972 research outputs found

    Q-band electron nuclear double resonance (ENDOR) and X-band EPR of the sulfobetaine 12 heat-treated cytochrome c oxidase complex

    Get PDF
    Heat treatment of the bovine cytochrome c oxidase complex in the zwitterionic detergent sulfobetaine 12 (SB-12) results in loss of subunit III and the appearance of a type II copper center as characterized by electron paramagnetic resonance (EPR) spectroscopy. Previous authors (Nilsson, T., Copeland, R. A., Smith, P. A., and Chan, S. I. (1988) Biochemistry 27, 8254-8260) have interpreted this type II copper center as a modified version of the CuA site. By using electron nuclear double resonance spectroscopy, it is found that the CuA proton and nitrogen resonances remain present in the SB-12 heat-treated enzyme and that three new nitrogen resonances appear having hyperfine coupling constants consistent with histidine ligation. These hyperfine coupling constants correlate well with those recently found for the CuB histidines from the cytochrome aa3-600 quinol oxidase from Bacillus subtilis (Fann, Y. C., Ahmed, I., Blackburn, N. J., Boswell, J. S., Verkhovskaya, M. L., Hoffman, B. M., and Wikström, M. (1995) Biochemistry 34, 10245-10255). In addition, the total EPR-detectable copper concentration per enzyme molecule approximately doubles upon SB-12 heat treatment. Finally, the observed type II copper EPR spectrum is virtually indistinguishable from the EPR spectrum of CuB of the as-isolated cytochrome bo3 complex from Escherichia coli. These data indicate that the type II copper species that appears results from a breaking of the strong antiferromagnetic coupling of the heme a3-CuB binuclear center

    Responses of Mn\u3csup\u3e2+\u3c/sup\u3e Speciation in \u3cem\u3eDeinococcus radiodurans\u3c/em\u3e and \u3cem\u3eEscherichia coli\u3c/em\u3e to γ-Radiation by Advanced Paramagnetic Resonance Methods

    Get PDF
    The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) “antioxidant” Mn2+–metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)–scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn2+ speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn2+ of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn2+ of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn2+ speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn2+ complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn2+ speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants

    Resistance training and youth

    Get PDF
    This is the publisher's version, also found at http://ehis.ebscohost.com/ehost/detail?vid=4&sid=34ab1967-2aea-457b-b261-e90e7b05e38c%40sessionmgr11&hid=2&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=s3h&AN=20752095The use of resistance training for children has increased in popularity and interest. It appears that children are capable of voluntary strength gains. Exercise prescription in younger populations is critical and requires certain program variables to be altered tTom adult perspectives. Individualization is vital, as the rate of physiological maturation has an impact on the adaptations that occur, The major difference in programs for children is the use of lighter loads (i.e., > 6 RM loads). It appears that longer duration programs (i.e., 10-20 wks) are better for observing training adaptations. This may be due to the fact that it takes more exercise to stimulate adaptational mechanisms related to strength performance beyond that of normal growth rates. The risk of injury appears low during participation in a resistance training program, and this risk is minimized with proper supervision and instruction. Furthermore, with the incidence of injury in youth sports, participation in a resistance training program may provide a protective advantage in one's preparation for sports participation

    A new short-faced archosauriform from the Upper Triassic Placerias/Downs’ quarry complex, Arizona, USA, expands the morphological diversity of the Triassic archosauriform radiation

    Get PDF
    The Placerias/Downs’ Quarry complex in eastern Arizona, USA, is the most diverse Upper Triassic vertebrate locality known. We report a new short-faced archosauriform, Syntomiprosopus sucherorum gen. et sp. nov., represented by four incomplete mandibles, that expands that diversity with a morphology unique among Late Triassic archosauriforms. The most distinctive feature of Syntomiprosopus gen. nov. is its anteroposteriorly short, robust mandible with 3–4 anterior, a larger caniniform, and 1–3 “postcanine” alveoli. The size and shape of the alveoli and the preserved tips of replacement teeth preclude assignment to any taxon known only from teeth. Additional autapomorphies of S. sucherorum gen. et sp. nov. include a large fossa associated with the mandibular fenestra, an interdigitating suture of the surangular with the dentary, fine texture ornamenting the medial surface of the splenial, and a surangular ridge that completes a 90° arc. The external surfaces of the mandibles bear shallow, densely packed, irregular, fine pits and narrow, arcuate grooves. This combination of character states allows an archosauriform assignment; however, an associated and similarly sized braincase indicates that Syntomiprosopus n. gen. may represent previously unsampled disparity in early-diverging crocodylomorphs. The Placerias Quarry is Adamanian (Norian, maximum depositional age ~219 Ma), and this specimen appears to be an early example of shortening of the skull, which occurs later in diverse archosaur lineages, including the Late Cretaceous crocodyliform Simosuchus. This is another case where Triassic archosauriforms occupied morphospace converged upon by other archosaurs later in the Mesozoic and further demonstrates that even well-sampled localities can yield new taxa

    Neurophysiological Distinction between Schizophrenia and Schizoaffective Disorder

    Get PDF
    Schizoaffective disorder (SA) is distinguished from schizophrenia (SZ) based on the presence of prominent mood symptoms over the illness course. Despite this clinical distinction, SA and SZ patients are often combined in research studies, in part because data supporting a distinct pathophysiological boundary between the disorders are lacking. Indeed, few studies have addressed whether neurobiological abnormalities associated with SZ, such as the widely replicated reduction and delay of the P300 event-related potential (ERP), are also present in SA. Scalp EEG was acquired from patients with DSM-IV SA (n = 15) or SZ (n = 22), as well as healthy controls (HC; n = 22) to assess the P300 elicited by infrequent target (15%) and task-irrelevant distractor (15%) stimuli in separate auditory and visual ”oddball” tasks. P300 amplitude was reduced and delayed in SZ, relative to HC, consistent with prior studies. These SZ abnormalities did not interact with stimulus type (target vs. task-irrelevant distractor) or modality (auditory vs. visual). Across sensory modality and stimulus type, SA patients exhibited normal P300 amplitudes (significantly larger than SZ patients and indistinguishable from HC). However, P300 latency and reaction time were both equivalently delayed in SZ and SA patients, relative to HC. P300 differences between SA and SZ patients could not be accounted for by variation in symptom severity, socio-economic status, education, or illness duration. Although both groups show similar deficits in processing speed, SA patients do not exhibit the P300 amplitude deficits evident in SZ, consistent with an underlying pathophysiological boundary between these disorders

    Cloning and Characterization of Ancylostoma-secreted Protein

    Get PDF
    The developmentally arrested third stage infective larva of hookworms resumes development upon entry into the definitive host. This transition to parasitism can be modeled in vitro by stimulating infective larvae with a low molecular weight ultrafiltrate of host serum together with methylated glutathione analogues. When stimulated to resume development in vitro, activated larvae of the hookworm Ancylostoma caninum released a 42-kDa protein, termed Ancylostoma-secreted protein (ASP). ASP was the major protein released by activated hookworm larvae. Degenerate oligonucleotide primers, based on a partial internal amino acid sequence of the protein, were used together with flanking vector sequence primers to amplify a fragment from a third stage larval cDNA library by polymerase chain reaction. The fragment was used as a probe to isolate a longer clone from the larval cDNA library. The full-length ASP cDNA was found to encode a 424-amino acid protein with homology to the antigen 5/antigen 3 family of proteins from hymenopteran venoms and a family of cysteine-rich secretory proteins. ASP was expressed in bacterial cells, and a polyclonal antiserum against purified recombinant ASP was produced. The antiserum, which was demonstrated to be specific for ASP, was used as a probe to measure the kinetics of ASP release by hookworm larvae. ASP is released within 30 min of stimulation, with the majority released by 4 h. Low levels of ASP were released continuously following activation, but only if the stimuli were present in the incubation medium. The compound 4,7-phenanthroline, previously shown to inhibit larval activation, also inhibited release of ASP. The specific, rapid release of ASP by activated infective larvae suggests that this molecule occupies a critical and central role in the transition from the external environment to parasitism

    Prescription and Other Medication Use in Pregnancy

    Get PDF
    OBJECTIVE: To characterize prescription and other medication use in a geographically and ethnically diverse cohort of women in their first pregnancy. METHODS: In a prospective, longitudinal cohort study of nulliparous women followed through pregnancy from the first trimester, medication use was chronicled longitudinally throughout pregnancy. Structured questions and aids were used to capture all medications taken as well as reasons they were taken. Total counts of all medications taken including number in each category and class were captured. Additionally, reasons the medications were taken were recorded. Trends in medications taken across pregnancy and in the first trimester were determined. RESULTS: Of the 9,546 study participants, 9,272 (97.1%) women took at least one medication during pregnancy with 9,139 (95.7%) taking a medication in the first trimester. Polypharmacy, defined as taking at least five medications, occurred in 2,915 (30.5%) women. Excluding vitamins, supplements, and vaccines, 73.4% of women took a medication during pregnancy with 55.1% taking one in the first trimester. The categories of drugs taken in pregnancy and in the first trimester include the following: gastrointestinal or antiemetic agents (34.3%, 19.5%), antibiotics (25.5%, 12.6%), and analgesics (23.7%, 15.6%, which includes 3.6%; 1.4% taking an opioid pain medication). CONCLUSION: In this geographically and ethnically diverse cohort of nulliparous pregnant women, medication use was nearly universal and polypharmacy was common

    Particulate methane monooxygenase contains only mononuclear copper centers

    Get PDF
    Bacteria that oxidize methane to methanol are central to mitigating emissions of methane, a potent greenhouse gas. The nature of the copper active site in the primary metabolic enzyme of these bacteria, particulate methane monooxygenase (pMMO), has been controversial owing to seemingly contradictory biochemical, spectroscopic, and crystallographic results. We present biochemical and electron paramagnetic resonance spectroscopic characterization most consistent with two monocopper sites within pMMO: one in the soluble PmoB subunit at the previously assigned active site (CuB) and one ~2 nanometers away in the membrane-bound PmoC subunit (CuC). On the basis of these results, we propose that a monocopper site is able to catalyze methane oxidation in pMMO
    corecore