2,165 research outputs found

    The Velocity Field of Quasar Broad Emission Line Gas

    Get PDF
    In this Letter, the broad emission line (BEL) profiles of superluminal quasars with apparent jet velocities, βa>10\beta_{a}>10, (ultraluminal QSOs, or ULQSOs hereafter) are studied as a diagnostic of the velocity field of the BEL emitting gas in quasars. The ULQSOs are useful because they satisfy a very strict kinematical constraint, their parsec scale jets must be propagating within 1212^{\circ} of the line of sight. We know the orientation of these objects with great certainty. The large BEL FWHM, 3,000km/s6,000km/s\sim 3,000 \mathrm{km/s} - 6,000 \mathrm{km/s}, in ULQSOs tend to indicate that the BEL gas has a larger component of axial velocity (either random or in a wind) along the jet direction than previously thought.Comment: To appear in ApJ Letter

    Extensions to the Dynamic Aerospace Vehicle Exchange Markup Language

    Get PDF
    The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight vehicle dynamic model data. It provides a framework for encoding entire flight vehicle dynamic model data packages for exchange and/or long-term archiving. Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for exchanging aerospace vehicle data; however, it is limited in only supporting scalar time-independent data. Additional functionality is required to support vector and matrix data, abstracting sub-system models, detailing dynamics system models (both discrete and continuous), and defining a dynamic data format (such as time sequenced data) for validation of dynamics system models and vehicle simulation packages. Extensions to DAVE-ML have been proposed to manage data as vectors and n-dimensional matrices, and record dynamic data in a compatible form. These capabilities will improve the clarity of data being exchanged, simplify the naming of parameters, and permit static and dynamic data to be stored using a common syntax within a single file; thereby enhancing the framework provided by DAVE-ML for exchanging entire flight vehicle dynamic simulation models

    An X-ray absorption spectroscopic study at the mercury LIII edge on phenylmercury(II) oxygen species

    Get PDF
    The X-ray absorption spectra of the reference and model compounds HgCl2, PhHgCl, PhHgOAc and [(PhHg)2OH][BF4].H2O have been analysed in both the XANES and EXAFS regions, and the technique was extended to determine the structures of (PhHg)2O, PhHgOH, and the basic salts PhHgOH.PhHgNO3 and PhHgOH.(PhHg)2SO4, which were previously structurally uncharacterised. Results indicate that (PhHg)2O is a molecular species with Hg-O-Hg 135°, while PhHgOH contains the [(PhHg)2OH]+ cation and is better formulated as [(PhHg)2OH]OH. The same cation is also featured in the two basic salts. Electrospray mass spectral studies of PhHgOH in aqueous solutions show that [PhHgOH2]+, [(PhHg)2OH]+ and [(PhHg)3O]+ co-exist in solution in a pH-dependent equilibrium

    A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    Get PDF
    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically

    The Octarepeat Domain of the Prion Protein Binds Cu(II) with Three Distinct Coordination Modes at pH 7.4

    Get PDF
    The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This unusual domain is comprised of four or more tandem repeats of the fundamental sequence PHGGGWGQ. Previous work from our laboratories demonstrates that at full copper occupancy, each HGGGW segment binds a single Cu2+. However, several recent studies suggest that low copper occupancy favors different coordination modes, possibly involving imidazoles from histidines in adjacent octapeptide segments. This is investigated here using a combination of X-band EPR, S-band EPR, and ESEEM, along with a library of modified peptides designed to favor different coordination interactions. At pH 7.4, three distinct coordination modes are identified. Each mode is fully characterized to reveal a series of copper-dependent octarepeat domain structures. Multiple His coordination is clearly identified at low copper stoichiometry. In addition, EPR detected copper−copper interactions at full occupancy suggest that the octarepeat domain partially collapses, perhaps stabilizing this specific binding mode and facilitating cooperative copper uptake. This work provides the first complete characterization of all dominant copper coordination modes at pH 7.4

    Tidal Evolution of Close-in Extra-Solar Planets

    Full text link
    The distribution of eccentricities e of extra-solar planets with semi-major axes a > 0.2 AU is very uniform, and values for e are relatively large, averaging 0.3 and broadly distributed up to near 1. For a < 0.2 AU, eccentricities are much smaller (most e < 0.2), a characteristic widely attributed to damping by tides after the planets formed and the protoplanetary gas disk dissipated. Most previous estimates of the tidal damping considered the tides raised on the planets, but ignored the tides raised on the stars. Most also assumed specific values for the planets' poorly constrained tidal dissipation parameter Qp. Perhaps most important, in many studies, the strongly coupled evolution between e and a was ignored. We have now integrated the coupled tidal evolution equations for e and a over the estimated age of each planet, and confirmed that the distribution of initial e values of close-in planets matches that of the general population for reasonable Q values, with the best fits for stellar and planetary Q being ~10^5.5 and ~10^6.5, respectively. The accompanying evolution of a values shows most close-in planets had significantly larger a at the start of tidal migration. The earlier gas disk migration did not bring all planets to their current orbits. The current small values of a were only reached gradually due to tides over the lifetimes of the planets. These results may have important implications for planet formation models, atmospheric models of "hot Jupiters", and the success of transit surveys.Comment: accepted to Ap

    Redox proteomic analysis of the gastrocnemius muscle from adult and old mice.

    Get PDF
    The data provides information in support of the research article, "Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging", Journal of Proteome Research, 2014, 13 (11), 2008-21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys) residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys) containing peptides was alkylated using N-ethylmalemide (d0-NEM). Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethyl)phosphine (TCEP) and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM). Label-free analysis of the global proteome of adult (n=5) and old (n=4) gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0) NEM labeled) and reversibly oxidized d(5)-NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response

    Cooperative Charging in a Nanocrystal Assembly Gated By Ionic Liquid

    Full text link
    In order to make a densely packed assembly of undoped semiconductor nanocrystals conductive, it is usually gated by a room temperature ionic liquid. The ionic liquid enters the pores of the super-crystal assembly under the influence of an applied voltage. We study the capacitance of such a device as a function of the gate voltage. We show that, counter-intuitively, the capacitance of the system is the sum of delta-functions located at a sequence of critical gate voltages. At each critical voltage every nanocrystal acquires one additional electron.Comment: 9 pages, 4 figure
    corecore