135 research outputs found

    Immigration, Repatriation, and Deportation: The Mexican‐Origin Population in the United States, 1920–1950

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102163/1/imre12054.pd

    Spread of activation and deactivation in the brain: Does age matter?

    Get PDF
    Cross-sectional aging fMRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and ROI analyses

    A theoretical and experimental appraisal of airworthiness evaluation techniques for small light aeroplanes

    Get PDF
    A thorough evaluation of the airworthiness of a manned aircraft is vitally important, regardless of the size or function of the aircraft. However, the methods used in light and particularly microlight aircraft certification were largely based upon rules of thumb or methods better suited to larger, higher energy, aircraft programmes. A programme of research has been carried out to develop means by which microlight aircraft certification could be carried out appropriately to this class of aircraft. The stall and immediately post-stall behaviour of an aircraft are shown to be a function of the deceleration rate prior to the stall; therefore it is necessary to use a representative deceleration rate when determining the acceptability of stall and post-stall handling qualities. This research has found means by which the range of deceleration rates likely to be seen in a particular type can be estimated, so that flight test programmes can ensure these rates are included, and thus aircraft are confirmed to have acceptable stalling characteristics. Weightshift controlled microlight aeroplanes, using a Rogallo type wing, rarely show a conventional (square law) relationship between stalling speed and loading; the reason being identified as aeroelastic deformation of the wing with loading. A means by which stalling speed may be estimated for such aircraft at a variety of loadings has been developed. This will allow designers the maximum flexibility in determining operating limits and shows how the stall speed at various flight conditions may be predicted in aircraft operating documentation. The spin is a serious and potentially fatal mode of flight; a spinning evaluation, even for non-aerobatic aeroplanes, is therefore essential. A best practice has been developed and tested for the spin-resistance or spinning evaluation of microlight aeroplanes, including equipment, aircraft and crew preparation, and reporting. The developed methodology is shown to be successful, using the results of certification flight test programmes, and the in-service safety record of aircraft which had been evaluated using these methods. The tumble mode is a little known mode of departure from controlled flight experienced by weightshift controlled microlight aeroplanes. It has been a very significant factor in fatal accident records, being non-recoverable without the use of external safety devices. The mode consists of a nose-down autorotation at a rate of up to 400°/s. The tumble entry mechanism is explained, and advice to operators developed which should prevent tumble entry. Evidence is shown of the nature of the developed tumble – both modelled and through wind tunnel results, which explain how the autorotation occurs. It is also shown how this theory may be applied during testing of an aircraft to develop a tumble resistant aircraft.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Re-estimating the Gainful Employment Rate of Older Men: the United States, 1870 to 1930.

    Get PDF
    Analyses of the economic effects of the introduction of the public pension system on older men in the US have been hamstrung by difficulties generating reliable estimates of historical labor-force participation rates using data from early US censuses that only asked respondents about their occupations and not whether they were actively employed. We extend a unique feature of the 1901 Canadian census, which asked about retirement status as well as occupation, to older men in the 1900 US Census to estimate labor-force participation rates that adjust for misreporting of employment status. Our estimates show that reported rates substantially overestimate labor-force participation among older men. We also show that adjusted rates based on an econometric correction for misclassified limited dependent variables produces are similar to those based on the 1901 Canadian census. Using this technique to extend our adjustment shows that reported rates overstate older men’s labor-force participation rates in the 1880, 1910, 1920 and 1930 census, as well as the decline in those rates between 1900 and 1910

    Brain hubs defined in the group do not overlap with regions of high inter-individual variability

    Get PDF
    Connector \u27hubs\u27 are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual variability. To answer this question, we examined inter-individual variation at group-level hubs in both the Midnight Scan Club and Human Connectome Project datasets. The top group hubs defined based on the participation coefficient did not overlap strongly with the most prominent regions of inter-individual variation (termed \u27variants\u27 in prior work). These hubs have relatively strong similarity across participants and consistent cross-network profiles, similar to what was seen for many other areas of cortex. Consistency across participants was further improved when these hubs were allowed to shift slightly in local position. Thus, our results demonstrate that the top group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross-network bridges. More caution is warranted with alternative hub measures, such as community density (which are based on spatial proximity to network borders) and intermediate hub regions which show higher correspondence to locations of individual variability

    From Canonical to Enhanced Extra Mixing in Low-Mass Red Giants: Tidally Locked Binaries

    Get PDF
    Stellar models which incorporate simple diffusion or shear induced mixing are used to describe canonical extra mixing in low mass red giants of low and solar metallicity. These models are able to simultaneously explain the observed Li and CN abundance changes along upper red giant branch (RGB) in field low-metallicity stars and match photometry, rotation and carbon isotopic ratios for stars in the old open cluster M67. The shear mixing model requires that main sequence (MS) progenitors of upper RGB stars possessed rapidly rotating radiative cores and that specific angular momentum was conserved in each of their mass shells during their evolution. We surmise that solar-type stars will not experience canonical extra mixing on the RGB because their more efficient MS spin-down resulted in solid-body rotation, as revealed by helioseismological data for the Sun. Thus, RGB stars in the old, high metallicity cluster NGC 6791 should show no evidence for mixing in their carbon isotopic ratios. We develop the idea that canonical extra mixing in a giant component of a binary system may be switched to its enhanced mode with much faster and somewhat deeper mixing as a result of the giant's tidal spin-up. This scenario can explain photometric and composition peculiarities of RS CVn binaries. The tidally enforced enhanced extra mixing might contribute to the star-to-star abundance variations of O, Na and Al in globular clusters. This idea may be tested with observations of carbon isotopic ratios and CN abundances in RS CVn binaries.Comment: 47 pages, 19 figures, accepted for publication in Ap

    Trade-offs in marine protection : Multi-species interactions within a community-led temperate marine reserve

    Get PDF
    This study investigated the effects of a community-led temperate marine reserve in Lamlash Bay, Firth of Clyde, Scotland, on commercially important populations of European lobster (Homarus gammarus), brown crab (Cancer pagurus), and velvet swimming crabs (Necora puber). Potting surveys conducted over 4 years revealed significantly higher catch per unit effort (cpue 109% greater), weight per unit effort (wpue 189% greater), and carapace length (10-15 mm greater) in lobsters within the reserve compared with control sites. However, likely due to low levels of recruitment and increased fishing effort outside the reserve, lobster catches decreased in all areas during the final 2 years. Nevertheless, catch rates remained higher within the reserve across all years, suggesting the reserve buffered these wider declines. Additionally, lobster cpue and wpue declined with increasing distance from the boundaries of the marine reserve, a trend which tag-recapture data suggested were due to spillover. Catches of berried lobster were also twice as high within the reserve than outside, and the mean potential reproductive output per female was 22.1% greater. It was originally thought that higher densities of lobster within the reserve might lead to greater levels of aggression and physical damage. However, damage levels were solely related to body size, as large lobsters >110 mm had sustained over 218% more damage than smaller individuals. Interestingly, catches of adult lobsters were inversely correlated with those of juvenile lobsters, brown crabs, and velvet crabs, which may be evidence of competitive displacement and/or predation. Our findings provide evidence that temperate marine reserves can deliver fisheries and conservation benefits, and highlight the importance of investigating multispecies interactions, as the recovery of some species can have knock-on effects on others

    Taking the trophic bypass : aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web

    Get PDF
    Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems

    Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web

    Get PDF
    Abstract. Ecosystems can be linked by the movement of matter and nutrients across habitat boundaries via aquatic insect emergence. Aquatic organisms tend to have higher concentrations of certain toxic contaminants such as methylmercury (MeHg) compared to their terrestrial counterparts. If aquatic organisms come to land, terrestrial organisms that consume them are expected to have elevated MeHg concentrations. But emergent aquatic insects could have other impacts as well, such as altering consumer trophic position or increasing ecosystem productivity as a result of nutrient inputs from insect carcasses. We measure MeHg in terrestrial arthropods at two lakes in northeastern Iceland and use carbon and nitrogen stable isotopes to quantify aquatic reliance and trophic position. Across all terrestrial focal arthropod taxa (Lycosidae, Linyphiidae, Acari, Opiliones), aquatic reliance had significant direct and indirect (via changes in trophic position) effects on terrestrial consumer MeHg. However, contrary to our expectations, terrestrial consumers that consumed aquatic prey had lower MeHg concentrations than consumers that ate mostly terrestrial prey. We hypothesize that this is due to the lower trophic position of consumers feeding directly on midges relative to those that fed mostly on terrestrial prey and that had, on average, higher trophic positions. Thus, direct consumption of aquatic inputs results in a trophic bypass that creates a shorter terrestrial food web and reduced biomagnification of MeHg across the food web. Our finding that MeHg was lower at terrestrial sites with aquatic inputs runs counter to the conventional wisdom that aquatic systems are a source of MeHg contamination to surrounding terrestrial ecosystems
    corecore