313 research outputs found

    Genetic and Environmental Influences on the Inheritance of Sorghum with a Black Pericarp

    Get PDF
    The black pericarp trait in grain sorghum [Sorghum bicolor (L.) Moench] is a novel trait with complex inheritance. In addition to its uniform, dark appearance, black sorghum grain contains high levels of favorable phenolic compounds such as 3-deoxyanthocyanidins (3-DOA) and condensed tannins which have applications in the specialty food industry as high-antioxidant food additives, natural food colorants, or natural food preservatives. Previous studies have indicated the trait is not fully penetrant in all environmental conditions. Additionally, black sorghum has acceptable agronomic performance, but is significantly lower yielding than other elite grain sorghum hybrids. Further improvement of black sorghum is dependent on understanding the factors—both genetic and environmental—influencing the expression of this trait. The first of two studies investigated the effect of light shading on grain color and grain composition in black Tx3362. Increased light shading reduced, and in some cases, eliminated the black color resulting in red grain production. In addition, increased shading reduced the concentration of 3-deoxyanthocyanidins, total phenols, tannins, and fiber while increasing fat concentrations. Thus the black pericarp trait and associated high phenolic concentrations are strongly influenced by both intensity and duration of sunlight exposure. In the second study, a generation means analysis was performed to determine the genetic factors affecting the trait. This study concluded grain color and associated grain composition traits were influence by additive, dominance, and epistatic effects. The generation means analysis also determined the black pericarp trait is recessive, controlled by multiple genes, and is moderate to highly heritable. Despite these challenges, there is enough variation in breeding populations between red and black parents for further improvement of the trait. Creation of high yielding hybrids with uniformly dark grain and high levels of phenolic compounds will be possible through standard plant breeding practices

    Observation of soft magnetorotons in bilayer quantum Hall ferromagnets

    Full text link
    Inelastic light scattering measurements of low-lying collective excitations of electron double layers in the quantum Hall state at total filling nu_T=1 reveal a deep magnetoroton in the dispersion of charge-density excitations across the tunneling gap. The roton softens and sharpens markedly when the phase boundary for transitions to highly correlated compressible states is approached. The findings are interpreted with Hartree-Fock evaluations that link soft magnetorotons to enhanced excitonic Coulomb interactions and to quantum phase transitions in the ferromagnetic bilayers.Comment: ReVTeX4, 4 pages, 4 EPS figure

    Effects of Moderate-Volume, High-Load Lower-Body Resistance Training on Strength and Function in Persons with Parkinson's Disease: A Pilot Study

    Get PDF
    Background. Resistance training research has demonstrated positive effects for persons with Parkinson's disease (PD), but the number of acute training variables that can be manipulated makes it difficult to determine the optimal resistance training program. Objective. The purpose of this investigation was to examine the effects of an 8-week resistance training intervention on strength and function in persons with PD. Methods. Eighteen men and women were randomized to training or standard care for the 8-week intervention. The training group performed 3 sets of 5–8 repetitions of the leg press, leg curl, and calf press twice weekly. Tests included leg press strength relative to body mass, timed up-and-go, six-minute walk, and Activities-specific Balance Confidence questionnaire. Results. There was a significant group-by-time effect for maximum leg press strength relative to body mass, with the training group significantly increasing their maximum relative strength (P < .05). No other significant interactions were noted (P > .05). Conclusions. Moderate volume, high-load weight training is effective for increasing lower-body strength in persons with PD

    The total synthesis of (-)-cyanthiwigin F by means of double catalytic enantioselective alkylation

    Get PDF
    Double catalytic enantioselective transformations are powerful synthetic methods that can facilitate the construction of stereochemically complex molecules in a single operation. In addition to generating two or more stereocentres in a single reaction, multiple asymmetric reactions also impart increased enantiomeric excess to the final product in comparison with the analogous single transformation. Furthermore, multiple asymmetric operations have the potential to independently construct several stereocentres at remote points within the same molecular scaffold, rather than relying on pre-existing chiral centres that are proximal to the reactive site. Despite the inherent benefits of multiple catalytic enantioselective reactions, their application to natural product total synthesis remains largely underutilized. Here we report the use of a double stereoablative enantioselective alkylation reaction in a concise synthesis of the marine diterpenoid (-)-cyanthiwigin F (ref. 8). By employing a technique for independent, selective formation of two stereocentres in a single stereoconvergent operation, we demonstrate that a complicated mixture of racemic and meso diastereomers may be smoothly converted to a synthetically useful intermediate with exceptional enantiomeric excess. The stereochemical information generated by means of this catalytic transformation facilitates the easy and rapid completion of the total synthesis of this marine natural product

    Novel Acid-Activated Fluorophores Reveal a Dynamic Wave of Protons in the Intestine of Caenorhabditis elegans

    Get PDF
    Unlike the digestive systems of vertebrate animals, the lumen of the alimentary canal of C. elegans is unsegmented and weakly acidic (pH ~ 4.4), with ultradian fluctuations to pH > 6 every 45 to 50 seconds. To probe the dynamics of this acidity, we synthesized novel acid-activated fluorophores termed Kansas Reds. These dicationic derivatives of rhodamine B become concentrated in the lumen of the intestine of living C. elegans and exhibit tunable pKa values (2.3–5.4), controlled by the extent of fluorination of an alkylamine substituent, that allow imaging of a range of acidic fluids in vivo. Fluorescence video microscopy of animals freely feeding on these fluorophores revealed that acidity in the C. elegans intestine is discontinuous; the posterior intestine contains a large acidic segment flanked by a smaller region of higher pH at the posterior-most end. Remarkably, during the defecation motor program, this hot spot of acidity rapidly moves from the posterior intestine to the anterior-most intestine where it becomes localized for up to 7 seconds every 45 to 50 seconds. Studies of pH-insensitive and base-activated fluorophores as well as mutant and transgenic animals revealed that this dynamic wave of acidity requires the proton exchanger PBO-4, does not involve substantial movement of fluid, and likely involves the sequential activation of proton transporters on the apical surface of intestinal cells. Lacking a specific organ that sequesters low pH, C. elegans compartmentalizes acidity by producing of a dynamic hot spot of protons that rhythmically migrates from the posterior to anterior intestine

    Fatal Disseminated Cryptococcus gattii Infection in New Mexico

    Get PDF
    We report a case of fatal disseminated infection with Cryptococcus gattii in a patient from New Mexico. The patient had no history of recent travel to known C. gattii-endemic areas. Multilocus sequence typing revealed that the isolate belonged to the major molecular type VGIII. Virulence studies in a mouse pulmonary model of infection demonstrated that the strain was less virulent than other C. gattii strains. This represents the first documented case of C. gattii likely acquired in New Mexico

    Spatial Distribution of Dominant Arboreal Ants in a Malagasy Coastal Rainforest: Gaps and Presence of an Invasive Species

    Get PDF
    We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal ants normally able to limit its progression

    Glycine Inhibitory Dysfunction Turns Touch into Pain through PKCgamma Interneurons

    Get PDF
    Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. During tactile allodynia, activation of the sensory fibers which normally detect touch elicits pain. Here we provide a new behavioral investigation into the dynamic component of tactile allodynia that developed in rats after segmental removal of glycine inhibition. Using in vivo electrophysiological recordings, we show that in this condition innocuous mechanical stimuli could activate superficial dorsal horn nociceptive specific neurons. These neurons do not normally respond to touch. We anatomically show that the activation was mediated through a local circuit involving neurons expressing the gamma isoform of protein kinase C (PKCγ). Selective inhibition of PKCγ as well as selective blockade of glutamate NMDA receptors in the superficial dorsal horn prevented both activation of the circuit and allodynia. Thus, our data demonstrates that a normally inactive circuit in the dorsal horn can be recruited to convert touch into pain. It also provides evidence that glycine inhibitory dysfunction gates tactile input to nociceptive specific neurons through PKCγ-dependent activation of a local, excitatory, NMDA receptor-dependent, circuit. As a consequence of these findings, we suggest that pharmacological inhibition of PKCγ might provide a new tool for alleviating allodynia in the clinical setting

    The SPARC Toroidal Field Model Coil Program

    Get PDF
    corecore