Wiley, A.N. Murphy, S.A. Ross, P. van der Geer, J.E. Dixon, MitoNEET is an iron-
containing outer mitochondrial membrane protein that regulates oxidative capac-
ity, Proc. Natl. Acad. Sci. 104 (2007) 5318–5323.

[148] P. Bertrand, J.P. Gayda, J.A. Fee, D. Kuila, R. Cammack, Comparison of the spin–lat-
tice relaxation properties of the two classes of [2Fe–2S] clusters in proteins,
Biochim. Biophys. Acta 916 (1987) 24–28.

[149] M.K. Bowman, E.A. Berry, A.G. Roberts, D.M. Kramer, Orientation of the g-tensor
axes of the Rieske subunit in the cytochrome bc1 complex, Biochemistry 43
(2004) 430–436.

[150] J.A. Fee, K.L. Findling, T. Yoshida, R. Hille, G.E. Tarr, D.O. Hearshen, W.R. Dunham,
E.P. Day, T.A. Kent, E. Munck, Purification and characterization of the Rieske
iron–sulfur protein from Thermus thermophilus. Evidence for a [2Fe–2S] cluster
having non-cysteine ligands, J. Biol. Chem. 259 (1984) 124–133.

[151] R. Kappl, M. Ebelshäuser, F. Hannemann, R. Bernhardt, J. Hüttermann, Probing elec-
tronic and structural properties of the reduced [2Fe–2S] cluster by orientation-
selective 1H ENDOR spectroscopy: adrenodoxin versus Rieske iron–sulfur protein,
Appl. Magn. Reson. 30 (2006) 427–459.

[152] D.R. Kolling, R.I. Samoilova, A.A. Shubin, A.R. Crofts, S.A. Dikanov, Proton environ-
ment of reduced Rieske iron–sulfur cluster probed by two-dimensional ESEEM
spectroscopy, J. Phys. Chem. A 113 (2009) 653–667.

[153] C.J. Fugate, T.A. Stich, E.G. Kim, W.K. Myers, R.D. Britt, J.T. Jarrett, 9-
Mercaptodethiobiotin is generated as a ligand to the [2Fe–2S]+ cluster during the re-
action catalyzed by biotin synthase from Escherichia coli, J. Am. Chem. Soc. 134 (2012)
9042–9045.

[154] C.J. Fugate, J.T. Jarrett, Biotin synthase: insights into radical-mediated carbon–sul-
fur bond formation, Biochim. Biophys. Acta 1824 (2012) 1213–1222.

[155] F. Berkovitch, Y. Nicolet, J.T. Wan, J.T. Jarrett, C.L. Drennan, Crystal structure of bio-
tin synthase, an S-adenosylmethionine-dependent radical enzyme, Science 303
(2004) 76–79.

[156] A.M. Taylor, S. Stoll, R.D. Britt, J.T. Jarrett, Reduction of the [2Fe–2S] cluster accom-
panies formation of the intermediate 9-mercaptodethiobiotin in Escherichia coli bi-
otin synthase, Biochemistry 50 (2011) 7953–7963.

[157] J.S. Rieske, D.H. MacLennan, R. Coleman, Isolation and properties of an iron-protein
from the (reduced coenzyme Q)-cytochrome C reductase complex of the respirato-
ry chain, Biochem. Biophys. Res. Commun. 15 (1964) 338–344.

[158] J.F. Gibson, D.O. Hall, J.H. Thornley, F.R. Whatley, The iron complex in spinach fer-
redoxin, Proc. Natl. Acad. Sci. 56 (1966) 987–990.

[159] W. Mims, Envelope modulation in spin-echo experiments, Phys. Rev. B 5 (1972)
2409–2419.

[160] H. Beinert, M.C. Kennedy, C.D. Stout, Aconitase as iron–sulfur protein, enzyme, and
iron-regulatory protein, Chem. Rev. 96 (1996) 2335–2374.

http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0525
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0525
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0530
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0530
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0530
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0535
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0535
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0535
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1115
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0545
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0545
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0545
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0545
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0550
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0550
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0550
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0550
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1120
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0555
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0555
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0555
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0555
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0560
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0560
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0565
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0565
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0565
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0565
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0565
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0570
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0570
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0570
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0570
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0575
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0575
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0575
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0575
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0575
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0575
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0580
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0580
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0580
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0580
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0585
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0585
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0585
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0590
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0590
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0590
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0595
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0595
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0595
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0595
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0595
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0600
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0600
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0600
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0600
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1125
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1125
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1125
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0605
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0605
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0605
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0610
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0610
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0610
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0610
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0615
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0620
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0620
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0620
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0620
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0620
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0625
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0625
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0625
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0625
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0630
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0630
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0630
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0630
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0635
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0635
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0635
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0640
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0640
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0645
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0645
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0645
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0645
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0645
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0645
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0650
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0650
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0650
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0650
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0655
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0655
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0655
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0655
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0660
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0665
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0665
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1130
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1130
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1130
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1130
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0670
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf9000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf9000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0680
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0680
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0680
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0685
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0685
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0685
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0685
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0690
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0690
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0690
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0690
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0690
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0695
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0695
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0695
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0695
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0700
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0700
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0700
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0700
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0705
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0705
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0705
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0710
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0710
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0710
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0715
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0715
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0715
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1135
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1135
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1135
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1135
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0720
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0720
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0720
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0720
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0720
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0725
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0725
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0725
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0730
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0730
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0730
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0730
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0730
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0735
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0735
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0740
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0740
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0740
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0745
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0745
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0745
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0750
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0750
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0750
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0755
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0755
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0760
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0760
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0765
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0765


1393G.E. Cutsail III et al. / Biochimica et Biophysica Acta 1853 (2015) 1370–1394
[161] J. Telser, M.H. Emptage, H. Merkle, M.C. Kennedy, H. Beinert, B.M. Hoffman, 17O
electron nuclear double resonance characterization of substrate binding to the
[4Fe–4S]1+ cluster of reduced active aconitase, J. Biol. Chem. 261 (1986)
4840–4846.

[162] M.C. Kennedy, M. Werst, J. Telser, M.H. Emptage, H. Beinert, B.M. Hoffman, Mode of
substrate carboxyl binding to the [4Fe–4S]+ cluster of reduced aconitase as studied
by 17O and 13C electron-nuclear double resonance spectroscopy, Proc. Natl. Acad.
Sci. 84 (1987) 8854–8858.

[163] M.M. Werst, M.C. Kennedy, H. Beinert, B.M. Hoffman, 17O, 1H, and 2H electron
nuclear double resonance characterization of solvent, substrate, and inhibitor
binding to the [4Fe–4S]+ cluster of aconitase, Biochemistry 29 (1990)
10526–10532.

[164] T.A. Kent, M.H. Emptage, H. Merkle, M.C. Kennedy, H. Beinert, E. Munck, Mössbauer
studies of aconitase. Substrate and inhibitor binding, reaction intermediates, and
hyperfine interactions of reduced 3Fe and 4Fe clusters, J. Biol. Chem. 260 (1985)
6871–6881.

[165] A.H. Robbins, C.D. Stout, The structure of aconitase, Proteins 5 (1989) 289–312.
[166] B.M. Barney, T.C. Yang, R.Y. Igarashi, P.C. Dos Santos, M. Laryukhin, H.I. Lee, B.M.

Hoffman, D.R. Dean, L.C. Seefeldt, Intermediates trapped during nitrogenase reduc-
tion of N triple bond N, CH3–N_NH, and H2N–NH2, J. Am. Chem. Soc. 127 (2005)
14960–14961.

[167] D. Lukoyanov, V. Pelmenschikov, N. Maeser, M. Laryukhin, T.C. Yang, L. Noodleman,
D.R. Dean, D.A. Case, L.C. Seefeldt, B.M. Hoffman, Testing if the interstitial atom, X,
of the nitrogenase molybdenum–iron cofactor is N or C: ENDOR, ESEEM, and DFT
studies of the S = 3/2 resting state in multiple environments, Inorg. Chem. 46
(2007) 11437–11449.

[168] L.C. Seefeldt, B.M. Hoffman, D.R. Dean, Mechanism of Mo-dependent nitrogenase,
Annu. Rev. Biochem. 78 (2009) 701–722.

[169] C.J. Walsby, D. Ortillo, J. Yang, M.R. Nnyepi, W.E. Broderick, B.M. Hoffman,
J.B. Broderick, Spectroscopic approaches to elucidating novel iron–sulfur
chemistry in the “radical-SAM” protein superfamily, Inorg. Chem. 44
(2005) 727–741.

[170] N.S. Lees, D. Chen, C.J. Walsby, E. Behshad, P.A. Frey, B.M. Hoffman, How an enzyme
tames reactive intermediates: positioning of the active-site components of lysine
2,3-aminomutase during enzymatic turnover as determined by ENDOR spectros-
copy, J. Am. Chem. Soc. 128 (2006) 10145–10154.

[171] D.H. Flint, R.M. Allen, Iron–sulfur proteins with nonredox functions, Chem. Rev. 96
(1996) 2315–2334.

[172] P.A. Frey, Travels with carbon-centered radicals. 5′-deoxyadenosine and 5′-
deoxyadenosine-5′-yl in radical enzymology, Acc. Chem. Res. 47 (2014)
540–549.

[173] P.A. Frey, A.D. Hegeman, F.J. Ruzicka, The radical SAM superfamily, Crit. Rev.
Biochem. Mol. Biol. 43 (2008) 63–88.

[174] J.B. Broderick, Biochemistry: a radically different enzyme, Nature 465 (2010)
877–878.

[175] Q. Zhang, W.A. van der Donk, W. Liu, Radical-mediated enzymatic methylation: a
tale of two SAMS, Acc. Chem. Res. 45 (2012) 555–564.

[176] K.S. Duschene, S.E. Veneziano, S.C. Silver, J.B. Broderick, Control of radical chemistry
in the AdoMet radical enzymes, Curr. Opin. Chem. Biol. 13 (2009) 74–83.

[177] G. Layer, D.W. Heinz, D. Jahn, W.D. Schubert, Structure and function of radical SAM
enzymes, Curr. Opin. Chem. Biol. 8 (2004) 468–476.

[178] R.U. Hutcheson, J.B. Broderick, Radical SAM enzymes in methylation and
methylthiolation, Metallomics 4 (2012) 1149–1154.

[179] S.C. Wang, P.A. Frey, S-adenosylmethionine as an oxidant: the radical SAM super-
family, Trends Biochem. Sci. 32 (2007) 101–110.

[180] J. Cheek, J.B. Broderick, Adenosylmethionine-dependent iron–sulfur en-
zymes: versatile clusters in a radical new role, J. Biol. Inorg. Chem. 6
(2001) 209–226.

[181] C.J. Walsby, W. Hong, W.E. Broderick, J. Cheek, D. Ortillo, J.B. Broderick, B.M.
Hoffman, Electron-nuclear double resonance spectroscopic evidence that S-
adenosylmethionine binds in contact with the catalytically active [4Fe–4S]+ clus-
ter of pyruvate formate-lyase activating enzyme, J. Am. Chem. Soc. 124 (2002)
3143–3151.

[182] C.J. Walsby, D. Ortillo, W.E. Broderick, J.B. Broderick, B.M. Hoffman, An anchoring
role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine
to the unique iron site of the [4Fe–4S] cluster of pyruvate formate-lyase activating
enzyme, J. Am. Chem. Soc. 124 (2002) 11270–11271.

[183] P. Hanzelmann, H. Schindelin, Crystal structure of the S-adenosylmethionine-
dependent enzymeMoaA and its implications formolybdenum cofactor deficiency
in humans, Proc. Natl. Acad. Sci. 101 (2004) 12870–12875.

[184] B.W. Lepore, F.J. Ruzicka, P.A. Frey, D. Ringe, The x-ray crystal structure of lysine-
2,3-aminomutase from Clostridium subterminale, Proc. Natl. Acad. Sci. 102 (2005)
13819–13824.

[185] W. Wang, K. Wang, J. Li, S. Nellutla, T.I. Smirnova, E. Oldfield, An ENDOR and
HYSCORE investigation of a reaction intermediate in IspG (GcpE) catalysis, J. Am.
Chem. Soc. 133 (2011) 8400–8403.

[186] M.M. Wuebbens, K.V. Rajagopalan, Investigation of the early steps of
molybdopterin biosynthesis in Escherichia coli through the use of in-vivo labeling
studies, J. Biol. Chem. 270 (1995) 1082–1087.

[187] P. Hanzelmann, H. Schindelin, Binding of 5′-GTP to the C-terminal FeS cluster of
the radical S-adenosylmethionine enzyme MoaA provides insights into its mecha-
nism, Proc. Natl. Acad. Sci. 103 (2006) 6829–6834.

[188] N.S. Lees, P. Hanzelmann, H.L. Hernandez, S. Subramanian, H. Schindelin, M.K.
Johnson, B.M. Hoffman, ENDOR spectroscopy shows that guanine N1 binds to
[4Fe–4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: mech-
anistic implications, J. Am. Chem. Soc. 131 (2009) 9184–9185.
[189] M.M. Cosper, G.N. Jameson, R. Davydov, M.K. Eidsness, B.M. Hoffman, B.H. Huynh,
M.K. Johnson, The [4Fe–4S]2+ cluster in reconstituted biotin synthase binds S-
adenosyl-L-methionine, J. Am. Chem. Soc. 124 (2002) 14006–14007.

[190] I. Sanyal, K.J. Gibson, D.H. Flint, Escherichia coli biotin synthase: an investigation
into the factors required for its activity and its sulfur donor, Arch. Biochem.
Biophys. 326 (1996) 48–56.

[191] B. Tse Sum Bui, D. Florentin, F. Fournier, O. Ploux, A.Méjean, A.Marquet, Biotin syn-
thase mechanism: on the origin of sulphur, FEBS Lett. 440 (1998) 226–230.

[192] B. Tse Sum Bui, T.A. Mattioli, D. Florentin, G. Bolbach, A. Marquet, Escherichia coli
biotin synthase produces selenobiotin. Further evidence of the involvement of
the [2Fe–2S]2+ cluster in the sulfur insertion step, Biochemistry 45 (2006)
3824–3834.

[193] F. Pierrel, G.R. Bjork, M. Fontecave, M. Atta, Enzymatic modification of tRNAs: MiaB
is an iron–sulfur protein, J. Biol. Chem. 277 (2002) 13367–13370.

[194] F. Pierrel, T. Douki, M. Fontecave, M. Atta, MiaB protein is a bifunctional radical-S-
adenosylmethionine enzyme involved in thiolation and methylation of tRNA, J.
Biol. Chem. 279 (2004) 47555–47563.

[195] H.L. Hernandez, F. Pierrel, E. Elleingand, R. Garcia-Serres, B.H. Huynh,M.K. Johnson,M.
Fontecave, M. Atta, MiaB, a bifunctional radical-S-adenosylmethionine enzyme in-
volved in the thiolationandmethylationof tRNA, contains twoessential [4Fe–4S] clus-
ters, Biochemistry 46 (2007) 5140–5147.

[196] S. Boutigny, A. Saini, E.E. Baidoo, N. Yeung, J.D. Keasling, G. Butland, Physical and
functional interactions of a monothiol glutaredoxin and an iron sulfur cluster car-
rier protein with the sulfur-donating radical S-adenosyl-L-methionine enzyme
MiaB, J. Biol. Chem. 288 (2013) 14200–14211.

[197] T. Molle, S. Arragain, R. Garcia, M. Clemancey, J. Latour, M. Fontecave, E. Mulliez, M.
Atta, S. Gambarelli, J. Mouesca, M. Fontecave, S. Kieffer-Jaquinot, F. Forouhar, J.F.
Hunt, Sulfur insertion in biology by radical mechanism: study of methyl-
thiotransferases RimO and MiaB, J. Biol. Inorg. Chem. 19 (2014) S251-S251.

[198] B.J. Landgraf, A.J. Arcinas, K.H. Lee, S.J. Booker, Identification of an intermediate
methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO
and MiaB, J. Am. Chem. Soc. 135 (2013) 15404–15416.

[199] F. Forouhar, S. Arragain, M. Atta, S. Gambarelli, J.M. Mouesca, M. Hussain, R. Xiao, S.
Kieffer-Jaquinod, J. Seetharaman, T.B. Acton, G.T. Montelione, E. Mulliez, J.F. Hunt,
M. Fontecave, Two Fe–S clusters catalyze sulfur insertion by radical-SAM
methylthiotransferases, Nat. Chem. Biol. 9 (2013) 333–338.

[200] H.I. Lee, R.Y. Igarashi, M. Laryukhin, P.E. Doan, P.C. Dos Santos, D.R. Dean, L.C.
Seefeldt, B.M. Hoffman, An organometallic intermediate during alkyne reduction
by nitrogenase, J. Am. Chem. Soc. 126 (2004) 9563–9569.

[201] I. Dance, The mechanism of nitrogenase. Computed details of the site and geome-
try of binding of alkyne and alkene substrates and intermediates, J. Am. Chem. Soc.
126 (2004) 11852–11863.

[202] M. Rohmer, The discovery of a mevalonate-independent pathway for isoprenoid
biosynthesis in bacteria, algae and higher plants, Nat. Prod. Rep. 16 (1999)
565–574.

[203] W. Eisenreich, A. Bacher, D. Arigoni, F. Rohdich, Biosynthesis of isoprenoids via the
non-mevalonate pathway, Cell. Mol. Life Sci. 61 (2004) 1401–1426.

[204] F. Rohdich, A. Bacher, W. Eisenreich, Isoprenoid biosynthetic pathways as anti-
infective drug targets, Biochem. Soc. Trans. 33 (2005) 785–791.

[205] E. Oldfield, Targeting isoprenoid biosynthesis for drug discovery: bench to bedside,
Acc. Chem. Res. 43 (2010) 1216–1226.

[206] A.K. Kollas, E.C. Duin, M. Eberl, B. Altincicek, M. Hintz, A. Reichenberg, D.
Henschker, A. Henne, I. Steinbrecher, D.N. Ostrovsky, R. Hedderich, E. Beck, H.
Jomaa, J. Wiesner, Functional characterization of GcpE, an essential enzyme of
the non-mevalonate pathway of isoprenoid biosynthesis, FEBS Lett. 532 (2002)
432–436.

[207] D. Adedeji, H. Hernandez, J. Wiesner, U. Kohler, H. Jomaa, E.C. Duin, Possible direct
involvement of the active-site [4Fe–4S] cluster of the GcpE enzyme from Thermus
thermophilus in the conversion of MEcPP, FEBS Lett. 581 (2007) 279–283.

[208] B. Altincicek, E.C. Duin, A. Reichenberg, R. Hedderich, A.K. Kollas, M. Hintz, S.
Wagner, J. Wiesner, E. Beck, H. Jomaa, LytB protein catalyzes the terminal step of
the 2-C-methyl-D-erythritol-4-phosphate pathway of isoprenoid biosynthesis,
FEBS Lett. 532 (2002) 437–440.

[209] W.Wang, J. Li, K.Wang, C. Huang, Y. Zhang, E. Oldfield, Organometallic mechanism
of action and inhibition of the 4Fe–4S isoprenoid biosynthesis protein GcpE (IspG),
Proc. Natl. Acad. Sci. 107 (2010) 11189–11193.

[210] W. Xu, N.S. Lees, D. Adedeji, J. Wiesner, H. Jomaa, B.M. Hoffman, E.C. Duin, Para-
magnetic intermediates of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate syn-
thase (GcpE/IspG) under steady-state and pre-steady-state conditions, J. Am.
Chem. Soc. 132 (2010) 14509–14520.

[211] W. Wang, K. Wang, Y.L. Liu, J.H. No, J. Li, M.J. Nilges, E. Oldfield, Bioorganometallic
mechanism of action, and inhibition, of IspH, Proc. Natl. Acad. Sci. 107 (2010)
4522–4527.

[212] M. Wolff, M. Seemann, B. Tse Sum Bui, Y. Frapart, D. Tritsch, A.G. Estrabot, M.
Rodrı́guez-Concepción, A. Boronat, A. Marquet, M. Rohmer, Isoprenoid biosynthe-
sis via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-
2-enyl diphosphate reductase (LytB/IspH) from Escherichia coli is a [4Fe–4S] pro-
tein, FEBS Lett. 541 (2003) 115–120.

[213] K. Wang, W. Wang, J.H. No, Y. Zhang, Y. Zhang, E. Oldfield, Inhibition of the
Fe4S4-cluster-containing protein IspH (LytB): electron paramagnetic reso-
nance, metallacycles, and mechanisms, J. Am. Chem. Soc. 132 (2010)
6719–6727.

[214] W. Xu, N.S. Lees, D. Hall, D.Welideniya, B.M. Hoffman, E.C. Duin, A closer look at the
spectroscopic properties of possible reaction intermediates in wild-type and mu-
tant (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase, Biochemistry 51
(2012) 4835–4849.

http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0770
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0770
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0770
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0770
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0770
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0770
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0770
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0775
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0775
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0775
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0775
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0775
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0775
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0775
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0780
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1140
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1140
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1140
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1140
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0785
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0790
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0795
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0795
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0795
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0795
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0795
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0800
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0800
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0805
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0805
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0805
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0805
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0810
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0810
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0810
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0810
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0815
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0815
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0820
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0820
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0820
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0825
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0825
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0830
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0830
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0835
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0835
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0840
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0840
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0845
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0845
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0850
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0850
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0855
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0855
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0860
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0860
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0860
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0865
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0865
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0865
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0865
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0865
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0865
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0870
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0870
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0870
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0870
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0875
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0875
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0875
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0880
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0880
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0880
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0885
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0885
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0885
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0890
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0890
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0890
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0895
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0895
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0895
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0900
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0900
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0900
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0900
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0905
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0905
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0905
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0905
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0905
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0905
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0905
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0910
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0910
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0910
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0915
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0915
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1145
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0925
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0925
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0930
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0930
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0930
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0935
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0935
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0935
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0935
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0940
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0940
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0940
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0940
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0940
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0940
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1150
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1150
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1150
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1150
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0950
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0950
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0950
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0955
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0955
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0955
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0955
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0960
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0960
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0960
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1155
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1155
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1155
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0970
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0970
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0970
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0975
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0975
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0980
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0980
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0985
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0985
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0990
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0990
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0990
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0990
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0990
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0995
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0995
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf0995
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1000
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1005
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1005
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1005
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1010
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1010
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1010
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1010
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1015
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1015
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1015
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1160
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1160
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1160
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1160
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1160
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1025
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1025
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1025
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1025
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1025
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1025
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1030
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1030
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1030
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1030


1394 G.E. Cutsail III et al. / Biochimica et Biophysica Acta 1853 (2015) 1370–1394
[215] W.Wang, K.Wang, I. Span, J. Jauch, A. Bacher, M. Groll, E. Oldfield, Are free radicals
involved in IspH catalysis? An EPR and crystallographic investigation, J. Am. Chem.
Soc. 134 (2012) 11225–11234.

[216] J. Li, K. Wang, T.I. Smirnova, R.L. Khade, Y. Zhang, E. Oldfield, Isoprenoid biosynthe-
sis: ferraoxetane or allyl anion mechanism for IspH catalysis? Angew. Chem. Int.
Ed. Engl. 52 (2013) 6522–6525.

[217] I. Span, T. Grawert, A. Bacher, W. Eisenreich, M. Groll, Crystal structures of mutant
IspH proteins reveal a rotation of the substrate's hydroxymethyl group during ca-
talysis, J. Mol. Biol. 416 (2012) 1–9.
[218] I. Span, K. Wang, W. Eisenreich, A. Bacher, Y. Zhang, E. Oldfield, M. Groll, Insights
into the binding of pyridines to the iron–sulfur enzyme IspH, J. Am. Chem. Soc.
136 (2014) 7926–7932.

[219] I. Span, K. Wang, W. Wang, Y. Zhang, A. Bacher, W. Eisenreich, K. Li, C. Schulz, E.
Oldfield, M. Groll, Discovery of acetylene hydratase activity of the iron–sulphur
protein IspH, Nat. Commun. 3 (2012) 1042.

http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1165
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1165
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1165
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1040
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1040
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1040
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1045
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1045
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1045
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1050
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1050
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1050
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1055
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1055
http://refhub.elsevier.com/S0167-4889(15)00040-3/rf1055

	Advanced paramagnetic resonance spectroscopies of iron–sulfur proteins: Electron nuclear double resonance (ENDOR) and elect...
	1. Introduction
	2. Techniques
	2.1. EPR
	2.2. ENDOR
	2.3. ESEEM
	2.4. HYSCORE
	2.5. Advanced EPR techniques applied to non-Kramers (integer-spin) systems

	3. Advanced EPR studies of FeS clusters in iron–sulfur and related proteins
	3.1. 57Fe ENDOR
	3.1.1. 2Fe-ferredoxins
	3.1.2. 4Fe-ferredoxin overview
	3.1.3. 4Fe-ferredoxin models
	3.1.4. Heterodisulfide reductase
	3.1.5. Hydrogenase
	3.1.6. Nitrogenase
	3.1.7. Other components: heterometal
	3.1.7.1. 95Mo ENDOR
	3.1.7.2. 95Mo NK-ESEEM of a nitrogenase S≥2 catalytic intermediate

	3.1.8. Other components: sulfide


	4. Cluster ligation
	4.1. Nitrogenous protein-derived ligands (Rieske and Fra2)
	4.2. MitoNEET
	4.3. Biotin synthase

	5. Spectroscopy of substrates
	5.1. Aconitase
	5.2. Nitrogenase
	5.2.1. Radical SAM
	5.2.2. Heterodisulfide reductase
	5.2.3. The ‘second cluster’ of radical SAM enzymes
	5.2.4. MoaA
	5.2.5. Biotin synthase (BS)
	5.2.6. MiaB
	5.2.7. 14,15N NK-ESEEM of a nitrogenase intermediate common to multiple substrates
	5.2.8. Bio-organometallic enzyme intermediates
	5.2.9. Nitrogenase
	5.2.10. Isoprene precursor synthesis through organometallic intermediates


	6. Outlook
	Conflict of interest statement
	Acknowledgements
	References


