

American Institute of Aeronautics and Astronautics

1

Extensions to the Dynamic Aerospace Vehicle Exchange
Markup Language

Geoff Brian1
Air Vehicles Division, Platform & Human Systems, Defence Science and Technology Organisation,

506 Lorimer St, Fishermans Bend, Victoria, 3207, Australia

 E. Bruce Jackson2
NASA Langley Research Center, 100 NASA Road, Hampton, Virginia, 23681-2199,

 United States of America

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a
syntactical language for exchanging flight vehicle dynamic model data. It provides a
framework for encoding entire flight vehicle dynamic model data packages for exchange
and/or long-term archiving. Version 2.0.1 of DAVE-ML provides much of the functionality
envisioned for exchanging aerospace vehicle data; however, it is limited in only supporting
scalar time-independent data. Additional functionality is required to support vector and
matrix data, abstracting sub-system models, detailing dynamics system models (both
discrete and continuous), and defining a dynamic data format (such as time sequenced data)
for validation of dynamics system models and vehicle simulation packages. Extensions to
DAVE-ML have been proposed to manage data as vectors and n-dimensional matrices, and
record dynamic data in a compatible form. These capabilities will improve the clarity of data
being exchanged, simplify the naming of parameters, and permit static and dynamic data to
be stored using a common syntax within a single file; thereby enhancing the framework
provided by DAVE-ML for exchanging entire flight vehicle dynamic simulation models.

I. Introduction
The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for

exchanging flight vehicle dynamic model data1. It has been developed in conjunction with the ANSI/AIAA S-119-
2011 Flight Dynamics Model Exchange Standard2 prepared by the American Institute of Astronautics and
Aeronautics (AIAA) Modeling and Simulation Technical Committee. The intended purpose of DAVE-ML was to
provide a framework for encoding entire flight vehicle dynamic model data packages for exchange and/or long-term
archiving1. Such data packages are commonly used in research, engineering development, and flight training
simulations. DAVE-ML was designed to provide a programming-language-independent representation of aerospace
vehicle characteristics, such as the aerodynamics, mass, propulsion, navigation and control properties. This paper
describes extensions to DAVE-ML expanding its ability to managing flight vehicle dynamic model data.

The current status of DAVE-ML is Version 2.0.11. It employs a text-based format built upon the eXtensible
Markup Language (XML) Version 1.13, and Mathematical Markup Language (MathML) Version 2.04 open standards
developed by the World Wide Web Consortium (W3C). DAVE-ML defines additional grammar to provide a domain-
specific language for aerospace flight dynamics modelling, verification, and documentation. It is capable of storing
static aerospace vehicle characteristic data in human-readable text form, together with directives for automating the
conversion of data into a form suitable for use in vehicle simulations. Furthermore, it provides the capability to
include statistical properties for embedded data such as confidence bounds and uncertainty ranges, along with
references to reports, contact information and data provenance.

While Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for exchanging aerospace
vehicle data, it is limited in only supporting scalar time-independent data. Additional functionality is required to
support the exchange of entire flight vehicle dynamic models. This includes supporting vector and matrix data,

1 Aircraft Flight Dynamics and Performance Engineer, Lifetime Member.
2 Senior Research Engineer, Dynamics Systems and Control Branch, MS 308, Associate Fellow.

https://ntrs.nasa.gov/search.jsp?R=20110014617 2019-08-30T16:57:18+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/10561861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

American Institute of Aeronautics and Astronautics

2

abstracting sub-system models, detailing dynamics system models (both discrete and continuous), and defining a
dynamic data format (such as time-history data) to support validation of dynamics system models and the overall
simulation package. Proposals are being developed to extend the DAVE-ML Version 2.0.1 syntax to permit the
capture of entire flight vehicle dynamic models. Extensions to the DAVE-ML syntax for managing vector and
matrix data, together with recording dynamic data, are detailed in this paper.

II. Vector and Matrix Variable Elements
A question that may be posed is why collate data as vectors or matrices when exchanging aerospace vehicle

information? Aerospace flight behaviour simulation applications often reference and manipulate vehicle data in a
component form such as the aerodynamic force coefficients Cx, Cy and Cz. A similar example is addressing a
vehicle's individual body-axes mass moment of inertia components when solving the equations of motion instead of
utilising a mass moment of inertia tensor matrix. This is typically an artefact of the simulation applications utilising
scalar based equations to represent the vehicle and its motion, e.g., Eqs. (1-3) which represent the flat non-rotating
earth body-axes linear accelerations of a vehicle, instead of more concise forms of these equations, e.g., Eq. (4). In
Eq. (4), V& represents a vector of the body-axes linear accelerations, Faerodynamic the body-axes aerodynamic forces,
Fpropulsion the body-axes propulsion forces, Ω the body-axes rotational rates, V the body-axes linear velocities, g the
gravitational acceleration, and [T]be

a transformation matrix converting data from an earth reference frame to a body
reference frame.

 u̇ = 1
m
(q̃ s Cx + F x propulsion) − qw + rv − gsinθ (1)

 v̇ = 1
m
(q̃ s C y + F y propulsion) − ru + pw + gsinϕcos θ (2)

 ẇ = 1
m
(q̃ s C z + F z propulsion) − pv + qu + gcosϕcosθ (3)

V̇ = 1

m
(F aerodynamic+F propulsion) − (Ω×V) + g [T]be

 (4)

Addressing vehicle data in component form can result in unnecessary complexity when coding simulation

applications, as well as increasing the potential of misinterpreting the meaning of data when combined with
associated data. Collating data as vectors and matrices permits parameters that have a common basis to be grouped
when exchanging vehicle data, e.g., an aircraft’s three body-axes force components may be managed as a single
vector parameter Faerodynamic. Managing data in this way can improve the clarity of data being exchanged.

Vectors and matrices are in essence the same as scalar variables except that they represent a series of values
instead of a singular value. Vector and matrix support was accomplished by extending the capability of the variable
definition element in DAVE-ML Version 2.0.11. Sub-elements were included to define the dimensions of vectors
and matrices, and to specify the data of the vector or matrix. These data could be numeric, references to other
defined variables, or a combination. Alternatively, the contents of a vector or matrix could be computed using the
calculation sub-element by defining a suitable MathML expression. Figure 1 represents the revised variable
definition for DAVE-ML where the additional sub-elements supporting vector and matrix definitions are highlighted
in bold text, and listed in Table 1. Figure 2 presents examples of defining a vector and a matrix using this syntax.

American Institute of Aeronautics and Astronautics

3

The list of dimensions defined using the dimensionDef element specified either the number of data points in a

vector, or the size of each dimension in an n-dimensional matrix. The lowest entry of the list specified the number of
columns of the base matrix. The subsequent higher entries specified the number of rows in the base matrix, the
number of base matrices making up the third dimension, and so forth for n-dimensional matrices. This is illustrated
in Fig. 3.

Table 1. Additional sub-elements for the DAVE-ML variable definition supporting vectors and matrices.

array The data for the vector or matrix

dimensionDef A list of dimensions (dim) for the vector or matrix

dimensionRef A reference to a dimensionDef element

 <variableDef name=”vectorName_nd” varID=”vectorID” units=”nd”>
 <dimensionDef dimID=”vector_3”>
 <dim>3</dim> <!-- Number of data points in the vector -->
 </dimensionDef>
 <array>
 <dataTable> 1.0, 2.0, 3.0 </dataTable>
 </array>
</variableDef>

a) A vector with three entries,

<variableDef name=”matrixName_nd” varID=”matrixID” units=”nd”>
 <dimensionDef dimID=”matrix_2x3”>
 <dim>2</dim> <!-- Number of rows in the matrix -->
 <dim>3</dim> <!-- Number of columns in the matrix -->
 </dimensionDef>
 <array>
 <dataTable>
 1.0, 2.0, 3.0, <!-- Row #1 -->
 0.0, 2.0, 5.0, <!-- Row #2 -->
 </dataTable>
 </array>
</variableDef>

b) A two-dimensional matrix,

Figure 2. Defining vectors and matrices using the extended DAVE-ML variable definition syntax.

variableDef : name, varID, units, [axisSystem], sign, alias, symbol,
 [initialValue], minValue, maxValue

description?
(provenance | provenanceRef)?
(dimensionDef | dimensionRef)?
(calculation | array)?
(isInput | isControl | isDisturbance)?
IsState?
IsStateDeriv?
IsOutput?
IsStdAIAA?
uncertainty?

Figure 1. DAVE-ML variable definition with additional sub-elements supporting vectors and matrices.

American Institute of Aeronautics and Astronautics

4

A reference to a dimension definition could also be used as an alternative to explicitly specifying the dimensions
as part of the variable definition. This permitted the reuse of dimensionDef elements for vectors or matrices having
a common size. The dimensionRef referenced an identifier dimID associated with the dimension definition.

 </dimensionRef dimId=”matrix_3x3”>

The data for a vector or matrix were specified using the array element. This was in effect a table of data, and thus

the dataTable element from DAVE-ML was utilised for encoding the vector and matrix entries. The table of data
represented consecutive entries for a vector. The entries for a matrix were specified such that the column entries of
the first row were listed followed by column entries for subsequent rows until the base matrix was complete. This
sequence was repeated for higher order matrix dimensions until all entries of the matrix were specified. Figure 4
illustrates this procedure.

The calculation sub-element of the DAVE-ML variable definition permitted the value of a variable to be

computed from an equation defined using MathML Version 2.04 syntax. MathML contains operators for computing

<dimensionDef dimID=”vector_3”>
 <dim>3</dim> <!-- Number of entries in the vector -->
</dimensionDef>

a) A vector with three entries,

<dimensionDef dimID=”matrix_2x2x2”>
 <dim>2</dim> <!-- Number of base matrices for the 3rd dimension -->
 <dim>2</dim> <!-- Number of rows in the base matrix -->
 <dim>2</dim> <!-- Number of columns in the base matrix -->
</dimensionDef>

b) A three-dimensional matrix,

Figure 3. Defining the dimensions of vectors and matrices.

<array>
 <dataTable>
 0.0, eulerInclinationAngle, eulerRollAngle
 </dataTable>
</array>

a) A vector with three entries,

<array>
 <dataTable>
 <!-- First 2x2 Matrix -->
 1.0, 0.0, <!-- Row #1 -->
 0.0, 1.0, <!-- Row #2 -->

 <!-- Second 2x2 Matrix -->
 inertiaIXX, -20.4, <!-- Row #1 -->
 -15.6 , inertiaIYY, <!-- Row #2 -->
 </dataTable>
</array>

b) A three-dimensional matrix,

Figure 4. Encoding data for vectors and matrices.

American Institute of Aeronautics and Astronautics

5

the transpose, inverse, determinant, vectorproduct*, scalarproduct†, and outerproduct‡ of vectors and matrices; in
addition to operators for adding, subtracting, and multiplying data. Furthermore, MathML contains an operator,
named selector, which identifies elements to be extracted from a vector or matrix. Operators such as plus, times,
and minus apply equally to scalars, vectors and matrices, and may be used when mixing variable types. The
transpose, inverse, determinant, vectorproduct, scalarproduct, outerproduct, and selector operators are only
relevant to vector and matrix variable types.

Using equations to calculate variables involving vectors and matrices was essentially the same as calculating
scalar variables through the equivalent DAVE-ML Version 2.0.1 constructs. However, it was necessary to define the
size of the vector or matrix that resulted from the calculation. This was unnecessary if the result of the calculation
was a scalar value. An example of multiplying a matrix M and a vector V to calculate a resultant vector R, Eq. (5),
is presented in Fig. 5. A more complex example is presented in Fig. 6, where Eq. (6) is encoded using MathML
vector and matrix operators.

The selector operator identified entries to extract from a vector, as well as identifying rows, columns, diagonals

or sub-matrices to extract from a matrix. The extraction type (i.e., a single entry, a row, a column, etc.) was defined
using the other attribute of the selector operator, and assigning it one of the descriptors listed in Table 2. The
dimensions of the originating vector or matrix, together with the choice of extraction type, defined the number of
arguments associated with the selector operator. For example, the operator had two arguments to extract a single
element from a vector. The first argument specified the variable index (varID) of the originating vector, and the
second argument defined the index of the element to be extracted, as illustrated in Fig. 7a. Similarly, the list of
arguments for extracting a row from a two-dimensional matrix specified the originating matrix and the index of the
row to be extracted. Extracting a diagonal from a two-dimensional matrix required three arguments specifying the
originating matrix, and the row and column indices of the starting entry for the diagonal, Fig. 7b. Multiple non-
consecutive entries from a vector and/or matrix could be extracted by grouping arguments for each extraction within
<apply></apply> element definitions. Figure 7c illustrates the process of creating a vector by extracting two data
entries, one from a vector and the other from a matrix.

* The MathML definition for vectorproduct is equivalent to that of the cross product5,6.
† The MathML definition for scalarproduct is equivalent to that of the dot product5,6.
‡ The outerproduct multiplies two vectors to form a matrix: A = uvT, where u and v are vectors4.

R = [M]V (5)

[❑❑] = [❑ ❑ ❑
❑ ❑ ❑][❑❑❑]

<variableDef name="R" varID="R" units="">
 <description> Multiplying a matrix and vector</description>
 <dimensionDef>
 <dim>2</dim> <!-- Number of entries in the output vector-->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <times/>
 <ci>M</ci>
 <ci>V</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 5. An example of multiplying a matrix by a vector.

American Institute of Aeronautics and Astronautics

6

The vector and matrix syntax discussed in this paper extends DAVE-ML’s capability to manipulate and manage
flight vehicle model data. In addition, it offers an approach to improve the clarity of data when exchanged and
archived. The next section of this paper further extends the capability of DAVE-ML detailing syntax for recording
flight vehicle measured or simulated dynamic data.

R = [I]−1{T̄ (r⋅r) × Q} (6)

[❑❑❑] = [❑ ❑ ❑
❑ ❑ ❑
❑ ❑ ❑]{[❑ ❑ ❑]([❑❑]⋅[❑❑]) × [❑❑❑]}

<variableDef name="R" varID="R" units="">
 <description> Vector and Matrix operations using MathML</description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the output vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <times/>
 <apply>
 <inverse/>
 <ci>I</ci>
 </apply>
 <apply>
 <vectorproduct/>
 <apply>
 <times/>
 <apply>
 <transpose/>
 <ci>T</ci>
 </apply>
 <apply>
 <scalarproduct/>
 <ci>r</ci>
 <ci>r</ci>
 </apply>
 </apply>
 <ci>Q</ci>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 6. An example of coding vector and matrix algebra using the MathML operators.

Table 2. Descriptors for use with the selector operator to extract elements from vectors and matrices.

element Extract a single entry from a vector or matrix

row Extract a row(s) from a matrix

column Extract a column(s) from a matrix

diag Extract a diagonal(s) vector from a matrix

mslice Extract a sub-matrix from a matrix

American Institute of Aeronautics and Astronautics

7

<variableDef name=”vectorElement” varID=”vectorElementID”>
 <calculation>
 <math>
 <apply>
 <selector other=”element”/>
 <ci>vectorID</ci>
 <cn>2</cn> <!-- Entry 2 of vectorID -->
 </apply>
 </math>
 </calculation>
</variableDef>

a) Extracting an entry from a vector,

<variableDef name=”matrixDiagonal” varID=”matrixDiagonalID”>
 <dimensionDef>
 <dim>2</dim>
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”row”/>
 <ci>matrixID</ci>
 <cn>1</cn> <!-- Row number of initial entry -->
 <cn>1</cn> <!-- Column number of initial entry -->
 </apply>
 </math>
 </calculation>
</variableDef>

b) Extracting a diagonal vector from a two-dimensional matrix,

<variableDef name=”multipleEntries” varID=”multipleEntriesID”>
 <dimensionDef>
 <dim>2</dim>
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”element”/>
 <apply>
 <ci>vectorID</ci>
 <cn>2</cn> <!-- Entry 2 from vectorID -->
 </apply>
 <apply>
 <ci>matrixID</cn>
 <cn>1</cn> <!-- Row number of entry -->
 <cn>2</cn> <!-- Column number of entry -->
 </apply>
 </apply>
 </math>
 </calculation>
</variableDef>

c) Extracting entries from a vector and a matrix to form a new vector,

Figure 7. Examples of extracting data from vectors and matrices using the selector operator.

American Institute of Aeronautics and Astronautics

8

III. Dynamic Data

Dynamic data, in the context of flight vehicle simulation, refer to the values of any parameter that changes during

execution of the simulation. Examples include control commands, as well as vehicle states and responses. Many
formats have been defined for recording flight vehicle dynamic data, with some available in open literature while
others are proprietary. Irrespective of their source they typically define similar basic information for the dynamic
data. This includes the interval between data samples, attributes of the data such as a name and units, and the data.

Comprehensive information about the dynamic data is required when exchanging flight vehicle dynamics
models. The data’s provenance is particularly important. Information on the source of the data – be it measured
flight data, simulation results, or artificially generated – is required as a minimum. The minimum required
information for flight measured and simulated data includes details on the vehicle type, the pilot, autopilot and/or
control logic, and when and what the vehicle was doing at the time the data were measured or computed.
Information on how data are stored is also required so that the data are correctly interpreted in a host application.
Quality measures such as data range, resolution, accuracy, and uncertainty, similarly need to be recorded.

A hierarchical structure for storing dynamic data that aligns closely with the DAVE-ML syntax has been
proposed, and is described in this paper. The structure is capable of storing arbitrary data having a common
independent basis, in addition to the special case of managing time sequenced data. Figure 8 illustrates the structure
and elements of the proposed syntax for storing dynamic data. It also presents the linkages with the DAVE-ML
syntax. Table 3 lists each of the elements of the dynamic data syntax not directly associated with DAVE-ML. The
synergies between the dynamic data syntax and DAVE-ML permit static and dynamic data to be stored using a
common syntax within a single file, as well as cross-referencing data for validating a simulation model.

Figure 8. The syntax elements of the dynamic data format.

American Institute of Aeronautics and Astronautics

9

A. Dynamic Data Syntax Elements
The dynamic data are collated under a manoeuvre definition element, manoeuvreDef, using the proposed

syntax. This element defines the date the data were gathered, generic information about the vehicle, and the
associated data. The generic information about the vehicle is defined through a vehicle definition element,
vehicleDef. The vehicle definition element contains technical details such as the vehicle type or designation. It may
also contain reference dimensions, vehicle system components including propulsion, control and sensor systems,
together with pilot/autopilot information. The actual dynamic data are defined through a data block definition,
dataBlockDef, and its various sub-elements. The data block definition provides the structure to manage information
on the signals of data stored, whether the data are discrete samples or frequency based, the encoding format of the
data, as well as the data itself.

Information on the signals of data stored within a data block is recorded in signal definition elements, signalDef.
This includes the name for the signal, its unit-of-measure, an identifier (used for cross-referencing when validating

Table 3. The proposed dynamic data syntax elements.

aircraft The name and general details of the aircraft, or vehicle

dataBlockDef The dynamic data and descriptors for a manoeuvre

dataBlockRef A reference to a data block definition

dataTableDef The dynamic data associated with a manoeuvre

dataTableRef A reference to a data table definition

encodeDef The encoding format for storing dynamic data

encodeRef A reference to an encoding format definition

freqDomainDef Dynamic data stored in the frequency domain

freqDomainRef A reference to a frequency domain definition

indexTableDef An index table of the dynamic data. This is used to
improve random searching of the data

indexTableRef A reference to an index table definition

indexRecord The reference and position of a dynamic data record in the
index table

pilot The name and contact information of the pilot(s), or name
of the autopilot

recordSummary Summary information for data stored within a data block

signalDef The properties of a data signal

signalRef A reference to a signal definition

signalRefs A list of signal references

vehicleDef Information on the vehicle such as the type, pilot, control
systems, etc., performing a manoeuvre

vehicleRef A reference to a vehicle record definition

timeDomainDef Dynamic data stored in the time domain

timeDomainRef A reference to a time domain definition

timeKey Parameters for decoding time stamp data

manoeuvreDef Defines a manoeuvre for which dynamic data is available

American Institute of Aeronautics and Astronautics

10

system models), and an optional UNICODE symbol that would be displayed when documenting the data. In
addition, properties of the signal derived from measured data could be included, such as measurement resolution,
minimum and maximum measurement ranges, and percentage accuracy.

Time sequenced and frequency based dynamic data have particular requirements related to the supplementary
information required to interpret the associated data. Information such as how the time is encoded, a summary of the
time records, and an index table to records of data to improve the speed of random access is necessary. The proposed
syntax records this information using the time domain definition element, timeDomainDef, and associated sub-
elements, as shown in Fig. 8. In the frequency domain, data for each signal represents the coefficients of the
equivalent Fourier sequence for the time based dynamic data. These coefficients are typically complex numbers with
both the real and imaginary components stored for each signal in a data record. The complete Fourier sequence
could be stored; however, utilising the property of conjugate symmetry only half of the coefficients for the Fourier
sequence need to be stored. In this case, knowledge is required on whether the original sequence has an even or odd
number of entries in order to evaluate the inverse Fourier transform to recreate the history of the signal. The
proposed syntax defines this information through the frequency domain definition element, freqDomainDef, shown
in Fig. 8.

The dynamic data are stored as a table of numeric values defined through the data table definition element,
dataTableDef, shown in Fig. 8. An encode definition sub-element encodeDef, or a reference to such an element,
defines the format used to encode data within the table. It stores a label identifying the encoding format; e.g., ASCII
for encoding data using an ASCII7 representation, or Base64 for a text equivalent binary format such as Base648.
The dynamic data syntax does not stipulate the name of this label; however, it would need to be identifiable to, and
supported by, an end-use application. The encodeDef element could also contain information detailing the precision
of the encoded data; this being the number of bytes associated with converting binary data to compliant IEEE
Standard 754 floating-point numbers9. Dynamic data could be stored as 24-bit (3 byte) floating-point compressed
binary numbers, 32-bit (4 byte) single precision floating-point numbers, 64-bit (8 byte) double precision floating-
point number, and higher order precision if required.

It is desirable that the dynamic data syntax support the storing of data for only those signals that have changed
between successive entries in a time sequenced data set. This functionality is accommodated by prepending a list of
signals stored for a time entry to the associated data stream. Listing each signal using either its name or an
associated index would be cumbersome; therefore, it is proposed that the list of signals be encoded as a series of
bytes where each bit of a byte represents a particular signal. When the bit corresponding to a signal is enabled (i.e.,
1) then the data for that signal is stored. If the bit is disabled, (i.e., 0) then the data is not stored. This technique is
similar to that used for the storage of compressed binary data by the NASA Dryden Research Center flight test data
analysis and aerodynamic parameter estimation applications – getData§ and pEst¶. The resulting list is a binary
representation, and therefore, it needs to be encoded using a text equivalent format. An attribute, illustrated in Fig. 8.
as the sigListEncoding, is required for the dataTableDef element to define the choice of format. This attribute
would reference a previously defined encodeDef element containing the desired encoding format and data
precision.

The data table would not use XML markup tags for separating data entities. Instead, an entry would commence
with the list of signals stored. The independent reference data for sequenced data would then be included, e.g., the
time-stamp for time sequenced data. This would be followed by the data for the stored signals. The real and
imaginary components of each signal would be stored consecutively for the frequency domain data. This is
illustrated in Fig. 9.

§ Richard Maine, getData Version 3.2.1, NASA Dryden Research Center, United States of America, 23 Feb 1990.
¶ Richard Maine, pEst Version 2.3, NASA Dryden Research Center, United States of America, 23 Feb 1990.

dataTableDef
Sequenced Data (Time Domain):
 : signal list, time-stamp, (Signal_1, Signal_2, ...),

or, Frequency Domain Data:
 : signal list, (Signal_1 Real, Imag, Signal_2 Real, Imag, …)

Figure 9. Data entries stored in a data table definition element.

American Institute of Aeronautics and Astronautics

11

A signal list is not required if only one signal is stored in a data table. In this case defining the sigListEncoding
attribute of the data table definition is unnecessary.

B. Dynamic Data Examples
Examples of encoding data within a data table using the proposed dynamic data syntax are presented for both

time and frequency domain storage. Figure 10 presents the time domain example, which has four signals being
angle-of-attack, angle-of-sideslip, true airspeed and pressure altitude. Figure 11 presents the frequency domain
example, where time domain data for the angle-of-attack has been converted to the frequency domain. A signal list
is not required since angle-of-attack is the only signal being stored. The angle-of-attack sequence for this example
has an odd number of time samples, and therefore, the stored sequence would have (n+1)/2 entries, where n is the
number of time samples. The actual sequence has been truncated in the example; however, it still illustrates the
concept of storing frequency domain data.

Appendix A presents further examples of the dynamic data syntax illustrating the entries associated with the
elements listed in Table 3.

IV. Conclusion
The Dynamic Aerospace Vehicle Exchange Markup Language, together with the ANSI/AIAA-S119-2011 Flight

Dynamics Model Exchange Standard, provides a framework for encoding flight vehicle dynamic simulation data
packages for exchange between simulation applications and/or long term storage; however, it is limited in only
supporting scalar time-independent data.

Syntax consistent with the Dynamic Aerospace Vehicle Exchange Markup Language was developed to manage
data as vectors and n-dimensional matrices, offering an approach to improve the clarity of data being exchanged, as
well as simplifying the naming of parameters. Furthermore, syntax for managing vehicle dynamic data that closely
aligns with the Dynamic Aerospace Vehicle Exchange Markup Language has been proposed. The syntax permits the
recording of dynamic data, its provenance, the associated vehicle properties, manoeuvre characteristics, and data
quantity metrics. Additionally, it permits static and dynamic data to be stored using a common syntax within a single
file.

The vector and matrix syntax, together with the dynamic data syntax, will enhance the ability of the Dynamic
Aerospace Vehicle Exchange Markup Language to encode entire flight vehicle dynamic simulation models and their
validation data, and simplify the exchange of aerospace vehicle dynamic model data between simulation
applications.

American Institute of Aeronautics and Astronautics

12

<!-- ++
 Sample Time history data table
 ++
 Signals: #1 Alpha (deg) - Angle-of-attack
 #2 Beta (deg) - Angle-of-sideslip
 #3 V_true (kts) - True airspeed
 #4 Hp (ft) - Pressure altitude
-->
<encodeDef encodeID=”encode_1” encoding=”UTF-8”>
<encodeDef encodeID=”signalListEncode_1” encoding=”Base16”>

<dataTableDef dataTabID="dataTab_1">
 <signalListEncodeRef encodeID=”signalListEncode_1”>
 <encodeRef encodeID=”encode_1”/>

 <!-- Signal list, Time-stamp, Signal(s) data -->
 0F, 0.0, 2.0, 0.0, 120.0, 5000.0,
 0F, 0.1, 2.1, 0.1, 121.0, 5010.0,
 <!-- Data for signals #1, #2 & #3. Signal #4 unchanged -->
 07, 0.2, 2.2, 0.0, 122.0,
 0F, 0.3, 2.3, 0.1, 123.0, 5020.0,
 <!-- Data for signals #1, #2 & #4. Signal #3 unchanged -->
 0B, 0.4, 2.4, 0.0, 5040.0,
 0F, 0.5, 2.5, 0.1, 125.0, 5030.0,
 <!-- Data for signals #1, #3 & #4. Signal #2 unchanged -->
 0D, 0.6, 2.6, 124.0, 5025.0,
 0F, 0.7, 2.7, 0.2, 123.0, 5020.0,
 0F, 0.8, 2.8, 0.0, 122.0, 5010.0,
 0F, 0.9, 2.9, 0.1, 121.0, 5000.0,
 <!-- Data for signals #1 & #3. Signals #2 & #4 unchanged -->
 05, 1.0, 3.0, 120.0,
</dataTableDef>

Figure 10. An example of encoding time domain data.

American Institute of Aeronautics and Astronautics

13

<!-- ++
 Sample Frequency Data Table
 ++
 Signals: #1 Alpha (deg) - Angle of attack

 (n+1)/2 samples with Fourier sequence representing an Odd number
 of time domain data entries.

 Note:: The sequence is truncated in this example
-->

<encodeDef encodeID=”encode_1” encoding=”UTF-8”>

<dataTableDef dataTabID="dataTab_3">
 <encodeRef encodeID=”encode_1”/>

 <!-- Real, Imag data -->
 -1.00069, 0.00000,
 -0.01860, 0.03845,
 0.03227, 0.01080,
 0.02103, -0.01227,
 -------, -------,
 -------, -------,
 -0.00575, 0.00211,
</dataTableDef>

Figure 11. An example of encoding frequency domain data.

American Institute of Aeronautics and Astronautics

14

Appendix

The following examples illustrate the syntax for various dynamic data elements. They indicate the extent of

information that may be assigned to dynamic data records, together with its form. Examples are provided for a file
header, a vehicle definition, a time history data table definition, an index table definition, signal definitions, data
block definitions, and manoeuvre definitions.

<!-- ++
 Sample File Header:
 ++ -->
<fileHeader>
 <author name="Geoff Brian" org="" email="">
 <address>
 An address here
 </address>
 </author>
 <creationDate date="2011-05-27"/>
 <description>
 This file is an example of encoding time sequenced data in the dynamic data
 aerospace vehicle modelling exchange syntax
 </description>
 <reference
 refID="REF_1"
 author="Geoff Brian"
 title="Time History for Aircraft Modelling Exchange Syntax"
 classification="Unclassified">
 </reference>
</fileHeader>

<!-- ++
 Vehicle Definitions : General information on the vehicle being
 tested and personnel
 ++ -->
<vehicleDef vehicleID="vehicle_1">
 <description>
 This vehicle definition element could contain technical reference
 details on items such as the vehicle type or designation; reference
 dimensions; vehicle's system components including propulsion, control
 and sensor systems, together with pilot/autopilot information
 </description>
 <aircraft name="TheWing" units="m"
 referenceLonLen="10" referenceLatLen="2" referenceArea="20">
 <description>A hypothetical aircraft</description>
 </aircraft>
 <pilot name="The guru" org="Guru Inc">
 <address>Unknown</address>
 </pilot>
</vehicleDef>

<!-- ++
 Data Table Definition: Sampled time sequenced data table
 ++
 dataEntry+ : Signal list, Time_stamp, Signal(s) data (#PCDATA)

 Entries per line:
 1. Storing data for all signals
 2. Storing data for signal #4. Signals #1, #2 and #3 unchanged
 3. Storing data for signals #1, #2 and #3. Signal #4 unchanged
 4. Storing no data. Signals #1, #2, #3 and #4 unchanged
 5. Storing data for all signals

American Institute of Aeronautics and Astronautics

15

 Signal list, time, data
 1. All 0.0 0.5, 25000.0, -39.0, -150.0
 2. #4 0.2 -150.56
 3. #1,#2,#3 0.4 0.6, 24500.0, -39.5
 4. None 0.6 None
 5. All 1.0 0.7, 22000.0, -39.0, -150.0

 Note: In the following table a new line is used for each time record
 to improve readability. This would not be the case for a production
 file as the carriage return could cause miss-interpretation of data. -->

<encodeDef encodeID=”encode_Base64_precision_4Bytes”
 encoding=”Base64” bytesPerDataPt=”4”>
<encodeDef encodeID=”encode_Base16_precision_1Byte”
 encoding=”Base16” bytesPerDataPt=”1”>
<encodeDef encodeID=”encode_UTF-8” encoding=”UTF-8>

<dataTableDef dataTabID="dataTable_1">
 <!-- Encoding for signal list -->
 <signalListEncodeRef encodeID=”encode_Base16_precision_1Byte”>
 <!-- Encoding for signal data -->
 <encodeRef encodeID=”encode_Base64_precision_4Bytes”/>

 <!-- Signal list, Time_stamp, Signal(s) data -->
 0F0BPwAAAARsNQAAwhwAAAwxYAAA
 080CwxaPXA
 0B0DPxmZmARr9oAAwh4AAA
 000E
 0F10PzMzMgRqvgAAwhwAAAwxYAAA
</dataTableDef>

<!-- ++
 Index Table Definitions:
 This is used for random access of the data table where the
 position in table represents the location for the start of a
 time record based data including the signal list.
 ++ -->
<indexTableDef indexTabID="indexTable_1">
 <encodeRef encodeID=”encode_UTF-8”/> <!-- Encoding for position data -->
 <indexRecord recordIndex="0B" posInTable="0"/>
 <indexRecord recordIndex="0C" posInTable="28"/>
 <indexRecord recordIndex="0D" posInTable="38"/>
 <indexRecord recordIndex="0E" posInTable="60"/>
 <indexRecord recordIndex="10" posInTable="64"/>
</indexTableDef>

<!-- ++
 Signal Definitions:
 ++ -->
<signalDef name="mach" sigID="mach" units="nd">
 <description>Mach number</description>
</signalDef>
<signalDef name="geodeticLatitude" sigID="geodeticLatitude" units="deg">
 <description>Geodetic Latitude</description>
</signalDef>
<signalDef name="longitude" sigID="longitude" units="deg">
 <description>Longitude</description>
</signalDef>
<signalDef name="pressureAltitude" sigID="pressureAltitude" units="ft">
 <description>Pressure Altitude</description>
</signalDef>

American Institute of Aeronautics and Astronautics

16

<!-- ++
 Data Block Definitions: used by Manoeuvre Definition
 ++ -->
<!-- Sample Data Block -->
<dataBlockDef dataBlkID="dataBlk_1">
 <signalRefs>
 <signalRef sigID="mach"/>
 <signalRef sigID="pressureAltitude"/>
 <signalRef sigID="geodeticLatitude"/>
 <signalRef sigID="longitude"/>
 </signalRefs>

 <timeDomainDef timeDomainID="timeDef_1">
 <!-- time = (Time_stamp – keyOffset)*timeScale – baseTime -->
 <timeKey baseTime="0.2" timeScale="0.2" keyOffset="10"
 timeZone="LOCAL">
 <!-- Encoding for Time_stamp data -->
 <encodeRef encodeID=”encode_Base16_precision_1Byte”>
 </timeKey>
 <recordSummary startRecord="0B" endRecord="10" numRecords="5"/>
 <indexTableRef indexTabID="indexTable_1"/>
 </timeDomainDef>

 <dataTableRef dataTabID="dataTable_1"/>

 <description> This is a sample time history data block </description>
</dataBlockDef>

<!-- ++
 Manoeuvre Definitions:
 ++ -->
<manoeuvreDef name="p1f1m2" manID="man_p1f1m2" time="00:00:10.00">
 <description>A manoeuvre performed by an aircraft</description>
 <creationDate date="2011-05-01"/>
 <vehicleRef vehicleID="vehicle_1"/>
 <dataBlockRef dataBlkID="dataBlk_1"/>
</manoeuvreDef>
</THAMESfunc>

American Institute of Aeronautics and Astronautics

17

Acknowledgments

The authors wish to acknowledge the assistance and encouragement of Bruce Hildreth of JF Taylor Inc. who,

together with Bruce Jackson from NASA Langley Research Center, initiated the development of the ANSI/AIAA-
S119-2011 Flight Dynamic Model Exchange Standard and the Dynamic Aerospace Exchange Markup Language, on
which this work has been inspired. Acknowledgement is also extended to members of Air Vehicle Division from the
Australian Defence Science and Technology Organisation, Dr. Dan Newman of Quantitative Aeronautics Pty. Ltd.,
and Mr. Rob Curtin of QinetiQ Consulting Australia, who have provided valuable assistance with developing the
Dynamic Aerospace Exchange Markup Language.

References

1 1Jackson, E.B., “Dynamic Aerospace Vehicle Exchange Markup Language, (DAVE-ML) Reference Version 2.0.1”, AIAA
Modeling and Simulation Technical Committee, URL: http://daveml.org.
2 2ANSI/AIAA-S119-2011 Flight Dynamics Model Exchange Standard, American Institute of Aeronautics and Astronautics,
Reston, VA, USA, March 2011.
3 3World Wide Web Consortium (W3C) “W3C Recommendation: Extensible Markup Language (XML)”, URL:
http://www.w3.org/TR/xml/, 2008-11-26
4 4World Wide Web Consortium (W3C) “Mathematical Markup Language (MathML) Version 2.0 (Second Edition)”, URL:
http://www.w3.org/TR/MathML2/, 2003.
5 5John H. Hubbard, Barbara Burke Hubbard, Vector Calculus, Linear Algebra and Differential Forms – A Unified Approach,
Prentice Hall, New Jersey, 1999.
6 6Benjamin C. Kuo, Automatic Control Systems, 5th ed., Prentice Hall, New Jersey, 1987.
7 7Cerf V., “ASCII format for Network Exchange”, Internet Engineering Task Force (IETF), RFC 20, URL:
http://tools.ietf.org/html/rfc20, October 1969
8 8Josefsson S., “The Base16, Base32, and Base64 Data Encodings”, Internet Engineering Task Force (IETF), RFC 4648,
URL: http://tools.ietf.org/html/rfc4648, October 2006

9 9IEEE Std 754-1985 (R1990) IEEE Standard for Binary Floating-Point Arithmetic (ANSI) 1-55937-653.8
 [SH10116-NYF].

