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The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This 

unusual domain is comprised of four or more tandem repeats of the 

fundamental sequence PHGGGWGQ. Previous work from our laboratories 

demonstrates that at full copper occupancy, each HGGGW segment binds a 

single Cu2+. However, several recent studies suggest that low copper 

occupancy favors different coordination modes, possibly involving imidazoles 

from histidines in adjacent octapeptide segments. This is investigated here 

using a combination of X-band EPR, S-band EPR, and ESEEM, along with a 

library of modified peptides designed to favor different coordination 

interactions. At pH 7.4, three distinct coordination modes are identified. Each 

mode is fully characterized to reveal a series of copper-dependent octarepeat 

domain structures. Multiple His coordination is clearly identified at low copper 

stoichiometry. In addition, EPR detected copper−copper interactions at full 

occupancy suggest that the octarepeat domain partially collapses, perhaps 

stabilizing this specific binding mode and facilitating cooperative copper 

uptake. This work provides the first complete characterization of all dominant 
copper coordination modes at pH 7.4.  

Introduction 

Conversion of the prion protein (PrP) from its normal cellular 

form (PrPC) to the scrapie form (PrPSc) is responsible for a class of 

infectious, neurodegenerative diseases referred to as the transmissible 

spongiform encephalopathies (TSEs).1,2 The TSEs include mad cow 

disease (BSE), scrapie in goats and sheep, chronic wasting disease 

(CWD) in deer and elk, and, in humans, kuru and Creutzfeldt−Jakob 

disease (CJD). In contrast to other known infectious diseases resulting 

from viruses or bacteria, the transmissible agent requires only protein 

in the form of β-sheet rich PrPSc.3  

 

PrPC is found in a wide range of tissues. Within the central 

nervous system, it is localized primarily at presynaptic membranes,4,5 

attached through a glycophosphatidylinositol (GPI) anchor.6 The 

normal function of PrPC in healthy tissues is not known. However, since 

the landmark work of Brown et al. in 1997,7 accumulating evidence 

links PrPC function to its ability to bind Cu2+. To refine possible 

physiological roles for PrPC, there are intensive efforts to clearly define 

the Cu2+ coordination environment.8-25 Mature PrPC is a 209 amino acid 

(after removal of the signal peptide) glycoprotein with a folded C-

terminus and an unstructured (in the absence of Cu2+) N-terminus.26 A 

variety of experiments using peptides and recombinant PrP (rPrP) find 

that most copper ions bind in the N-terminal octarepeat domain 

composed of four or five tandem repeats of the fundamental eight-
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residue sequence PHGGGWGQ (residues 60−91 in the four octarepeat 

hamster sequence).13,14,17,20 Recent experiments point to an additional 

binding site involving either His9611,20 or His111,16 although there is 

current disagreement as to its exact location.16 In the fully occupied 

octarepeat domain, each octarepeat segment binds a single Cu2+ ion. 

As demonstrated by our laboratories using EPR and X-ray 

crystallography, copper forms a pentacoordinate complex involving the 

specific residues HGGGW.8,10 Equatorial coordination involves the His 

imidazole, deprotonated amides from the following two Gly residues 

and the amide carbonyl from the second glycine. An oxygen from a 

water molecule coordinates axially and bridges to the NH of the Trp 

indole.  

 

Although the detailed features of fully copper-occupied PrPC are 

now well established, little is known about the copper coordination 

geometry, or the structure of the N-terminal domain, at intermediate 

Cu2+ occupancy. Moreover, no experiments thus far have elucidated 

any possible molecular interactions among the distinct copper sites in 

the fully occupied state. These issues are vital for understanding how 

PrPC responds to localized changes in Cu2+ concentrations that are 

known to take place in the central nervous system, particularly at 

synapses.5 For example, PrPC is constitutively cycled through 

endocytosis. Addition of Cu2+ rapidly stimulates this process, resulting 

in significant PrPC internalization.27 Mutant PrPC lacking the N-terminal 

octarepeat domain is less efficiently endocytosed in the presence of 

copper. It has been proposed that elevation of the Cu2+ concentration 

introduces a structural change in PrPC that increases its association 

with membrane components targeted for compartmentalization to the 

endosome.27  

 

PrPC is also implicated in protecting neurons against copper-

mediated oxidative stress. Because of its intrinsic redox activity 

involving the oxidation states Cu2+ and Cu+, high concentrations of 

uncomplexed or weakly complexed copper contribute to the production 

of reactive oxygen species, which are toxic to cells. A growing number 

of experiments indeed show that wild-type neurons in culture are more 

resistant to copper toxicity than are cells lacking PrP.5,28,29 

Correspondingly, comparison of tissues between normal mice and PrP 

knockouts reveals extensive oxidative damage in the latter.30 
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Together, these findings suggest a copper buffering role for PrP where 

the protein protects cells from uncomplexed Cu2+. Mechanistic support 

for this type of function comes from several copper binding 

experiments that reveal micromolar dissociation constants, well 

matched to extracellular Cu2+ levels,23,31,32 with significant positive 

binding cooperativity,23,32 suggesting that PrPC is able to alter structure 

from a state of low copper affinity to a multiply occupied state of high 

affinity, over a narrow copper concentration range.  

 

At full occupancy, each octarepeat histidine coordinates to single 

Cu2+, as described above. However, at intermediate occupancy, a 

single Cu2+ may be coordinated by two or more His imidazoles.15,33,34 

Although a detailed mechanism has not yet been proposed, significant 

changes in octarepeat organization may ultimately explain the 

molecular basis for the proposed binding cooperativity.33 Alternatively, 

distinct binding modes as a function of copper occupancy may point to 

a copper sensing role for PrPC, or even a protein that carries out 

several different functions depending on the extracellular Cu2+ 

concentration.  

 

Studies from our laboratories, using multi-frequency and pulsed 

EPR, along with designed libraries of isotopically labeled peptides, have 

defined the coordination mode in the fully occupied octarepeat domain 

as described above.8,10,17 Additional studies with folded, recombinant 

PrPC demonstrate that this defined coordination mode is preserved in 

the full-length protein.11 In the course of our studies with copper 

complexes of the octarepeat domain, corresponding to PrP(57−91),8 

and with rPrP,11 we identified EPR spectra reflecting a superposition 

consistent with two or more bound species. Only the dominant binding 

mode at full occupancy has thus far been characterized. In light of the 

numerous structural and physiological issues above, we investigate 

here the structural features over a range of Cu2+ concentrations. EPR 

spectra clearly identify three distinct binding modes at pH 7.4. Using a 

combination of EPR techniques, along with a variety of octarepeat 

domain constructs and isotopic labeling, we characterize the 

coordination features of each mode. Moreover, we reinvestigated 

spectra obtained at high copper occupancy and find evidence for close 

copper−copper contacts consistent with a packing interaction in the 

copper loaded N-terminal octarepeat domain.  

http://dx.doi.org/10.1021/ja053254z
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Materials and Methods 

Peptide Synthesis and Purification. All peptides containing 

common amino acids were prepared using fluorenylmethoxycarbonyl 

(Fmoc) methods, as described previously.8,10 Peptides were acetylated 

at the N-terminus and amidated at the C-terminus. N-Methylated 

glycine was introduced by the coupling of bromoacetic acid to the 

preceding glycine using 1,3-diisopropylcarbodiimide (DIC)/N,N-

diisopropylethylamine (DIEA) in dichloromethane for 30 min, followed 

by reaction with methylamine in tetrahydrofuran (THF) for another 30 

min.35 The next amino acid was coupled in the conventional fashion. 

To methylate the amide nitrogen of histidine, the Fmoc group was 

removed and the resulting free N-terminal amine was protected using 

o-nitrobenzenesulfonyl chloride (3 equiv) and collidine (3 equiv) for 30 

min.36 The methyl group was then added by coupling with 3 equiv of 

methyl-4-nitrobenzenesulfonate in the presence of 3 equiv of 

1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]-pyrimidine 

(MTBD) for30 min. The N-terminal nitrogen was then deprotected 

using 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) (3 equiv) and β-

mercaptoethanol (3 equiv) for 30 min. All peptides were acetylated 

prior to cleavage and purified by reverse-phase HPLC.  

 

Electron Paramagnetic Resonance (EPR) Spectroscopy. All 

samples were prepared with degassed buffer containing 25 mM N-

ethylmorpholine (NEM) buffer and 20% glycerol (v/v) where the 

glycerol served as a cryoprotectant.8 X-band spectra (frequency = 

9.43 GHz, microwave power in the range 0.6−5.0 mW, modulation 

amplitude in the range 5.0−15 G) were acquired using a Bruker 

EleXsys 500 spectrometer and a TE102 or SHQ (Bruker) cavity equipped 

with a variable temperature controller. 63Cu (99.62%, Cambridge 

Isotope Laboratories) was used to avoid inhomogeneous broadening of 

the S-band EPR lines that would otherwise be present with the mixture 

of naturally occurring isotopes. S-band spectra (3.5 GHz) were 

acquired in D2O solution at 133 K using a loop gap resonator as part of 

a specially designed spectrometer housed at the Biomedical ESR 

Center at the Medical College of Wisconsin. Three-pulse ESEEM 

measurements were obtained at 4.2 K on an X-band pulsed-EPR 

spectrometer located at the Albert Einstein College of Medicine. The 

instrument, cavity, and resonator were constructed in-house and have 

http://dx.doi.org/10.1021/ja053254z
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 127, No. 36 (September 14, 2005): pg. 12647-12656. DOI. This article is © 
American Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. 
American Chemical Society does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from American Chemical Society. 

7 

 

been previously described.37,38 Data were obtained at g⊥, the point of 

greatest spectral intensity (3280 G at 9.47 GHz). Data processing to 

attain frequency domain spectra for three-pulse ESEEM was carried 

out using software described in previous work.39 Echo detected spectra 

were obtained at 6 K with a repetition rate of 33 Hz and 30 averages 

per magnetic field point. Additional experimental parameters for all 

pulsed experiments are provided in figure legends.  

 

EPR spectra were simulated using previously reported 

procedures40 using the program XSophe (Bruker Biospin)41 and 

employing the spin Hamiltonians 

 

 
 

and  

 

 
 

for one- and two-copper simulations, respectively. J contains both 

isotropic and anisotropic coupling terms between the two S = 1/2 spins. 

Signals were simulated assuming equivalent g and A for the two 

individual Cu2+ ions. The appearance of the g ≈ 2 region of the spectra 

due to spin-coupled Cu2+ ions was largely dictated by g⊥, and while the 

simulations were sensitive to the inter-Cu(II) distance, they did not 

provide good estimates for g∥ and A∥ in this case. In contrast, the half 

field simulations provided good estimates for g∥ and A∥, in addition to 

the inter-Cu2+ distance. An isotropic exchange coupling was assumed 

with JS1S2 > βgHS (an arbitrary value of 35 cm-1 was used).  

 

Structure Calculations. Calculations for the various binding 

modes used the CYANA torsional dyanamics program.42 A histidine 

residue with copper bound was added to the CYANA library. The 

copper ion was placed 2.0 Å from the Histidine Nδ atom consistent 

with the HGGGW crystal structure. Each calculation maintained fixed 

peptide bond distances and angles and used upper limit restraints and 

torsion angle dynamics to produce a low energy structure. In each 

case, 50 structures were calculated, and the lowest energy conformer 

is shown (Figure 8). The following upper and lower limit restraint files 

were used for the various components. Component 1 maintained the 
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structure of the HGGGW as it appears in the crystal structure, and 

additionally included a fixed copper−copper distance of 4.0 Å between 

two of the centers. Component 2 used a fixed 2.0 Å distance between 

each copper atom and the histidine amide nitrogen and Nδ, and a 2.4 

Å distance to the Nε of the preceding histidine. Component 3 has a 

single copper coordinated to three histidines with a fixed distance of 

2.0 Å between the Cu2+ and the histidine Nε atoms.  

Results 

Cu2+ binds primarily within the octarepeat domain, residues 

60−91 in hamster PrP (SHaPrP), consisting of four tandem repeats of 

the fundamental eight-residue sequence PHGGGWGQ (Table 1).11,17 

There is an additional binding site at His96,11,16 and perhaps at 

His111,16 although there is currently disagreement about the precise 

location of this nonoctarepeat copper. It has been noted previously 

that EPR spectra reflect a change in coordination geometry as a 

function of relative Cu2+/PrP concentrations, suggesting alternate 

binding modes at low copper levels.8 This is investigated here with a 

series of EPR spectra obtained as a function of copper concentration at 

pH 7.4. The soluble octarepeat domain construct, PrP(23−28, 57−91), 

was used to yield high signal/noise spectra without interference from 

the nonoctarepeat binding sites.8 Spectra obtained from 0.25 to 2.0 

equiv of Cu2+ (added to a solution containing 200 μM peptide), in 

increments of 0.25 equiv, are shown in Figure 1. At 2.0 equiv and 

above, the spectra are dominated by a signal previously referred to as 

component 1.8,11 (A more extensive set of spectra up to 6.0 equiv of 

Cu2+ is in the Supporting Information.) However, at low occupancy, 

two additional EPR spectra emerge, and this is clearly seen in the 

expansion of the low field spectral range showing the mI = −3/2 and mI 

= −1/2 hyperfine lines. The additional spectrum observed between 

approximately 1.0 and 2.0 equiv is referred to as component 2.8 At 1.0 

equiv and below, a single spectrum, referred to as component 3, 

dominates. This process is reversible and reveals a coexistence among 

three distinct copper bound species. Magnetic parameters, g∥ and A∥, 

determined from the parallel region of the three spectral components 

are summarized in Table 2. Below we characterize each of the distinct 

binding modes.  

 

http://dx.doi.org/10.1021/ja053254z
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Figure 1 X-band EPR spectra of PrP(23−28, 57−91) (200 μM) as a function of Cu2+ 
concentration, represented in equivalents. Three distinct species are observed, as can 
be clearly seen in the inset showing an expansion of the mI = −3/2 and mI = −1/2 
hyperfine lines. The grids at the top identify the four hyperfine lines arising from 
coupling to the 63Cu (I = 3/2) nucleus for each spectral species. Spectra were obtained 
at approximately 77 K and νo = 9.44 GHz. 

Table 1.  Peptide Sequencesa 

  component 

  1 2 3  

KKRPKPWGQ(PHGGGWGQ)4 PrP(23−28, 57−91)  X  X  X  

(PHGGGWGQ)3  X  X  X  

HGGGWGQPHGGGW  X  X    

PHGGGWGQ  X      

HGGGW  X      

KKRPKPWGQ(PHGXGWGQ)4    X  X  

HGXGWGQPHGXGW    X    

HGXGW    X    

HXGGW    X    

HGGGWGQPYGGGW  X      

YGGGWGQPHGGGW  X      

HGGGWGQPYGGGWGQPHGGGW  X      
a X = sarcosine (N-methylglycine). 

  

http://dx.doi.org/10.1021/ja053254z
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Table 2.   

 A∥   
 

  g∥ MHz Gauss coordinationa center charge  

component 1  2.24  492  157  3N 1O  0  

component 2  2.27  530  167  2N 2O  0a  

component 3  2.25  576  183  3N 1O or 4N  0 or +1a 
a Assigned using Peisach−Blumberg correlations.43 

Component 1 Coordination − High Cu2+ Occupancy. The 

local Cu2+ coordination environment of component 1 was previously 

characterized using EPR, including X-band, S-band, and ESEEM, as 

well as X-ray crystallography.10 Coordination is localized within the 

octarepeat subsegment HGGGW and involves the His imidazole and 

deprotonated amide nitrogens from the following two Gly residues in 

the equatorial plane, as well as an axial water that hydrogen bonds to 

the NH of the Trp indole.10,17  

 

Table 1 shows a series of PrP-derived peptide constructs along 

with spectral components observed from titration studies, such as 

those carried out in Figure 1. (Additional EPR spectra vs added Cu2+ 

are given in the Supporting Information.) As observed in our previous 

studies, component 1 is found in the minimal binding sequence 

HGGGW, as well as in all longer constructs including the full, four-

octarepeat domain. Moreover, quantitative titration studies showed 

that each octarepeat binds a single equivalent of Cu2+.8  

 

Although the local coordination in component 1 binding is fully 

elucidated, the relative spatial positioning among the Cu2+ containing 

HGGGW segments is unknown. However, contacts between copper 

centers, as revealed by dipolar interactions, may be informative, and 

this is investigated in Figure 2. The EPR spectrum obtained from the 

octarepeat segment PHGGGWGQ is nearly equivalent to that obtained 

from the fully occupied octarepeat domain PrP(23−28, 57−91).8 Both 

spectra are dominated by component 1 binding, although the 

octarepeat domain shows residual component 2 binding as well. 

However, PrP(23−28, 57−91) reveals additional features at 

approximately 3100 G (where it adds to the mI = 1/2 copper hyperfine 

line) and 3475 G, as indicated by the arrows. These features are 

http://dx.doi.org/10.1021/ja053254z
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suggestive of a strongly coupled dipolar spectrum superimposed on 

the uncoupled component 1 spectrum.40  

 

 
Figure 2 X-band EPR spectra showing the approximate equivalence of fully occupied 
PrP(23−28, 57−91) and PHGGGWGQ. The spectrum for PrP(23−28, 57−91) also 
reveals features associated with dipolar coupling (arrows). The echo detected 

spectrum of PrP(23−28, 57−91), obtained with a two pulse sequence (τ = 140 ns, νo 
= 9.63 GHz, T = 6 K), selects for slowly relaxing species and lacks the dipolar 
features, thus confirming a spectral superposition. The inset shows the half field signal 
(νo = 9.63 GHz) obtained from PrP(23−28, 57−91) with 2.0 equiv of Cu2+. The 
simulation (dashed line) for the g ≈ 2 spectrum was generated with a superposition of 
a mononuclear species (80%) and a coupled species (20%) using the parameters g∥ = 

2.227, g⊥ = 2.052, and A∥ = 162 G and g∥ = 2.176, g⊥ = 2.058, and A∥ = 165 G, 

respectively, and a distance of 6.0 Å. The simulation of the half field signal (dashed 
line) used g∥ = 2.174, g⊥ = 2.058, and A∥ = 162 G and a distance of 4.9 Å. In addition, 

the g tensors for the Cu(II) ions were assumed to be collinear with an intercopper 
vector at a 10° ± 5° angle to the z direction. 

To evaluate whether the spectrum of fully occupied PrP(23−28, 

57−91) with 2 or more equiv of Cu2+ is indeed a superposition of two 

types of copper centers (noninteracting and dipolar/exchange 

interacting), an echo detected (ED) spectrum was obtained. Coupling 

between paramagnetic species via exchange and/or dipolar 

interactions can lead to increases in relaxation rates44,45 and field-

dependent pulse turning angles46 relative to the isolated species. 

These differences can be exploited to separate the contributions of 

species using pulsed EPR spectra,47 including echo detected spectra.48-

50 The ED spectrum is shown as a derivative in Figure 2 and gives 

component 1 characteristics but without the added features assigned 

http://dx.doi.org/10.1021/ja053254z
http://epublications.marquette.edu/
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Journal of the American Chemical Society, Vol 127, No. 36 (September 14, 2005): pg. 12647-12656. DOI. This article is © 
American Chemical Society and permission has been granted for this version to appear in e-Publications@Marquette. 
American Chemical Society does not grant permission for this article to be further copied/distributed or hosted 
elsewhere without the express permission from American Chemical Society. 

12 

 

to the strongly dipolar coupled spectrum. This finding supports the 

assignment of a superposition spectrum for PrP(23−28, 57−91).  

 

Strong dipolar coupling should be accompanied by a half field 

transition arising from a ΔMs = 2 transition.51,52 Investigation of 

PrP(23−28, 57−91) in the vicinity of 1600 G indeed reveals a half field 

signal that is not observed in the monomeric octarepeats as shown in 

Figure 2.  

 

To extract distance information, we performed simulations of 

both the full field g ≈ 2 spectrum and the half field spectrum. The g ≈ 

2 spectrum was treated as a superposition, and the best fit suggested 

that the coupled spectrum comprised approximately 20% of the total 

signal with a distance between copper centers of 6.0 Å. The half field 

signal reveals a multiplet structure arising from the copper hyperfine 

interactions. Interestingly, at high copper occupancy, the half field 

signal persists but the muliplet lines are no longer resolved (data not 

shown). This is presumably due to interactions among more than two 

copper centers, thus giving rise to a superposition of multiplets with 

different hyperfine patterns. Two equivalents of copper gave the 

cleanest half field signal, and simulations were performed on this 

spectrum, as shown in Figure 2. Treating this spectrum as arising from 

a single coupled species, the best fit gave a distance of 4.9 Å. As a 

second approach for evaluating distances between copper centers, we 

examined the relative integrated intensities of the half field and g ≈ 2 

spectra. It is well established that this ratio scales as 1/r6.51,52 

Estimating that the coupled spectrum at g ≈ 2 comprises 

approximately 20% of the total signal intensity, the distance 

determined by this approach gives approximately 3.5 Å. There may be 

a distribution of distances between copper centers. The 1/r6 

dependence of the half field signal intensity, as compared to the 1/r3 

dependence for the g ≈ 2 dipolar coupling, gives a bias toward shorter 

distances,52 and, hence, the value of 3.5 Å should be considered a 

lower bound.  

 

These findings suggest a previously unseen packing interaction 

between copper binding segments in the component 1 coordination 

mode. The possible consequences of this interaction will be considered 

in the Discussion.  
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Component 2 Coordination − Intermediate Cu2+ 

Occupancy. Table 1 shows that component 2 binding is observed only 

in PrP constructs containing two or more octarepeat segments. 

Interestingly, the shortest PrP segment containing two HGGGW binding 

units, HGGGWGQPHGGGW, exhibits component 1 and component 2 

spectra, but not component 3 (Supporting Information). Unfortunately, 

under all conditions studied, this construct gives a superposition of the 

two binding modes, thus confounding attempts to clearly characterize 

the molecular features exclusive to component 2.  

 

Given that two sequential octarepeats provide a minimal model 

for component 2 binding, we sought an approach for blocking the 

formation of component 1. Component 1 binding arises from 

coordination of the His imidazole and deprotonated amide nitrogens 

from the two Gly residues immediately following the His (vide supra; 

also see Figure 6). Thus, N-methylation of either of these Gly residues 

to give the sarcosyl derivative of glycine will directly interfere with 

component 1 formation. This is investigated in Figure 3. Indeed, the 

construct HGXGWGQPHGXGW, where X = Sar (N-methyl glycine), 

when loaded with Cu2+ yields a spectrum with g∥ and A∥, and overall 

spectral shape equivalent to component 2. Moreover, the spectrum 

represents a homogeneous coordination environment with no 

indication of component 1 or other species. Blocking component 1 

binding in an analogue of the full octarepeat domain using the 

construct KKRPKPWGQ(PHGXGWGQ)4 gives a superposition of 

component 2 and component 3 (Supporting Information).  
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Figure 3 X-band EPR spectra of PrP constructs containing N-methylated glycine 
(sarcosine, X) at specific positions to block component 1 binding. Methylation of the 
first or second glycine results in pure component 2 binding. 

Analysis of g∥ and A∥ of copper bound to HGXGWGQPHGXGW, as 

interpreted through the Peisach−Blumberg correlations,43 suggests 

coordination by approximately two nitrogens and two oxygens (2N 

2O), for an uncharged complex, or 3N 1O for a complex with a positive 

charge. To determine whether component 2 requires the two tandem 

octarepeats, the peptides HXGGW and HGXGW, derived from single 

repeats, were each independently investigated. Figure 3 shows that 

each of these peptides gives component 2 binding indistinguishable 

from that obtained from the two repeat construct HGXGWGQPHGXGW, 

although HXGGW does exhibit a weak signal at 2780 G that may 

represent an additional species. Methylation at the third glycine, which 

does not coordinate Cu2+ in component 1,10 gives an EPR spectrum 

equivalent to unmodified HGGGW, as expected (Figure 3).  

 

Three-pulse electron spin−echo envelope modulation (ESEEM) 

was performed to evaluate nearby, noncoordinated nitrogen atoms. 

With imidazole coordination, the remote nitrogen is ESEEM active and, 

indeed, serves as a diagnostic for equatorial binding of the His side 

chain.53 In addition, for component 1, the nitrogen of the third Gly in 

the HGGGW sequence is also observable because it is rigidly held 

approximately 4 Å from the Cu2+ center by coordination of the amide 

carbonyl between the second and third Gly residues (see Figure 6).10 
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ESEEM spectra for HGXGWGQPHGXGW and HGXGW are shown in 

Figure 4. The spectra are approximately equivalent and give three low-

frequency lines at 0.65, 0.85, and 1.50 MHz arising from transitions of 

a coupled 14N in an electron spin manifold under near exact 

cancellation conditions, which is typical of imidazole coordination.53,54 

The broad signal near 4.0 MHz arises from the ΔmI = 2 transition from 

the other electron spin manifold. The ESEEM spectra suggest a Cu2+ 

center coordinated by a single equatorial imidazole. There is no 

evidence of either combination lines or an enhanced ΔmI = 2 transition 

as might be seen as arising from multiple imidazole coordination.55 

Moreover, direct simulations in the time domain (not shown) are fully 

consistent with a single equatorial imidazole.  

 

 
Figure 4 Three-pulse ESEEM spectra of constructs that exhibit component 2 binding 
showing single imidazole coordination. Spectra were obtained at 4.2 K from the g⊥ 

region of the spectrum with τ = 150 ns. 

Analysis of hyperfine multiplets arising from nitrogen couplings 

allows for direct mapping of the copper coordination environment. S-

band EPR is ideal for resolving such couplings56 and was used 

previously to identify nitrogens bound to copper in the octarepeat.8,10 

The benefit of S-band EPR arises from a partial cancellation of g-strain 

and A-strain induced inhomogeneous broadening specifically for the 
63Cu mI = −1/2 hyperfine line.56 HGXGW is chosen as a representative 

construct because it is the minimal peptide that gives a pure 

component 2 spectrum. The full S-band spectrum is shown in Figure 5 
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and indeed reveals superhyperfine couplings in the mI = −1/2 line. The 

mI = −1/2 line is further expanded in Figure 5B and reveals a five-line 

multiplet consistent with coordination by two nitrogens. To evaluate 

whether either of the Gly residues following the His coordinates to the 

copper center, 15N-Gly analogues at the nonmethylated positons of of 

HGXGW were examined. A difference in multiplet structure upon 

change of nuclear spin (I = 1 for 14N and I = 1/2 for 15N) is directly 

observable if the modified nitrogen is equatorially bound to Cu2+.10 

Figure 5 shows that there is no resolvable difference in the hyperfine 

pattern of the mI = −1/2 line, demonstrating that neither of the labeled 

Gly residues are directly bound to the Cu2+ center.  

 

 
Figure 5 S-band EPR of HGXGW that favors component 2 binding. (A) Shows the full 
scan, (B) expansion of the mI = −1/2 line, and (C) the mI = −1/2 line from a sample 
containing 30% 17OH2. The five line multiplet at mI = −1/2 is consistent with 

coordination of two nitrogens. Insensitivity to 15N placement at the first and third 
glycines shows that these residues do not coordinate. Broadening by 17OH2 suggests 
that water contributes to the coordination sphere. Spectra (3.5 GHz) were acquired in 
D2O solution at 133 K. 

Histidine residues may coordinate through both the imidazole as 

well as the exocyclic backbone nitrogen. To test for this possibility in 

component 2, the peptide me-HGXGW was investigated. (We note that 

in addition to methylation, selectively 15N labeled histidine would also 

be useful but is cost prohibitive.) Here, both the His backbone nitrogen 

as well as the second Gly were methylated. With standard acetylation 

of the N-terminus (see Materials and Methods), methylation at the His 
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exocyclic nitrogen removes any possibility of its coordination to 

copper. The observed X-band spectrum from a 1:1 complex of this 

peptide with Cu2+ is distinct from spectra observed for component 1, 2, 

or 3 binding (data not shown), thus demonstrating that His acts as a 

bidentate ligand for copper in component 2 binding.  

 

The results above suggest that component 2 arises from copper 

coordination by both the His imidazole and its exocyclic nitrogen. As 

noted above, oxygen atoms likely occupy the remaining equatorial 

sites. To determine whether these oxygens are from solvent water 

molecules, EPR experiments were performed on HGXGW in ∼30% 17O 

water. The superhyperfine interaction of the 17O nucleus (I = 5/2), 

when coordinated to copper, usually results in line broadening.57 At X-

band, there was no appreciable difference in line shape. However, at 

S-band, broadening of the mI = −1/2 line was clear as shown in Figure 

5C, thus demonstrating the equatorial involvement of water. 

Preliminary simulations were used to determine whether the 

broadening was consistent with one or two water molecules, but the 

results were inconclusive.  

 

The investigations above show that in component 2 copper 

binding, the octarepeat His provides two equatorial nitrogens with 

water at one or both of the remaining equatorial sites resulting in 2N 

2O coordination, as shown in Figure 6. His acts as a bidentate ligand 

forming a six-membered ring with Cu2+ as found in crystal structures 

of Cu−His complexes.58,59 This coordination mode is fully consistent 

with the X- and S-band EPR, as well as the ESEEM studies on the 

methylated and isotopically labeled peptides examined here.  
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Figure 6 Models of the three equatorial coordination modes. For component 3, X may 
represent either a fourth imidazole or a water molecule.  

Because the proposed component 2 coordination mode (Figure 

6) appears to take up all of the equatorial sites, Cu2+ should form a 

1:1 complex with each octarepeat His. To test this directly, EPR 

detected titrations were performed on HGXGWGQPHGXGW and 

HGXGW using previously established methods.8,11 The longer peptide 

with two putative binding segments takes up between 1.0 and 1.5 

copper ions, and the pentamer binds as a 2:1 complex with copper. In 

contrast to the expected 1:1 stoichiometry, these data suggest that 

two HGGGW segments are required to stabilize component 2 binding. 

To determine whether a neighboring His makes an additional contact 

with Cu2+, we examined the His → Tyr substituted constructs 

HGGGWGQPYGGGW and YGGGWGQPHGGGW, as well as an analogue 

with three linked HGGGW segments, but with a His → Tyr mutation at 

the second repeat (Table 1). Tyrosine was chosen because it is 

approximately equivalent to His in size, is reasonably soluble, but lacks 

a nitrogen capable of coordinating copper. Interestingly, all of these 

constructs exhibit exclusively component 1 binding, as determined by 

X-band EPR (data not shown).  

 

The ESEEM spectra are consistent with a single equatorial 

imidazole, and the five-line mI = −1/2 multiplet in the S-band spectra 

indicates only two equatorial nitrogens. However, binding 

stoichiometry and constructs with His → Tyr mutations suggest that 
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two His residues in sequential repeat segments are required to 

stabilize component 2. These data argue that a second imidazole may 

coordinate but in an axial position. In square-pyramidal coordination 

geometry, axial bonds to Cu2+ are often much longer and weaker than 

equatorial due to the Jahn−Teller distortion. Although EPR spectra are 

usually not sensitive to axial nitrogens, they may under some 

circumstances be detectable by ESEEM arising from the directly bound 
14N.39 However, this signal is weak and typically not visible in the 

presence of strong ESEEM signals from an equatorial imidazole.60 The 

likelihood of this coordination mode and its structural implications will 

be considered in the Discussion.  

 

Component 3 Coordination − Low Cu2+ Occupancy. 

Component 3 coordination is observed only in the constructs 

KKRPKPWGQ(PHGGGWGQ)4, KKRPKPWGQ(PHGXGWGQ)4, and 

(PHGGGWGQ)3 at low copper load (<1.0 equiv), and thus requires 

three or four sequential HGGGW segments. Analysis of g∥ and A∥ 

suggests 3N 1O or 4N coordination (Table 2). In addition, reduction of 

pH to 6.5, at a fixed Cu2+ concentration, leads to a relative loss of 

component 1 binding but does not influence component 3 (data not 

shown). The accumulation of these observations suggests that 

component 3 arises from coordination of three or four neutral 

imidazoles and is likely the dominant species previously observed at 

reduced pH.8,25 In support of this assignment, Cu2+ in a 50-fold molar 

excess of imidazole gives a spectrum that is nearly indistinguishable 

from that of component 3 (data not shown), and the coupling terms g∥ 

and A∥ (Table 2) are close to those reported by Malmstrom and 

Vanngard from Cu2+ with excess imidazole at pH 6.8.61  

 

ESEEM is sensitive to multiple imidazole coordination as 

reflected through combination peaks and an enhanced ΔmI = 2 

signal.55 ESEEM spectra for PrP(23−28, 57−91) with 1.0 and 4.0 equiv 

of Cu2+ are shown in Figure 7. The spectrum at 4.0 equiv (component 

1) was previously assigned using 15N labeling and two-dimensional 

hyperfine sublevel correlation spectroscopy (HYSCORE) and arises 

from the His imidazole and the amide nitrogen of the third Gly in the 

HGGGW segment.10 This spectrum shows no indication of combination 

peaks, and the ΔmI = 2 signal at approximately 4.0 MHz is consistent 

with a single imidazole. At 1.0 equiv, however, there are marked 
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changes in the ESEEM spectrum (Figure 7). The lines arising from the 

noncoordinated Gly(3) amide nitrogen are lost. Most notably, the ΔmI 

= 2 signal is now prominent and, relative to the intense peak at 1.5 

MHz, is increased in amplitude by a factor of 2−3 over that obtained 

with 4.0 equiv of Cu2+. There are also weak signals at approximately 

2.1, 2.4, and 3.1 MHz, consistent with combination peaks arising from 

the fundamental low-frequency lines at exact cancellation. S-band EPR 

was also obtained from PrP(23−28, 57−91) with 1.0 equiv of copper 

and revealed a well-resolved seven- or nine-line multiplet for the mI = 

−1/2 line (inset) consistent with coordination by three or four 

equivalent nitrogens. Together, these data clearly suggest that 

component 3 arises from multiple imidazole coordination.  

 

 
Figure 7 Three-pulse ESEEM comparing PrP(23−28, 57−91) with 4.0 and 1.0 equiv of 
Cu2+. At 4.0 equiv, component 1 dominates; the grid at the top shows the previously 

determined assignment.10 At 1.0 equiv, which favors component 3, the enhanced ΔmI 
= 2 feature at 4.1 MHz is consistent with multiple His coordination. The inset shows 
the S-band mI = −1/2 line obtained with 1.0 equiv. The seven- or nine-line pattern 
suggests 3N1O or 4N coordination by equivalent nitrogens. 

To gain insight into the three-dimensional characteristics of the 

distinct copper binding components, structural calculations were 

performed using distance restraints arising from coordination sphere 

appropriate for each of the binding modes. The polypeptide backbone 

was left unrestrained, except where noted, thus resulting in significant 

variations in backbone geometry for intervening loops. The results are 

shown in Figure 8. Component 3 was calculated with coordination from 
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the three N-terminal, octarepeat His imidazoles (His60, His68, His76), 

with the fourth octarepeat His (residue 84) left free. The resulting 

structure reveals an extensive segment of disordered polypeptide of 

approximately 40 amino acids between the last His of the copper 

binding segment (in this three His coordination structure) and the first 

β-strand of the globular domain. Component 2 was developed using 

the equatorial coordination mode shown in Figure 6 and an additional 

long copper bond (2.4 Å) to the adjacent His imidazole in the following 

octapeptide segment. The structure gives rise to two rather large 

loops, each closed by copper coordination. Component 1 was 

developed using the known restraints from the crystal structure of 

Cu2+-HGGGW. In addition to extensive copper contacts to the His, Gly, 

and Trp residues, two copper ions in adjacent repeats were brought 

into close proximity of approximately 4.0 Å based on the observed 

dipolar couplings.  

 

 
Figure 8 Models of PrPC containing Cu2+ in the three coordination modes. The figure 
at upper left shows PrP(60−231) bound to a single Cu2+ with component 3 
coordination. To the upper right, the copper binding octarepeat domain is expanded. 
In this mode, an additional His imidazole may also participate in copper binding. For 
components 1 and 2, only the octarepeat domains are shown. 

Discussion 

The octarepeat domain of PrP, at pH 7.4, passes through a 

series of distinct binding modes as a function of Cu2+ concentration. 

The equatorial features are summarized in Figure 6, and 
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representative N-terminal structures are shown in Figure 8. At low 

occupancy, less than 1 equiv of Cu2+, three or four His imidazoles from 

adjacent octarepeat segments contribute to the coordination sphere 

(component 3 binding). This binding mode persists at a reduced pH of 

6.5. Between 1 and 2 equiv, individual histidines provide the equatorial 

environment, binding through the imidazole and the deprotonated 

exocyclic nitrogen. The overall charge at the component 2 center is +1 

resulting from the +2 charge of the copper and the −1 charge of the 

histidine backbone amide nitrogen. Water molecules also contribute to 

the coordination sphere. A second imidazole is also implicated in 

component 2 binding; however, this interaction is not reflected by 

ESEEM studies. Finally, from 2 to 4 equiv, where the octarepeat 

domain saturates with Cu2+, component 1 coordination dominates. 

This mode, described previously by both EPR and X-ray 

crystallography,10 yields a neutral copper center because the charge on 

the metal ion is offset by the two negative charges from the sequential 

deprotonated glycine amides. Dipolar couplings and half field EPR 

signals indicate that component 1 is accompanied by a significant 

population of copper centers in near proximity, separated by 3.5−6 Å.  

 

The data presented herein, along with previous studies, provide 

a clear picture of both component 1 and component 3 binding. 

Component 2, however, remains enigmatic. EPR spectra obtained from 

various peptide constructs suggest that two adjacent octarepeats are 

required to stabilize component 2. Substitution of His with Tyr in either 

of the adjacent octapeptide repeats eliminates the component 2 signal. 

Although these data suggest that two imidazoles coordinate to a single 

Cu2+ center, this is not supported by ESEEM, which gives the 

characteristic signal of a single equatorial imidazole. To reconcile these 

findings, we consider two possibilities. First, the peptide conformation 

may control the component 1/component 2 equilibrium. As noted, two 

adjacent octarepeats are sufficient for both binding modes, with 

component 1 dominating at full occupancy (2 equiv − one copper per 

octarepeat). At half occupancy, with a single Cu2+ or less, the peptide 

may be structured in a fashion that competes against normal 

component 1 binding. For example, in interleukin-6, nuclear magnetic 

resonance (NMR) shows that the side chains pairs Trp and His interact, 

thus stabilizing secondary structure.62 Considering only two adjacent 

octarepeats, it is noted that the segment WGQPH separates the glycine 
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triplets. Perhaps an interaction between Trp and His stabilizes a β-

turn. Without the Trp indole available for component 1 coordination, 

the copper may be driven instead to the remaining N-terminal His in a 

component 2 binding fashion. Recent NMR experiments on 

HGGGWGQP and (HGGGQGQP)3 in the absence of copper indeed do 

find evidence of turns involving Trp.63 However, these studies also find 

that the HGGGW segment adopts a conformation similar to that 

involved in component 1 binding. In contrast to peptide conformation 

competing with component 1 binding, it appears that the octarepeat 

domain actually preorganizes to stabilize this binding mode.  

 

A second possible role for the additional His in component 2 

binding is direct imidazole coordination but through a longer and 

weaker copper−nitrogen bond. Here, two recent crystallographic 

studies are instructive. The complex Cu(His)2 is relevant both as a 

source of exchangeable Cu2+ in blood and also as a means of 

delivering therapeutic levels of copper in Menkes disease.64 One might 

expect this complex to organize in a symmetric fashion with both 

histidines contributing equally to the coordination environment. 

Indeed, the complex Cu(d-His)(l-His) forms a structure in which each 

His coordinates through an imidazole nitrogen and amino nitrogen,58 

very much like component 2. Just recently, the Cu(l-His)2 structure 

was determined and, surprisingly, revealed crystallographically distinct 

histidine coordination.59 In the equatorial plane, one His bound 

through its imidazole and amino nitrogens, whereas the other His 

bound through its amino nitrogen and carboxylate oxygen. An 

equivalent coordination mode had been previously determined from 

ESEEM investigations on copper-doped single crystals of l-histidine.65 

From a structural perspective, these studies may suggest that when an 

l-His coordinates through its two nitrogens, steric constraints may 

interfere with coordination of a second equatorial imidazole (although 

we do note that a recent high field electron nuclear double resonance 

(ENDOR) study did identify a symmetric bis-His copper complex with 

each His contributing amino and imidazole nitrogens66). An unusual 

bis-His complex was recently elucidated in a mutant of nitrite 

reductase.67 In the wild-type protein, the type 2 Cu2+ center involves 

three imidazoles. Removal of one of the imidazole groups in an H/V 

mutant results in a bis-His complex with a water molecule contributing 

to the coordination environment. Interestingly, the imidazoles are 
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inequivalent with respect to the copper−nitrogen bond length. One 

bond is approximately 2.0 Å, whereas the other is approximately 2.4 

Å. The shorter bond length is typical of equatorial coordination, 

whereas the longer bond is reminiscent of axial coordination in Cu2+ 

centers. As noted in the Results section, ESEEM of longer axial bonds 

is extremely weak and difficult to observe in the presence of equatorial 

imidazole coordination.60 In light of these findings, we propose that 

component 2 likely involves two imidazoles at the copper center but 

with one in an axial position that is relatively ESEEM silent.  

 

Our studies presented here link well with several recent 

investigations into PrP-copper binding. Valensin et al. reported detailed 

potentiometric titrations on (PHGGGWGQ)2 and (PHGGGWGQ)4.34 At 

fixed copper/peptide ratios, pH is scanned while monitoring proton 

release. Remarkably, these investigations reveal a wide range of 

distinct deprotonated species. Focusing on their data obtained with 1.0 

equiv of copper interacting with (PHGGGWGQ)4 at pH 7.4, they find 

evidence for a dominant species that has retained its backbone 

protons, consistent with component 3. With 4.0 copper equiv, the 

principle species just above pH 7.0 has given up nine protons. Our 

component 1 binding mode (Figure 6) requires a loss of two protons 

per bound Cu2+, which is quite close to that identified by Valensin et al. 

They did not examine (PHGGGWGQ)4 with 2.0 equiv of Cu2+. However, 

just above pH 6.0, they do find a species that has given up one proton 

for each bound copper, consistent with component 2. In this same 

study, NMR results obtained from (PHGGGWGQ)2 with trace amounts 

of added Cu2+ show line broadening consistent with multiple His 

coordination, again consistent with the component 3 structure.  

 

Morante et al. used extended X-ray absorption spectroscopy 

(XAS), both XANES and EXAFS, to probe copper binding in partially 

and fully occupied octarepeat constructs, as well as in bovine rPrP.33 At 

full occupancy, their analysis supported our reported crystal structure 

with single imidazole coordination. However, at partial occupancy, 

additional spectral features were identified consistent with two 

coordinated imidazoles. These results held for octarepeat peptides as 

well as full-length rPrP. On the basis of fluorescence titrations, Jackson 

et al. suggested that the full PrP octarepeat domain binds only a single 

Cu2+ with high affinity.15 Although the reported affinities from this 
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study have been questioned,32 their modeling studies nevertheless 

revealed low energy conformations with four-imidazole coordination. 

Together, these disparate studies clearly point to diverse binding 

modes, as directly observed here.  

 

With regard to component 1 binding, our studies reveal dipolar 

couplings arising from proximal copper centers. The dipolar signal 

grows in concomitantly with component 1 formation and, therefore, 

most likely arises from packing interactions between the structured 

Cu2+-HGGGW segments. As noted in the Results section, analysis of 

the dipolar splitting versus the half field signal intensity yields different 

distance measurements, most likely indicating a range of 

copper−copper distances. Direct interpretation of these data is difficult 

because the observed distance-dependent signals may arise from the 

interaction of more than two copper centers. Nevertheless, the short 

3.0−6.0 Å distance range (Results) suggests that the individual 

component 1 segments come into van der Waals contact. (Note that 

the axial bond to water is approximately 2.4 Å so that stacking of the 

ordered Cu2+-HGGGW segments would place the copper centers 

approximately 3.0 Å apart.) Individual component 1 sites are 

uncharged, as are the intervening GQP linker segments. Consequently, 

upon full copper occupancy, the coupling data observed here suggest 

that the octarepeat domain undergoes a partial hydrophobic collapse. 

Such a collapse, similar to the principle force of protein folding, may 

be mechanistically important. Using circular dichroism (CD) and 

binding competition studies, Garnett and Viles found that the 

octarepeat domain binds copper with strong positive cooperativity, 

accompanied by structural organization of the GQP linker (Table 1) 

between Cu2+-HGGGW segments.32 However, cooperative binding was 

not observed for constructs containing only one or two octarepeats. It 

was argued that at full copper occupancy, the octarepeat domain takes 

on structure. Our results are consistent with this proposal and suggest 

a physical driving force underlying structural reorganization upon full 

copper occupancy.  

 

The function of PrPC remains unknown. PrPC is internalized by 

endocytosis at high copper concentrations, suggesting that PrP may 

function as a copper sensor or transporter.27 The significant structural 

changes associated with the transition from component 3 to 

http://dx.doi.org/10.1021/ja053254z
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component 1 binding (Figure 8) may serve to transduce the signal for 

this internalization process. Although copper-induced endocytosis is 

well established, it is not yet clear how this process links to any 

specific PrPC function.28,68 Nevertheless, the emerging consensus is 

that PrPC plays a neuroprotective role.69 Several mechanisms of action 

have been proposed including cell signaling, suppression of apoptosis, 

and antioxidant activity.69 With regard to antioxidant function, it has 

been argued that PrPC is an enzyme − a neuronal superoxide 

dismutase (SOD).70,71 However, the relatively weak micromolar affinity 

observed for Cu2+ association with PrP is not characteristic of known 

SODs.31,32 In addition, assays aimed at evaluating SOD function in 

brain tissue as a function of PrP expression failed to find enhanced 

activity.68,72 Here, we show that the octarepeat domain takes on widely 

varying structures as a function of copper load. This is also 

uncharacteristic of known SODs and, in accord, argues against such 

function.  

 

With regard to a neuroprotective role, several lines of 

investigation do suggest an intimate relationship between PrP and 

localized copper concentrations. Within the central nervous system, 

PrPC is concentrated at presynaptic membranes.4 There is significant 

copper efflux into the synapse as a function of both exocytosis and 

neuronal depolarization.73-75 The peak synaptic concentration is not 

certain, but estimates place [Cu2+] within the range from 3.0 μM74 to 

250 μM.75 It appears that copper efflux is an obligatory component of 

vesicle fusion leading to the release of neurotransmitter.5 Yet, 

experiments using cell culture demonstrate that copper concentrations 

in excess of 10 μM are toxic to neurons.76 Of significance here, PrP is 

able to ameliorate this toxic effect − the protein binds Cu2+ at the 

plasma membrane,28 and wild-type cells are more resistant to copper-

mediated oxidative stress as compared to PrP knockouts.28,76  

 

Recent work with the doppel protein also supports a 

neuroprotective role for PrP. The doppel protein is structurally 

homologous to the globular C-terminus of PrP but lacks the PrP N-

terminal octarepeat domain.77 Doppel protein (Dpl) is normally 

expressed in the testis.77 However, work with transgenic mice has 

shown that expression of Dpl in the central nervous system leads to 

apoptosis and ataxia; this effect is offset by coexpression with PrP. 
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Interestingly, recent mutagenesis experiments have shown that PrP's 

ability to protect against Dpl toxicity requires the octarepeat domain.78  

 

Given that PrPC takes up 4 equiv of Cu2+ in the octarepeat 

domain, and that this domain is key for neuroprotection, points toward 

a different type of antioxidant function. Component 1 binding stabilizes 

copper in the Cu2+ oxidation state, thus reducing potential copper-

mediated redox chemistry.9 Thus, instead of acting as a redox enzyme, 

PrPC may actually function as a copper buffer that sequesters the ion in 

a relatively redox inactive form.5,17 In this scenario, the antioxidant 

character arises from protection against deleterious copper-mediated 

oxidation chemistry. Our structural studies here show that component 

1 is dominant at high copper occupancy and thus maximizes PrPC's 

antioxidant character with increasing Cu2+ concentrations.  

 

The studies here provide structural details on the fundamental 

copper binding modes at pH 7.4. However, it is currently unknown 

which of the three modes are dominant in vivo. Moreover, it is not 

clear how the globular C-terminal domain, or its mutants, influences 

the equilibrium among these copper binding states. Elucidation of 

these issues is sure to provide important new insights into PrPC 

function and how the formation of PrPSc contributes to loss of this 

function.  
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