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a b s t r a c t 

Connector ‘hubs’ are brain regions with links to multiple networks. These regions are hypothesized to play a critical role in brain function. While hubs are often 

identified based on group-average functional magnetic resonance imaging (fMRI) data, there is considerable inter-subject variation in the functional connectivity 

profiles of the brain, especially in association regions where hubs tend to be located. Here we investigated how group hubs are related to locations of inter-individual 

variability. To answer this question, we examined inter-individual variation at group-level hubs in both the Midnight Scan Club and Human Connectome Project 

datasets. The top group hubs defined based on the participation coefficient did not overlap strongly with the most prominent regions of inter-individual variation 

(termed ‘variants’ in prior work). These hubs have relatively strong similarity across participants and consistent cross-network profiles, similar to what was seen for 

many other areas of cortex. Consistency across participants was further improved when these hubs were allowed to shift slightly in local position. Thus, our results 

demonstrate that the top group hubs defined with the participation coefficient are generally consistent across people, suggesting they may represent conserved cross- 

network bridges. More caution is warranted with alternative hub measures, such as community density (which are based on spatial proximity to network borders) 

and intermediate hub regions which show higher correspondence to locations of individual variability. 

1. Introduction 

In the past two decades there has been a steady increase in the ap- 

plication of network science methods to cognitive neuroscience, par- 

ticularly in the analysis of functional networks measured with fMRI. 

Functional brain networks are sets of brain regions with inter-correlated 

fMRI blood oxygen level dependent (BOLD) signals. These networks are 

present when subjects are engaged in a task or at rest ( Gratton et al., 

2018a ). Different functional brain networks have been implicated in 

distinct psychological functions including sensory, motor, memory, 

self-referential processing, and cognitive control ( Biswal et al., 1995 ; 

Dosenbach et al., 2007 , 2006 ; Greicius et al., 2003 ; Seeley et al., 2007 ; 

Thomas Yeo et al., 2011 ). However, many complex tasks require in- 

tegration of distinct functional systems, requiring an understanding of 

the interactions between brain networks ( Bullmore and Sporns, 2009 ; 

Gratton et al., 2018b ; Sporns, 2010 ). Network science methods pro- 

vide an opportunity to quantitatively assess the distributed interactions 

within and across these diverse networks, as well as the role of specific 

regions within this network structure. 

Connector hubs (from this point forward simply referred to as 

hubs 1 ) are specialized nodes within a complex system that have connec- 

tions distributed across networks ( Guimerà and Nunes Amaral, 2005 ; 

Power et al., 2013 ). Hubs appear to have an important role in brain 

networks, just as in many other complex systems ( Bullmore and 

Sporns, 2009 ; Sporns, 2010 ; Van Den Heuvel and Sporns, 2011 ). Their 

position between different networks suggests that hubs may play an 

integrative role in brain function, perhaps associated with linking the 

distinct processes associated with different networks ( Bertolero et al., 

2018 , 2017 ; Gratton et al., 2018b ). Evidence in favor of this view comes 

from studies showing that hub activity is linked to a variety of tasks and 

cognitive processes ( Bertolero et al., 2015 ; Cole et al., 2013 ) and their 

functional connectivity varies across task contexts ( Cole et al., 2013 ; 

Gratton et al., 2016 ). Literature on brain lesions also suggests that hubs 

play a critical role in network organization and brain function. Lesions 
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to hubs lead to wide-spread cognitive deficits, relative to lesions to non- 

hub regions ( Warren et al., 2014 ) and damage to hubs is has been asso- 

ciated with decreased brain network segregation ( Gratton et al., 2012 ). 

Jointly, these findings suggest that hubs may play a central role in fa- 

cilitating inter-network communication that enables various complex 

behaviors. 

However, most studies of functional networks and hubs have been 

conducted on group data, averaged across participants. Hub measures 

are noisy and require substantial amounts of data to reach reasonable 

levels of individual reliability ( Gordon et al., 2017b ). So, the best op- 

tion open to many researchers is to use group hub measures to over- 

come noisy data on an individual basis, an approach used by a num- 

ber of groups ( Fransson and Thompson, 2020 ; Gratton et al., 2016 ; 

Liao et al., 2013 ; Seitzman et al., 2019 ). However, the last few years 

have seen a substantial growth in studies showing that there is a con- 

siderable amount of inter-subject variation in functional connectivity 

( Bijsterbosch et al., 2018 ; Finn et al., 2015 ; Gordon et al., 2017a , 2017b ; 

Gratton et al., 2018a ; Kong et al., 2019 ; Miranda-Dominguez et al., 

2014 ; Mueller et al., 2013 ; Seitzman et al., 2019 ). Reliance on group av- 

erage data may obscure important individual differences ( Smith et al., 

2021 ), including variation in hub regions ( Gordon et al., 2018 ). 

When a large amount of high-quality fMRI data is collected, reli- 

able individual-level network maps can be obtained and used to map 

differences in brain networks across people ( Gordon et al., 2017b ; 

Laumann et al., 2015 ). Locations of high inter-individual variability are 

most prominent in higher-level association regions ( Finn et al., 2015 ; 

Gratton et al., 2018a ; Kong et al., 2019 ; Mueller et al., 2013 ), espe- 

cially in the lateral frontal cortex and near the temporoparietal junc- 

tion ( Seitzman et al., 2019 ). The locations that are most different be- 

tween an individual and the group average (termed here as network 

‘variants’ ( Seitzman et al., 2019 )) have been shown to be mostly sta- 

ble over time and tasks ( Kraus et al., 2021 ; Seitzman et al., 2019 ) sug- 

gesting that they may be trait-like features of brain organization. While 

many network variants appear close to network boundaries, a substan- 

tial subset also appear at a distance from their typical network location 

( Dworetsky et al., 2021 ; Seitzman et al., 2019 ). 

Critically hubs, like ‘variant’ individual difference locations, are typ- 

ically found in association regions, especially the frontoparietal and cin- 

guloopercular “control ” networks ( Cole et al., 2013 ; Power et al., 2013 ). 

Thus, an important question is how hubs relate to locations of individ- 

ual variation in functional connectivity. Hubs, as previously measured 

in large groups ( “typical ” hub locations), and inter-individual variabil- 

ity in functional connectivity could be related in at least three differ- 

ent ways. One possibility is suggested by the vital role that hubs seem 

to play in tasks ( Bertolero et al., 2018 , 2015 ; Gratton et al., 2016 ; 

Warren et al., 2014 ), and the negative impact of damage to these re- 

gions ( Gratton et al., 2012 ; Warren et al., 2014 ). This view would sup- 

port the idea that group-level hubs are critical brain locations exhibiting 

connectivity profiles that are conserved across individuals, where major 

variations would cause a significant negative impact on brain function 

and cognition, in the same way that nearly all humans are born with 

two functioning lungs. If so, we would predict that, despite the high 

concentration of hubs in association regions, hubs will not overlap with 

locations of strong inter-individual variation. 

A second, contrasting, hypothesis is that, as hubs are locations 

with variable functional links across networks (and task contexts 

( Bertolero et al., 2018 ; Cole et al., 2013 ; Gratton et al., 2016 )), hubs 

may be locations with generally malleable connectivity profiles, includ- 

ing profiles that can differ strongly across subjects. This would predict a 

correspondence between hub locations and locations of inter-individual 

variability. In this view, group hubs would still show connectivity across 

multiple networks in individual people, but the networks bridged by a 

given hub location would be variable across individuals. 

Finally, it is possible that typical hubs observed in group average 

data are artifactual, representing locations of high network variabil- 

ity across people rather than a hub (an area with network connectivity 

evenly distributed across multiple networks) within a person. That is, a 

group-level hub could represent an area that is coupled with a single 

network within each individual but vary in which network is present 

across individuals, yielding an average connectivity profile that has 

connectivity evenly distributed across multiple networks. This profile 

would be mistaken for a hub if researchers focus on analyzing a group- 

level connectivity map. These scenarios are illustrated jointly in Fig. 1 . 

Note that it is also possible that different scenarios apply to different 

hubs. 

The primary goal of this study is to determine if hubs defined at the 

group level have a strong tendency to overlap with areas of inter-subject 

connectivity profile variability. A secondary goal is to better determine 

the relative likelihood of these different possibilities by determining how 

group hub locations vary in their connectivity profiles. If researchers 

wish to continue analyzing hubs defined at the group-level (in order to 

avoid the challenges of analyzing hubs defined at the individual-level) a 

comprehensive assessment of their variability is needed. We examined 

the relationship between hubs and measures of individual variability in 

both a deep “precision ” fMRI dataset (Midnight Scan Club; MSC, N = 9 

participants with ∼5 hrs of resting-state fMRI) and the large Human 

Connectome Project dataset (HCP; N = 752, with 1 hr of resting-state 

fMRI). 

2. Methods 

2.1. Overview and datasets 

Our goal in this project was to determine the extent to which group- 

average hubs show variation in their functional network profiles. We 

defined connector hubs using the commonly used participation coef- 

ficient metric ( Bullmore and Sporns, 2009 ; Guimerà and Nunes Ama- 

ral, 2005 ) (see below), a measure of how distributed a region’s con- 

nections are across different networks. We choose this metric since we 

define hubs as bridges linking functional brain networks and the par- 

ticipation coefficient captures how evenly distributed a node’s edges 

are between networks. In addition, we conduct secondary analyses us- 

ing an alternative metric of connector hubs termed “community den- 

sity ” ( Power et al., 2013 ), a measure of how spatially proximal a re- 

gion is to diverse networks. For both participation coefficient and com- 

munity density hubs, we used previously published measures of group- 

average hubs ( Power et al., 2013 ) based on a large 120 person dataset 

of healthy adults. For simplicity and maximal comparison with the prior 

literature, we focused on the “top ” group hubs in each case – e.g., 

the 10 regions with the highest participation coefficient values across 

participants. 

We then compared these top group hubs locations to locations of 

inter-individual variability. To examine patterns of inter-individual vari- 

ability, we analyzed data from 9 highly sampled subjects from the Mid- 

night Scan Club ( Gordon et al., 2017b ) and 752 subjects from the Human 

Connectome Project dataset ( Van Essen et al., 2012 ). The HCP subjects 

are an expanded sample from that used in Seitzman et al. (2019) in- 

cluding all low motion individuals regardless of familial relationship 

(see Seitzman et al., 2019 for additional details on the composition and 

exclusion criteria). In each of these individuals, we identified locations 

of variation relative to the typical pattern, focusing first on ‘variant’ 

locations most different from the group-average, and then on contin- 

uous measures of similarity to the group and relationship to specific 

networks. A dataset of 120 healthy adults was used as a group average 

reference (( Power et al., 2011 , 2013 ), the same as was used to define 

our group-average hubs). This dataset has been described in detail in 

Power et al. (2013) . Additional analyses also explored whether hubs 

could be improved with spotlight-based methods. Data collection pro- 

tocols for all three datasets were approved by Washington University’s 

institutional review board and informed consent was obtained from all 

participants. 
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Fig. 1. Schematic showing how group hubs may be organized within single individuals. The first column represents a “conserved hub ”, a hub that has similar cross- 

network connectivity in each individual and in group-average data. The second column shows a “malleable hub ”, a hub consistently present at the same location 

across individuals, but with distinct profiles in each individual (i.e., connecting to different networks). The third column represents an “artifactual hub ”: within each 

individual, this location is a non-hub with connections to just one single network, but there is a great of inter-subject variability in the identity of this network. When 

data is averaged across subjects it appears that connectivity is evenly distributed across networks and makes this location appear to be a hub. 

2.2. Data acquisition 

HCP data was acquired on a custom Siemens 3T Skyra with a cus- 

tom 32-channel head coil ( Van Essen et al., 2012 ). The HCP scanning 

protocol included a pair of T1-weighted (256 slices, 0.7 mm 

3 isotropic 

resolution, TE = 2.14 ms, TR = 2400 ms, TI = 1000 ms, flip angle = 8°) 

and a pair of T2-weighted (256 slices, 0.7 mm 

3 isotropic resolution, 

TR = 3200 ms, TE = 565 ms) images ( Glasser et al., 2013 ). Functional 

scans were collected using a multi-band sequence with MB factor 8, 

isotropic 2 mm 

3 voxels, TE of 33 ms, and TR of 720 ms ( Glasser et al., 

2013 ; Van Essen et al., 2012 ). One hour of resting state data was 

acquired per subject in 15 min. intervals over two separate sessions 

( Van Essen et al., 2012 ). 

For the MSC, high-resolution T1-weighted (224 slices, 0.8 mm 

3 

isotropic resolution, TE = 3.74 ms, TR = 2400 ms, TI = 1000 ms, 

flip angle = 8°), T2-weighted (224 slices, 0.8 mm 

3 isotropic resolution, 

TE = 479 ms, TR = 3200 ms) both with 0.8 isotropic resolution, and rest- 

ing state BOLD data were collected on a Siemens 3T Magnetom Tim Trio 

with a 12-channel head coil ( Gordon et al., 2017b ). Functional scans 

were collected with a gradient-echo EPI sequence, isotropic 4mm 

3 vox- 

els, TE of 27 ms, and TR of 2200 ms ( Gordon et al., 2017b ). The MSC 

dataset acquired 5 h of resting state data per subject in 30 min. blocks 

over 10 separate sessions ( Gordon et al., 2017b ). 

The WashU-120 dataset was collected on a Siemens MAGNETOM 

Tim Trio, 3T scanner with a Siemens 12 channel Head Matrix Coil. Both 

T1-weighted (127 slices, 1 mm 

3 isotropic resolution, TE = 3.06 ms, 

TR = 2400 ms, TI = 1000 ms, flip angle = 8°) and T2-weighted (32 

slices, 2 × 1 × 4 mm 

3 resolution, TE = 84 ms, TR = 6800 ms) scans were 

collected ( Power et al., 2013 , 2014 ). The amount of resting state data 

collected per subject ranged from 7.7 to 16.5 min (TE = 27 ms, isotropic 

4mm 

3 voxels; TR = 2500 ms, flip angle = 90°). 

2.3. Preprocessing 

2.3.1. General preprocessing 

For each of the three datasets the T1-weighted images were pro- 

cessed via automatic segmentation of the gray matter, white matter, 

and ventricles in Freesurfer 5.3 ( Fischl et al., 2002 ). The default recon- 

all command in Freesurfer was then applied to produce the anatomical 

surface for each subject ( Dale, 1999 ). In the MSC dataset, these surfaces 

were manually edited to improve the quality of the registration. The sur- 

faces were registered to the fs_LR_32k surface space via the procedure 

outlined in Glasser et al. (2013) . 

For the HCP dataset the volumetric BOLD time series from each 

run were concatenated. Slice timing correction was not performed for 

the HCP dataset in accordance with the minimal preprocessing pipeline 

guidelines ( Glasser et al., 2013 ). Field inhomogeneity distortion correc- 

tion was conducted using the mean field map. Motion correction was 

conducted using rigid body transforms aligning to the first frame of the 

first run. After this step whole-brain intensity values across each BOLD 
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run were normalized to achieve a mode value of 1000 ( Miezin et al., 

2000 ). This dataset was processed in MNI atlas space with 2 mm 

isotropic voxels. 

The preprocessing pipelines used for the MSC and WashU-120 

datasets were almost identical to the HCP with some minor exceptions. 

Field inhomogeneity distortion correction using the mean field map was 

applied to all sessions for the MSC dataset but not for the WashU 120 

given that field maps were not collected for this dataset ( Gordon et al., 

2017b ; Laumann et al., 2015 ). Slice timing correction was performed 

in both the MSC and WashU-120 datasets using sinc interpolation to 

account for temporal misalignment in slice acquisition time. This was 

followed by motion correction which was performed within and across 

BOLD runs (aligned to the first frame of the first run) via a rigid body 

transformation. Then whole-brain intensity values across each BOLD run 

were normalized to achieve a mode value of 1000 ( Miezin et al., 2000 ). 

For the WashU-120 functional BOLD data was then registered directly to 

a high resolution T1-weighted structural image from each participant. 

For the MSC functional BOLD data was first registered to a T2-weighted 

image and then to the T1. An affine transformation was used for registra- 

tion in both datasets. The T1-weighted image was aligned to a template 

atlas ( Lancaster et al., 2000 ) conforming to Talairach stereotactic atlas 

space using an affine transformation. All computed transformations and 

re-sampling to 3 mm isotropic voxels were simultaneously applied at 

the end of these steps. 

2.3.2. Resting state connectivity pipeline 

Steps were taken to mitigate the influence of artifacts on resting state 

BOLD time series. The impact of nuisance signals was attenuated via 

regression of average signal from the white matter, ventricles, global 

signal, motion parameters, as well as their derivatives and expansion 

terms ( Friston et al., 1998 ; Power et al., 2014 ). We acknowledge that 

there is controversy surrounding the application of global signal regres- 

sion (GSR); however a large number of studies comparing processing 

strategies have demonstrated that GSR is consistently one of the best ap- 

proaches to remove artifacts, especially from movement and respiration 

( Burgess et al., 2016 ; Ciric et al., 2017 ; Power et al., 2012 , 2014 , 2015 ; 

Satterthwaite et al., 2013 ). Lack of GSR allows spurious differences in 

motion and breathing to distort correlations. Given that motion and res- 

piration can vary across individuals and contaminate identification of 

selective individual differences in brain networks ( Siegel et al., 2017 ). 

The impact of motion was further mitigated via the removal of 

frames with framewise displacement > 0.2 mm, in addition to sequences 

containing less than 5 contiguous low motion frames, the first 30 s of 

each run, and runs with < 50 low motion frames ( Power et al., 2014 ). In 

the HCP dataset, before censoring high-motion frames, motion parame- 

ters were low-pass filtered at 0.1 Hz to reduce the effects of respiratory 

artifacts on motion estimates stemming from the short-TR multi-band 

acquisition ( Fair et al., 2020 ; Gratton et al., 2020 ; Siegel et al., 2017 ). 

Then a filtered FD threshold of 0.1 mm was applied to censor frames 

(mean filtered FD = 0.0203 mm ( ± 0.0052); mean number of frames re- 

tained = 4335 ( ± 330)). The same filtering procedure was also applied 

to two MSC subjects (MSC03 and MSC10) with respiratory contamina- 

tion in their motion parameters. In all cases, flagged head motion frames 

were removed and the time points were replaced with interpolated data 

using a power-spectral matched approach ( Power et al., 2014 ), after 

which a bandpass filter (0.009 Hz-0.08 Hz) was applied to the data. 

As previous results have indicated that ∼45 min. of low motion data 

are necessary to achieve high reliability of network variant locations 

( Kraus et al., 2021 ; Seitzman et al., 2019 ), we then removed any partic- 

ipant with less than 75%, or 45 min., of data in the HCP. In the 1200- 

HCP release, this resulted in 752/1206 final participants. In the MSC 

dataset 9/10 participants were retained ( Gordon et al., 2017b ). The ex- 

cluded MSC participant was removed due to high motion and drowsiness 

( Gordon et al., 2017b ; Laumann et al., 2017 ). 

For all datasets the processed BOLD data were mapped to each in- 

dividual’s native midthickness surface via the ribbon-constrained sam- 

pling procedure ( Marcus et al., 2013 ). Then, the mapped data were 

registered to the fsaverage surface in one step using the deformation 

map generated from the ribbon-constrained sampling procedure de- 

scribed in Glasser et al. (2013) . Next, smoothing was conducted via 

a geodesic Gaussian smoothing kernel to the surface registered data 

(FWHM = 6 mm, sigma = 2.55) ( Gordon et al., 2016 ; Marcus et al., 

2011 ). Temporally interpolated frames were then removed prior to func- 

tional connectivity analysis. Functional connectivity was calculated as 

the Pearson correlation coefficient between different cortical locations, 

based on time series averaged across regions. 

2.4. Regions of interest and functional brain networks 

A set of 264 spherical (10 mm diameter) regions of interest from 

( Power et al., 2011 ) were used as a basis to define group-average brain 

hubs ( Power et al., 2013 ). These regions divide into networks largely 

overlapping with the 14 canonical networks defined in ( Gordon et al., 

2017a ): the default mode (DMN), visual, fronto-parietal (FP), dorsal at- 

tention (DAN), language (Lang), salience, cingulo-opercular (CO), so- 

matomotor dorsal (SMd), somatomotor lateral (SMl), auditory, temporal 

pole (Tpole), medial temporal lobe (MTL), parietal medial (PMN), and 

parieto-occipital (PON). Group hubs were defined from the 264 spheri- 

cal regions, based on participation coefficient estimates previously pub- 

lished in Power et al. (2013) which were calculated from the group 

average of the WashU-120 dataset (see Section 2.5 ). 

The 14 canonical networks are also defined at the cortical surface 

vertex level in the WashU-120 group average ( Laumann et al., 2015 ). 

The cortical surface networks were used for the network profile analy- 

ses (see Section 2.6.3 ). These networks were defined with the Infomap 

clustering algorithm ( Rosvall and Bergstrom, 2008 ) which yielded data- 

driven functional network definitions for a range of edge density thresh- 

olds from 0.3% − 5% ( Gordon et al., 2017b ). A group average network 

consensus map was derived by collapsing network definitions across 

thresholds. This was done through a consensus procedure used in nu- 

merous published studies ( Gordon et al., 2017b ; Laumann et al., 2015 ) 

to collapse network labels across Infomap edge density thresholds. Each 

node was given a network assignment based on the sparsest threshold 

at which it was successfully assigned. Following this step node assign- 

ments were adjusted by the removal of small networks that were only 

detected at one threshold. The approach aims to integrate information 

dense thresholds in which more nodes were successfully assigned and 

more sparse thresholds which tend to produce smaller networks. 

Measures of inter-individual variation (spatial correlations between 

an individual and the group average and identification of network vari- 

ants) were calculated at the single cortical vertex, rather than regional, 

level. These are described in Section 2.6 . 

2.5. Hub definition 

Hubs were defined by two approaches: participation coefficient and 

community density. Primary analyses focused on the locations of brain 

hubs defined in group average data relative to locations of individual 

differences. These were derived from the WashU-120 group-average 

dataset based on published values from Power et al. (2013) . 

2.5.1 Participation coefficient hubs 

The participation coefficient is a graph theoretic measure that cap- 

tures how evenly distributed a node’s connections are across networks 

( Guimerà and Nunes Amaral, 2005 ); see Fig. 2A for schematic). The 

participation coefficient for node 𝑖 is defined as PC 𝑖 = 1 − Σ𝑁 𝑀 

𝑠 =1 ( 
𝑘 𝑖𝑠 

𝑘 𝑖 

) 
2 
, 

where 𝑘 𝑖 is the degree (the number of edges/connections to nodes in 

the given node’s module/network) of node 𝑖 , 𝑘 𝑖𝑠 is the number of edges 

of node 𝑖 to nodes in module/network 𝑠 , and 𝑁 𝑀 

is the total number 

of networks/modules in the graph. In the original work by Guimera 

and Ameral ( Guimerà and Nunes Amaral, 2005 ) connector hubs were 
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Fig. 2. A schematic of the identification of connector hubs and locations of inter-individual variability. (A) Connector hubs are locations with connections to multiple 

networks. Brain network regions, or ‘nodes’ can be depicted on the brain based on their location (left image) or as a spring-embedded network (middle left), where 

nodes with more connections are placed closer together (colors = networks). In this depiction, it becomes clear that some nodes lie intermediate to multiple networks, 

a characteristic that can be quantified with the participation coefficient (Guimera & Ameral 2005; middle right). Here, we ask how connector hubs relate to locations 

of inter-individual variability. (B) The identification of locations of inter-individual variability starts by comparing the connectivity profile for each vertex in an 

individual level seed connectivity map (subject map) to the seed connectivity map for the corresponding vertex in the group average reference dataset (group map). 

For each vertex the spatial correlation between these two maps is calculated to produce a similarity map that represents how similar an individual is to the group at 

each vertex. Variants are defined as sets of at least 50 contiguous vertices, not falling in low SNR locations, that are all in the bottom similarity decile (lowest 10% 

of locations). 

defined through a joint criteria of having both high participation coeffi- 

cient and high within-module degree (proportion of connections within 

their own system). However, recent work has demonstrated that in func- 

tional brain networks within-module degree does not show a sufficiently 

broad distribution to enable direct application of the Guimera & Amaral 

joint criteria for connector hubs ( Power et al., 2013 ), and has instead 

focused more exclusively on hubs defined with the participation coeffi- 

cient. 

Participation coefficient hubs in the group were identified based on 

a previously published analysis of the large WashU-120 group-average 

dataset ( Power et al., 2013 ). In brief, in that work the participation 

coefficient was calculated for each of 264 regions (nodes) for a range 

of sparsity thresholds from 2 to 10% edge density in 1% steps (net- 

work definitions were derived at each threshold for these calculations 

as well using the Infomap community detection algorithm ( Rosvall and 

Bergstrom, 2008 ). Participation coefficient values were then normalized 

and summed across thresholds to result in a final value for each region. 

This normalization was conducted per threshold of analysis (not con- 

ducted across subjects) to make the range of participation coefficient 

values comparable across thresholds. The ten regions with the highest 

participation coefficient values out of a set of 264 regions of interest 

were selected for analysis. The MNI coordinates of the centers of each 

of these ten spherical regions of interest were projected to a vertex on 

the Conte69 midthickness surface and dilated to a 5 mm radius. In ad- 

dition, these locations were checked to determine if more than 30% of 

their vertices overlapped with a low signal mask (mean BOLD signal less 

than 750 computed as in ( Ojemann et al., 1997 )). None of the top 10 

hub vertices overlapped with the low signal mask. In additional analy- 

ses, we examined continuous values of participation coefficient across 

all regions of interest, after removing those with > 30% of vertices in 

low signal regions. 

2.5.2. Community density hubs 

Hubs defined by community density were based on the top 10 com- 

munity density peaks listed in Power et al. (2013) . In brief, these 

were defined through the following procedure. Cortical voxels were as- 

signed to networks using the Infomap clustering algorithm ( Rosvall and 

Bergstrom, 2008 ) at a range of density thresholds (0.5–2.5% at 0.5% 

intervals). Community density was defined as the number of networks 

appearing within a radius of a given voxel (with radii ranging from 5 to 

10 mm in increments of 1 mm). Values were summed across thresholds 

and radii after normalizing the values within each analysis, resulting in 

one final community density value per voxel. The MNI coordinates of 

the top 10 community density peaks were then projected to the cortical 

surface and dilated 5 mm. As before, regions were checked for over- 

lap with a low signal mask; none of these regions exceeded the overlap 

threshold. 

2.5.3. Locations of inter-subject variation in functional connectivity 

The similarity of an individual’s connectivity profile and the group 

average connectivity profile was gauged via a spatial correlation 

following previously published methods ( Laumann et al., 2015 ; 

Seitzman et al., 2019 ); see Fig. 2b for schematic). For each vertex on 
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the cortical surface, its BOLD time series was correlated with the time 

series for every other vertex to form a seed correlation map. Each seed 

correlation map (connectivity profile for a given location) was Fisher Z 

transformed, vectorized, and then correlated (Pearson correlation) with 

the Fisher Z transformed correlation vector of the corresponding corti- 

cal vertex in the group average data map, resulting in a single similarity 

value for that location. Across all locations we use these values to form 

a map of correlations between the individual level connectivity profile 

and the group average connectivity profile, which we refer to in this 

work as a “similarity map ”. 

Areas of extreme idiosyncratic functional connectivity, which we call 

“network variants ” were then defined from this map using a recently de- 

veloped procedure ( Seitzman et al., 2019 ). This procedure was designed 

to find locations within a subject that exhibit highly deviant connectiv- 

ity profiles that do not fit with the connectivity pattern of its group 

average network of typical assignment hence the term network vari- 

ant. We began with the similarity map and then identified the locations 

that were most dissimilar (bottom 10%) between an individual and the 

group. The procedure has been shown to yield very similar results across 

different thresholds indicating that threshold is not a major determinant 

of the results ( Kraus et al., 2021 ; Seitzman et al., 2019 ). Regions were 

required to be composed of at least 50 contiguous vertices, fall outside 

areas with a low signal (mean BOLD signal less than 750 computed as 

in ( Ojemann et al., 1997 )), and to not overlap with the network the 

area’s vertices were originally assigned ( Seitzman et al., 2019 ). In order 

to determine where variants are most frequently found, we created an 

overlap map of the network variants across participants. The frequency 

of variants was defined as the percentage of subjects with a variant at 

a given cortical location (vertex). Variant frequency maps were pro- 

duced for both the HCP and MSC datasets ( Seitzman et al., 2019 ). No- 

tably, network variants do not appear to exhibit a relationship with ar- 

eas of anatomical variability. Seitzman and colleagues ( Seitzman et al., 

2019 ) found very low overlap between variants and deformations due 

to surface registration (mean dice overlap = 0.0001). Similar findings 

have been reported with other approaches to mapping individual differ- 

ences in functional networks ( Gordon et al., 2017b ), showing that these 

locations do not relate strongly to areal distortion, sulcal depth mis- 

alignment, and curvature mis-alignment metrics ( Gordon et al., 2017b ). 

Thus, variation in functional connectivity does not seem to be strongly 

associated to individual variations in gross anatomy. 

One potential pitfall of this procedure is its dependence on a group 

average reference dataset. The findings could be specific to the refer- 

ence. Yet, an analysis of the MSC dataset showed that when the average 

of all MSC subjects other than a given subject was used as a reference 

the resulting similarity maps were highly correlated (Range: 0.81–0.87) 

with WashU-120 references (see Figure S5). 

2.6. Relationship between hubs and locations of individual variability 

The relationship between hubs and locations of individual variabil- 

ity was analyzed in several ways. First, we examined whether hubs col- 

lectively overlap with network variant locations (locations of particu- 

larly strong variability). We also examined to extent to which single 

hub locations overlapped with variants. Second, we used the continuous 

individual-to-group similarity map to examine hub locations variability 

with a finer resolution. Third, we examined the network profile of con- 

nector hubs within single individuals and employed a local spotlight 

procedure to determine if it was possible to slightly adjust the position 

of hubs to improve inter-subject correspondence. 

2.6.1. Quantification of overlap between group-average hubs and variants 

We first examined the overlap of variants with group hub locations. 

The top 10 group hubs were defined as described above, using both par- 

ticipation coefficient and community density. A variant frequency map 

was then produced for each dataset, capturing the frequency of variants 

at each cortical location. We then measured the overlap between these 

maps. 

To determine if the frequency of variants at hub locations is greater 

than what would be expected for a random set of cortical locations of 

the same size with a similar spatial configuration, a null distribution 

was generated by randomly rotating a set of hubs across the cortical 

surface ( Gordon et al., 2016 ). For each set of hubs (either participa- 

tion coefficient or community density based) 1000 rotations were ran- 

domly generated and performed within each hemisphere. If any of the 

hubs intersected with the medial wall the rotation was recalculated un- 

til none of the hub locations overlapped with the medial wall. Given 

that the variant definition procedure ignores low signal zones, rotated 

hubs that intersected with a low signal mask were ignored. For each ro- 

tation, we calculated the average frequency of variants at rotated hubs. 

Across 1000 rotations, this produced a null distribution of the expected 

variant frequency at rotated hubs. We then compared the actual variant 

frequency for hubs (averaged across hub vertices) with that of the ro- 

tated distribution. This distribution was used to derive percentiles and 

95% confidence intervals for the variant frequency of hubs. A similar 

analysis was conducted for each single hub as well, in this case compar- 

ing variation at that hub to a null made based on rotating only that hub 

location. 

2.6.2. Quantification of overlap between group-average hubs and subtle 

variation 

The aforementioned analyses are geared towards determining if hubs 

overlap with areas of extreme inter-subject deviation in functional con- 

nectivity. We also conducted a secondary analysis to investigate whether 

top hubs overlapped with more subtle forms of inter-subject variation. 

For this analysis, we used the continuous (unthresholded) individual- 

to-group similarity map described in Section 2.5.3 for variant defini- 

tion. For each vertex, a continuous value represents how similar this 

location is to the group average in a given MSC or HCP subject. We 

then determined whether this individual-to-group similarity of hubs was 

lower than expected by chance by comparing the values at hub locations 

with the values obtained through random rotations of hubs, as described 

above. 

In addition, we carried out a supplemental analysis to examine how 

regions across the full participation coefficient spectrum varied across 

individuals. All of the Power 264 nodes with the exception of cerebellar, 

subcortical, and nodes that were not assigned to a network (45 nodes 

excluded) were projected to cortical surface. Nodes with 30% of their 

vertices overlapping with the low signal mask (7 nodes) were removed 

from analysis. For each of the remaining nodes the correlation between 

the individual level connectivity profile and the group average was cal- 

culated (similarity) and Fisher Z transformed in each MSC participant. 

The Fisher Z transformed similarity values were correlated with the sum 

of the participation coefficient across edge density thresholds. 

2.6.3. Quantification of the network profile of hubs across individuals 

Next, we examined the network profile of hub locations within in- 

dividual participants of the MSC, to determine whether they exhibited 

high connectivity to multiple (similar) networks. For each participation 

coefficient hub, the average correlation of the hub to each of the 14 

canonical networks (defined on the cortical surface; see Section 2.4 ) 

was calculated. This resulted in a 14 ×1 network correlation vector for 

each participant for each hub that we call a ‘network profile’. 

2.6.4. Local adjustments of group hub locations 

Launching from the results of the network profile procedure above 

(2.6.3), we asked whether group hub locations could be slightly spatially 

shifted within individuals to improve the correspondence of hubs across 

people. A spotlight procedure was applied to the MSC dataset in an effort 

to improve the correspondence of hubs across people. A spotlight was 

formed by dilating 10 mm around the central vertex of a group hub. 

The hub center was then moved throughout this spotlight (with hub 

extent still defined based on a 5 mm dilation). Potential hub locations 

with less than 70% of its vertices within a single network were removed 
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from consideration. These potential hub locations were then trimmed to 

encompass a single network (using the vertex-wise canonical network 

maps described in Section 2.4 ). 

At each potential hub location, we then examined how hubs were 

related to each of the 14 canonical networks, creating a network profile 

vector as described in Section 2.6.3 . The resulting network profiles were 

compared (via Euclidean distance) to a group-average reference profile 

based on the WashU-120 dataset. The best fitting (lowest Euclidean dis- 

tance to the reference) potential hub location was selected as the final 

adjusted hub location for a given individual. Euclidean distance was 

chosen since it takes both magnitude differences and relative standing 

consistency into account. The sensitivity of this analysis to the choice of 

distance metric was tested by comparing findings obtained with differ- 

ent distance metrics (Pearson and Spearman correlation based distance 

metrics). Both alternative distance metrics yielded results that were ex- 

tremely similar to those found with Euclidean distance (see Supplemen- 

tal Figure 6). 

Initial results of this analysis were examined qualitatively. The ro- 

bustness of this procedure was then tested quantitatively by splitting 

each MSC subject’s data in half (odd and even sessions). For each sub- 

ject the spotlight procedure was applied to each set (odd and even). We 

then examined the improved similarity to the WashU-120 reference set 

in the opposing set. 

2.7. Data and code availability 

All of the data have previously been made publicly available (HCP: 

https://www.humanconnectome.org/ ; MSC: https://openneuro.org/ 

datasets/ds000224/versions/00,002 ; WashU 120: https://legacy. 

openfmri.org/dataset/ds000243/ ). Code for analysis related to 

network variants in MATLAB is available at: https://github.com/ 

GrattonLab/SeitzmanGratton-2019-PNAS ; other code related to MSC 

processing can be found at: https://github.com/MidnightScanClub . 

Code related specifically to the analyses in this article will be located 

at this link upon publication: https://github.com/GrattonLab . 

3. Results 

3.1. Overview 

The aim of our investigation was to determine how group-defined 

hubs relate to areas of variation in functional connectivity across peo- 

ple. We hypothesized that group-level hubs are critical regions with con- 

nectivity profiles that should be conserved across individuals; thus they 

should exhibit relatively little variability in these profiles across sub- 

jects. A second contrasting hypothesis is that these regions are malleable 

in their functional connectivity, exhibiting a high degree of variability in 

their connectivity profiles across participants (but still remaining a hub 

across participants). A final alternative is that group-level hubs arise 

from averaging multiple different non-hub regions each associated with 

a different single network across individuals, creating an artifactual hub 

representation (see Fig. 1 ). 

To test these alternatives, we examined how group-level hubs relate 

to locations of individual variation in functional connectivity, focusing 

first on ‘variant’ locations with especially strong variations across peo- 

ple, and then at continuous measures of inter-individual variability. We 

then characterized group hubs in more detail, by examining their net- 

work profiles and determining whether small local adjustments in those 

profiles improved correspondence across individuals. 

3.2. Group hubs defined by the participation coefficient do not overlap with 

network variants 

Do group-level hubs correspond with locations that vary strongly 

across people? We began by examining the locations of the strongest 

group-level hubs, defined as the top 10 participation coefficient regions 

estimated from a group-average of 120 healthy young adults ( WashU- 

120) in previous work ( Power et al., 2013 ). The participation coefficient 

measure defines hubs as regions with distributed functional connectivity 

across networks (see section 2.5.1). In parallel, we identified locations 

of high inter-subject variability (locations we term “network variants ”; 

Seitzman et al. 2019). We asked how group hub locations corresponded 

with network variants across people. 

As can be seen in Fig. 3 , network variant locations are especially 

frequent in the temporoparietal junction, lateral frontal cortex, and the 

dorsal posterior cingulate. Participation coefficient group hubs are also 

found in association systems, but more prominently in the anterior in- 

sula, superior parietal cortex, and dorsolateral and medial frontal cortex 

( Fig. 3 , Power et al., 2013 ). Thus, there qualitatively appears to be low 

overlap between participation coefficient hubs and locations that fre- 

quently vary across people. 

Confirming this qualitative description, participation coefficient 

hubs, as a whole, occurred over variants at a low rate in the HCP dataset, 

Fig. 3. Comparison of top group participation coefficient hubs to locations of inter-individual variation. A) The locations of the top 10 group hubs defined using the 

participation coefficient are represented as light blue foci on the cortical surface. The heat map displayed on the cortical surface captures the frequency of variants 

(percentage of subjects with a variant at a location) based on the HCP dataset, with warmer colors indicating greater variant frequency. B) Comparison of the true 

frequency of variants at participation coefficient hubs (red dot) relative to random rotations of the hub set (black dots). Group hubs defined by the participation 

coefficient do not frequently overlap with areas of idiosyncratic functional connectivity. 
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Fig. 4. Network variant frequency at single participation coefficient hub locations. Each foci on the cortical surface represents a participation coefficient hub based 

on group-average data. The scatter plots capture the relationship between the true frequency of network variants at a given hub region (red dot) and the amount 

expected by random rotations (black dots). None of the hubs significantly differed from what would be expected from random rotations and all but one of the hubs 

(in the superior frontal cortex) were below the mean of the null distribution. 

within the bounds of what would be expected by chance relative to 1000 

random rotations of the hub set ( Fig. 3B ; on average 1.69% of people had 

variants at hub locations, at the 7th percentile of random rotations, 95% 

CI [1.21%, 8.90%]). This pattern replicated in the precision MSC dataset 

(Supp. Fig. 1A; including in a second set of analyses omitting global sig- 

nal regression, Supp. Figs. 7 & 8). Similar results were also seen when 

unthresholded versions of connector hub measures were used to identify 

the top group level hubs (Supp. Figs. 9 & 10). Thus, group hubs defined 

by the participation coefficient do not show significant correspondence 

to areas of strong inter-subject variability. 

We also examined how each single hub varied ( Fig. 4 ). The 10 

top participation coefficient hubs were separately compared to a dis- 

tribution of variant frequency in the HCP. This distribution was con- 

trasted with a null overlap distribution produced from 1000 random 

rotations of a region of the same size as the hubs. None of these 

top participation coefficient hubs deviated from what would be ex- 

pected from their null distribution (frequency of network variants at 

single hubs: 1.59% + /- 1.63%; frequency of network variants with ran- 

dom rotations: left hemisphere = 4.40% + / − 6.15%; right hemisphere: 

4.15% + /- 5.21%). The hub with the highest overlap with network 

variants was in the right superior caudal portion of the frontal lobe; 

this location had variants in 5.47% of people, still within the bounds 

of what would be expected by chance (70th percentile rotation). All 

other hubs were within a standard deviation of the null distribution’s 

mean. 

These findings show that group participation coefficient hubs do not 

frequently overlap with variants. This result is in line with the conserved 

hub hypothesis which states that the connectivity profiles of hubs are 

similar across individuals. In contrast, the malleable and artifactual hub 

hypotheses predict that group hubs should correspond with areas of high 

idiosyncratic functional connectivity. 

3.3. Community density hubs do overlap with locations of variability 

In past work, community density has been proposed as an alternative 

measure of connector hubs ( Power et al., 2013 ). This measure defines 

hubs based on their proximity to multiple different networks, under the 

assumption that regions at the intersection between networks are well 

situated to mediate cross-network interactions. However, as many loca- 

tions of individual differences occur near the borders between networks 

( Dworetsky et al., 2021 ; Kraus et al., 2021 ; Seitzman et al., 2019 ) it 

is possible that this measure will show a greater correspondence with 

locations of inter-individual variability. 

As before, we compared the locations of the top 10 group hubs, in 

this case defined based on community density in the same large sample 

of healthy young adults used in previous work ( Power et al., 2013 ), with 

the map of the frequency of variants in the HCP dataset ( Seitzman et al., 

2019 ). As depicted in Fig. 5A , the top community density hubs are 

found in somewhat similar locations to participation coefficient hubs, 

but more ventrally in the anterior insula, along the superior frontal cor- 

tex, and near the temporoparietal junction. As a whole, community den- 

sity hubs overlapped with network variant locations significantly more 

frequently than what would be expected by chance, as assessed with 

random rotations ( Fig. 5B ; on average 10.23% of people had variants at 

community density hub locations, at the 99th percentile of random ro- 

tations, 95% CI [1.27%, 8.86%]). This result was replicated in the MSC 

dataset (Supp. Fig. 1B; including in a second set of analyses omitting 

global signal regression, Supp. Figs. 7 & 8). These findings suggest that 

community density hubs from group-average data often overlap with 

areas of idiosyncratic functional connectivity, suggesting they may be 

identifying malleable ( Fig. 1B ) or artifactual ( Fig. 1C ) hubs. 

As before, we examined these results in more detail by quantify- 

ing the overlap of specific community density hubs with network vari- 
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Fig. 5. Comparison between group-average community density hubs and locations of strong inter-individual variability. A) The locations of group hubs defined 

using the community density metric are represented as light blue foci on the cortical surface. The heat map displayed on the cortical surface captures the frequency 

of network variants across people (percentage of subjects with a variant in at a location) based on the HCP dataset, with warmer colors indicating greater variant 

density. B) A scatter plot comparing the true frequency of variants (red dot) for the community density hub set to random rotations of the hub set (black dots). The 

high degree of correspondence between variants and community density hubs suggests that these hubs might be malleable or even artifactual hubs. 

ants in the HCP dataset (Supp Fig. 2). On average, 9.61% of people 

had variants over a connector hub (standard deviation: 6.79%; range: 

0.58% − 20.44%). Two hubs, one in the right superior frontal cortex and 

one near the left temporoparietal junction stood out as having numer- 

ically the highest variant overlap, but did not reach significance indi- 

vidually. Hubs in the left lateral frontal cortex, right temporoparietal 

junction, and the right lateral frontal cortex also exhibited relatively 

high frequency of variants. Thus, community density hubs have a high 

general tendency to overlap with network variants. 

3.4. Locations of participation coefficient hubs in individuals exhibit 

similar connectivity to the group-average 

The previous analyses demonstrate that group-average hubs defined 

with the participation coefficient do not overlap strongly with network 

variants, areas of particularly strong individual deviation in functional 

connectivity. However, it is possible that more subtle forms of variation 

would be present at these hubs that are not captured by network vari- 

ants. To investigate this question, we examined continuous measures of 

similarity at participation coefficient hubs (see Section 2.6.2 ). 

We measured the individual-to-group similarity of whole-brain func- 

tional connectivity for the top 10 participation coefficient hubs ( Fig. 6 ). 

Participation coefficient hub locations generally had good spatial cor- 

relations with the group-average connectivity profile in both HCP 

( r = 0.59 + / − 0.04) and MSC participants ( r = 0.64 + /- 0.04). Although 

the pattern of hub connectivity is generally consistent across subjects, 

there are some deviant cases like MSC09 hub 3 (which will be explored 

further in Sections 3.5 and 3.6 ). Comparisons with random rotations 

confirmed that hub regions show similar correspondence to the group 

average as other regions of cortex (see Supp. Fig. 3 and Supp. Table 1). 

This suggests that participation coefficient hubs do not differ substan- 

tially across individuals, even in more subtle forms of variation. 

3.5. Hubs with high participant coefficients also show good correspondence 

to the group using continuous measures 

The main aim of this paper was to assess the inter-subject consis- 

tency of the top hub regions (the upper echelon of regions in terms of 

participation coefficient) defined at the group level. Regions with high 

participation coefficient are frequently treated as a special category in 

past work ( Bertolero et al., 2015 ; Cole et al., 2013 ; Gratton et al., 2016 ; 

Power et al., 2013 ; Warren et al., 2014 ), emphasizing the utility of this 

approach for readers. 

We have shown that the top 10 participation coefficient hubs do 

not exhibit low levels of similarity with the group average connectiv- 

ity profile. Yet, this does not tell us about the relationship between the 

participation coefficient and similarity across the entire participation co- 

efficient distribution. To this end, we conducted an additional analysis 

investigating the relationship between continuous participation coeffi- 

cient measures and similarity to the group average connectivity profile. 

Specifically, the relationship between participation coefficient and sim- 

ilarity to the group average connectivity profile was examined for the 

cortical regions in Power et al. (2011) 264 ROIs in each MSC participant. 

The participation coefficient exhibited a weak negative correlation with 

similarity (Mean r = − 0.22 + /- 0.08; range − 0.33 to − 0.09) for most of 

the MSC subjects (see Fig. 7 ). 

Visual inspection of the figure above suggests that the extremely high 

participation coefficient nodes (the targets of our primary analyses) have 

typical similarity to the group average reference (represented by the red 

circles; Mean r = 0.64 + /- 0.04). Fig. 8 displays the top 25% of nodes in 

terms of participation coefficient and nodes are colored based on simi- 

larity to the group average connectivity profile. The lateral frontal cortex 

seems to disproportionately contain high participation coefficient nodes 

with relatively low similarity to the group, and should therefore be 

considered with caution when identified based on group-average maps. 

Nevertheless, the top 10 hubs demonstrate good consistency across par- 

ticipants. 

3.6. Characterizing hubs based on their cross-network profiles 

The current findings suggest that hubs are largely similar in whole- 

brain functional connectivity across individuals, in the bounds of what 

would be expected for other regions of cortex. Next we examined which 

networks each hub was connected within individuals, to gain insights 

into the viability of the conserved vs. malleable hub hypotheses posed 

in the introduction. For each of the top 10 participation coefficient hubs 

in each MSC participant, we measured its connectivity to 14 canonical 

networks, creating a network profile for that region. 

These profiles are shown for the top 10 participation coefficient hubs 

in Fig. 9 . Many hubs showed strong connectivity between 2 networks (1, 

2, 5, 8), while others appeared to connect with a broader set (e.g., hub 

3, 10). The network profiles were generally consistent across the MSC 
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Fig. 6. Continuous measures of individual-to-group similarity for participation coefficient hub locations. A) The location of group-average participation coefficient 

hubs are represented by the light blue circles, numbered for comparison to panels B and C. B) Each column of the x axis represents one of the analyzed MSC subjects 

and each row corresponds to one of the top participation coefficient hubs (corresponding number). The color scale represents the similarity of FC for a hub in each 

MSC individual relative to the group average, with warmer colors representing greater similarity. For the most part hubs are similar to the group average connectivity 

profile. (C) The same measures were calculated for the 752 HCP participants and are represented in a violin plot. The median similarity is marked by a red line. 

participants and the group average, in accordance with the conserved 

hub hypothesis. However, some exceptions were present (e.g., MSC02 

for Hub 1). This strong correspondence is reflected in the intraclass class 

correlation coefficients (ICC) for the hubs (cross-hub mean ICC 0.80 + /- 

0.06) which can be found in S Table 3 ( Shrout and Fleiss, 1979 ). 

3.7. Hub locations improve in correspondence if adjusted slightly in position 

We observed some exceptions to the conservation in network profiles 

( Fig. 9 ) and similarity ( Fig. 6 ) across participants (e.g., MSC02 for Hub 

1, MSC09 for Hub 3). We next asked whether these exceptions could be 

ameliorated if hub locations were allowed to shift slightly in location be- 

tween individuals. In order to investigate this possibility, we developed 

a spotlight procedure, in which hubs were adjusted slightly in position 

within each individual within a 10 mm radius to find the location with 

the best matching network connectivity profile (see Methods; Fig. 10 ). 

In most cases regions can be found in the spotlight that have a fair 

degree of resemblance to the group-average network profile (see two 

representative example hubs in Fig. 10 ). In particular, note that the sub- 

jects that were previously exceptions to the general pattern (MSC02 for 

hub 1, MSC09 for hub 3) show higher correspondence with the group 

average network profile at a nearby location. The improvement in net- 

work profile correspondence was reflected in the ICCs (Original cross- 

hub mean ICC 0.80 + /- 0.06 vs. Adjusted cross-hub mean ICC 0.94 + /- 

0.01) which are displayed in S Table 3 (original hubs) and S Table 4 

(adjusted hubs). 

The adjusted hub network profiles are shown for all hubs below in 

Fig. 11 . In comparing Fig. 9 to Fig. 11 , note the enhanced consistency in 

network profile for hubs across individual participants. This enhanced 

correspondence argues for group hubs showing conserved connectivity 

profiles across individuals, if you allow for a relatively minor local ad- 

justment in location. 
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Fig. 7. Continuous relationships between participation coefficient and group average similarity. For each MSC subject the participation coefficient (summed across 

thresholds) is on the x axis and the y axis represents the similarity (Fisher Z transformed correlation) of functional connectivity profile for a given region to the group 

average (similarity). The red line is the line of best fit and the red circles mark the top 10 nodes in terms of the participation coefficient (hubs). All other nodes are 

represented by blue circles. As can be seen, relationships are generally slightly negative. However, the top 10 nodes in terms of the participation coefficient show 

good similarity to the group, in range of other regions throughout the brain. We examine the top 25% of participation coefficient regions in more detail in Fig. 8 to 

display those with relatively higher and lower similarity to the group average. 

Fig. 8. The top 25% of nodes in terms of sum participation co- 

efficient. The color scale represents the cross MSC subject av- 

erage similarity (cool to hot) as index by the correlation to the 

group average connectivity profile. The numbers denote hubs 

(top 10 nodes in terms of summed participation coefficient) 

nodes. Lateral frontal cortex nodes tended to have weaker sim- 

ilarity but most nodes exhibit robust similarity to the group 

average connectivity profile. 
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Fig. 9. Network profiles for group-average participa- 

tion coefficient hubs. For each hub (color map sub- 

plots), we show the network profile for the 9 MSC par- 

ticipants (columns) and WashU-120 group average (fi- 

nal column) to 14 canonical networks (rows; see Meth- 

ods). The hub locations are shown in the bottom right 

corner and the canonical network maps are shown in 

the bottom left corner (each network is represented by 

a color). 

With this enhanced correspondence, it is also clearer that adjusted 

hubs seem to fall into one of two patterns. The first pattern is marked 

by the hub exhibiting a high degree of similarity with two to three net- 

works. This pattern characterizes hubs 1, 2, 5, 8, and 9 (see Figs 10C & 

11 ). For example, hub 1 primarily bridges the dorsal attention and cin- 

guloopercular networks, with weaker links to the frontoparietal and so- 

matomotor systems. The other pattern is a high degree of similarity with 

a wide set of networks (see Figs 10C & 11 ). For example, Hub 3 shows 

strong links to a range of sensorimotor and control networks. 

3.8. Hub location adjustment procedure yields consistent results 

As would be expected, the spotlight search procedure finds locations 

with profiles that better resemble the group average hub profile. We 

next sought to provide a quantitative assessment of the robustness of 

this procedure using independent samples of data. To this end, we split 

each MSC subject’s data into two independent halves (odd and even 

sessions). The spotlight procedure was applied to one half (e.g., odd 

sessions). Then, the similarity of the spotlight location to the WashU- 

120 reference set was tested in the left out independent sessions (e.g., 

even set). The procedure was then repeated in the opposing direction. 

Supplemental Table 2 shows the outcomes. Applying the spotlight pro- 

cedure improved the similarity of hub locations to the group-average 

pattern (i.e. decreased the dissimilarity as measured by a Euclidean dis- 

tance measure), even when this approach was applied to independent 

data to get an unbiased estimate of improvements (Odd Original vs. Out- 

set Dissimilarity Mean = 0.74 + /- 08 vs. Mean = 0.52 + /- 0.07; Even 

Original vs. Outset Dissimilarity Mean = 0.73 + /- 0.06 vs. Mean = 0.51 

+ /- 0.07). Indeed, the dissimilarity of the out-of-set and in-set mini- 

mums were highly correlated (Odd Set r = 0.985; Even Set r = 0.998). 

These results suggest that the spotlight procedure leads to a consistent 

improvement in correspondence of hubs to the group average. 

4. Discussion 

Our goal in this work was to determine how the top group-defined 

hubs vary across individuals. We hypothesized that hubs, which are 

thought to be regions critical to many important functions, should have 

connectivity profiles that are relatively conserved across individuals. 

However, we also considered the alternatives that (1) group hubs, as 

regions with diverse connectivity across networks may also show mal- 

leability across subjects or (2) that group hubs may be artifactual, driven 

by variation in functional networks within single individuals both of 

which would be associated with high correspondence between inter- 
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Fig. 10. Hub local adjustment procedure. Results of a spotlight search procedure for two representative example hubs (Hub 1 and Hub 3) show that for most subjects, 

hub like areas can be found within a tight zone around a group hub. A) The blue spheres represent the original locations for group hubs 1 and 3. The underlying color 

map depicts the final adjusted hub locations across the 9 individuals in the MSC (see Supp. Fig 3 for adjusted hub locations for all hubs). (B) The original network 

profiles are shown for hub 1 (left) and hub 3 (right). (C) The adjusted hub network profiles are shown for the same two hubs. Adjusting hub locations improved 

correspondence across participants, especially in exception cases (e.g., MSC02 for hub 1, MSC09 for hub 3). 

subject connectivity profile variation and connector hub location. We 

demonstrated that the top group hubs, defined with the participation 

coefficient, do not overlap with locations of idiosyncratic functional con- 

nectivity, show relatively good correspondence in functional connectiv- 

ity and network profiles across participants. Further improvements in 

network profile correspondence to the group is observed if, for each in- 

dividual, these hubs are adjusted slightly in location. These findings are 

most consistent with the idea that the top group hubs have connectivity 

profiles that are relatively conserved across individuals, to a similar de- 

gree seen for many other cortical locations. More caution is warranted 

with alternative hub measures, such as the proximity-based community 

density metric, which tended to overlap with areas of idiosyncratic func- 

tional connectivity. Caution is also warranted for intermediate partici- 

pation coefficient hubs, which both show a higher correspondence to 

regions of more inter-individual variability. This link between commu- 

nity density hubs and locations of inter-individual variability may stem 

from “border shifts ” in functional brain networks between individuals 

(see ( Dworetsky et al., 2021 )). Overall, the findings lend support to the 

idea that group hubs (defined with the participation coefficient) have 

relatively consistent functional connectivity characteristics across peo- 

ple, and this suggests that these are likely not sites of particularly high 

malleability or artifacts. We close by discussing the impact of this work 

on future studies with group hubs, and the potential for new findings in 

investigations focusing on individual-level hubs. 

4.1. The connectivity profiles of group hubs are relatively similar across 

people 

The participation coefficient is a measure of connection diversity, 

measuring the extent to which a given node shows connections across 

multiple distributed networks. Many investigators ( Bertolero et al., 

2018 , 2015 ; Cole et al., 2013 ; Gordon et al., 2018 ; Gratton et al., 

2016 , 2012 ; Power et al., 2013 ; Warren et al., 2014 ) have identified 

brain connector hubs using this metric, often based on group-average 

data ( Power et al., 2013 ). Although these regions are defined by their 

diverse connection profile and are located in association regions of 

the brain (which show high inter-subject variation; Kong et al., 2019 ; 

Mueller et al., 2013 ; Seitzman et al., 2019 ), here we show that they do 

not have a strong correspondence to diversity across people : that is, di- 

versity in functional connectivity across networks does not track with 

diversity in connectivity across individuals. Group-average hubs defined 

with the participation coefficient do not frequently overlap with extreme 

variants ( Fig 3 ), are relatively similar to the group average ( Fig 6 ), and 

have a fairly consistent network profile ( Fig. 9 ; especially if these hubs 

are allowed to move slightly in position across people; see Fig 10 - 11 ). 

The lack of correspondence between group hubs and regions of high 

inter-subject variability in connectivity was observed in two datasets, 

and was true for both extreme deviations from the group average con- 

nectivity profile (variants) and more subtle deviations (similarity to the 

group). 

This relative lack of variation is consistent with previous litera- 

ture, which has shown that group-average estimates of hubs serve as 

good priors for locations that have outsized impacts on network struc- 

ture and behavior if damaged in lesion patients ( Gratton et al., 2012 ; 

Warren et al., 2014 ). We and others have also proposed that connector 

hubs (defined by the participation coefficient) play a critical role during 

task execution ( Bertolero et al., 2018 ; Cole et al., 2013 ; Gratton et al., 

2016 ). Hub regions are activated across a range of cognitive processes 

( Bertolero et al., 2015 ) and hub connectivity is modulated by task con- 

text ( Cole et al., 2013 ; Gratton et al., 2016 ). Moreover, some evidence 
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Fig. 11. Network profiles for group hubs after local 

adjustment. This figure is similar to Fig. 9 , but shows 

the network profiles for each of the 10 top partic- 

ipation coefficient hubs after those hubs have been 

slightly adjusted in location using our spotlight analy- 

sis procedure (see Methods and Supp. Fig. 3 for final 

adjusted locations). For each hub, we show the net- 

work profile for the 9 MSC participants (columns) and 

WashU-120 group average (final column) to 14 canon- 

ical networks (rows). The original hub locations are re- 

produced in the inset on the lower left, and canonical 

networks are shown in the lower right. 

shows that participation coefficient hubs promote network modularity 

during task performance by tuning the connectivity of their neighbors 

( Bertolero et al., 2018 ), This body of work suggests that hubs may help 

coordinate activity between networks as needed in task control. This is 

a relatively essential set of functions to everyday life, likely depending 

on the ability to enact specific patterns of cross-network connectivity, 

and thus requiring some degree of uniformity in connector hub profiles 

across subjects. 

However, although not more variable than would be expected by 

chance, participation coefficient hubs were also not generally below the 

expected variation for the cortex. The lack of a significant difference 

was observed across two datasets (HCP and MSC) and across multiple 

investigative approaches focusing on both extreme deviations and con- 

tinuous gauges of similarity. Indeed, although recent work has high- 

lighted strong variation between individuals ( Bijsterbosch et al., 2018 ; 

Finn et al., 2015 ; Gordon et al., 2017a ; Gratton et al., 2018a ; Kong et al., 

2019 ; Miranda-Dominguez et al., 2014 ; Mueller et al., 2013 ), much of 

this variation is relatively punctate and restricted to particular locations 

in a particular person ( Seitzman et al., 2019 ), leading many places in 

the cortex to show good correspondence to the group average. Thus, the 

connectivity profiles of group hubs may be relatively conserved, but not 

more so than many other regions of the brain. 

When the entire participation coefficient distribution is examined, a 

weak negative relationship between participation coefficient and simi- 

larity is observed. This relationship appears largely driven by a set of 

regions with intermediate participation coefficient value and low simi- 

larity to the group average. Regions in the top 25% of participation coef- 

ficient values typically exhibiting robust similarity to the group average 

connectivity profile. Thus, more caution is necessitated when evaluating 

these more intermediate regions. 

In conclusion, while these results argue that the top group (participa- 

tion coefficient) hubs are not especially malleable or driven by artifacts, 

it is likely not correct to interpret them as particularly more conserved 

in their connectivity profiles than other cortical regions. Further, cau- 

tion is still warranted in making strong conclusions about the conserved 

nature of putative hubs outside of the top 10 deeply investigated in this 

work. Our spotlight analysis hints that improved correspondence be- 

tween hubs may be possible with methods that respect and/or address 

individual variability (e.g., see Section 3.6 – Fig 9 and Section 3.7 – Fig 

11). 
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4.2. Limitations and future directions 

We have shown that the top hubs defined with group-average data 

have connectivity profiles that are relatively conserved. Yet, it is still 

not clear if these top group-average hubs identify all (or the best) hubs 

within single individuals. The results of our spotlight analysis ( Fig. 9 - 11 ) 

suggest that, at a minimum, researchers should consider exploring the 

areas surrounding group-average hub locations to ameliorate individual 

differences. 

A limitation of the current study is that we focus on variability in 

previously identified group-average hubs, rather than hubs defined in 

individuals. Even when group hubs are reproducible across individuals, 

they could miss important features of functional neuroanatomy that can 

only be observed when looking at individually-defined hubs. For exam- 

ple individual level hubs might be needed to identify hub sub-types, 

which may help uncover more refined properties associated with cogni- 

tion ( Gordon et al., 2018 ). 

Rigorous testing of the three scenarios outlined in the introduction 

will require an investigation of individual-level hubs. It might be the 

case that group hubs (for the most part) detect hub locations that are 

conserved across individuals, but that other hubs exist within each per- 

son that are more malleable, fitting scenario 2, and difficult to capture 

in group maps. If these idiosyncratic hubs are common, then the de- 

gree of cross-subject overlap in the locations of individual-hubs could 

be significantly dampened. However, measuring individual-level hubs 

robustly is challenging, as the participation coefficient calculated on 

individual subject data exhibits modest reliability even with 40 min. 

of data ( Gordon et al., 2017a , 2017b ). Improving on these methods to 

identify reliable individual-level hubs and understand their character- 

istics and correspondences across individuals should be a priority. This 

avenue of research will allow us to address several of the outstanding 

questions left with the current work. Charting the correspondence be- 

tween individual and group hubs will be a challenging but important 

area for future research. 

For example, procedures that adopt individual-level connectivity 

maps, like the spotlight analysis we employed, could be further refined 

to help answer these questions. The high reliability of precision fMRI 

data makes it especially well-suited for ensuring robust applications of 

these procedures ( Gordon et al., 2017b ). In addition, high resolution 

imaging made possible by 7T scanners would allow for greater confi- 

dence in the accuracy of individual-level maps through improved signal 

and removal of artifactual hubs caused by spatial blurring or close prox- 

imity ( Braga et al., 2019 ; Viessmann and Polimeni, 2021 ). If techniques 

such as these can improve hub identification in individuals they may 

help to further chart correspondence between the location of hubs de- 

fined on individual subject data and hubs defined at the group level, 

which do not always show very tight correspondence ( Gordon et al., 

2018 ). 

Regardless of this study’s limitations, we demonstrate correspon- 

dence in individual connectivity profiles across group-level hub loca- 

tions (which is further improved at slightly adjusted locations, based 

on the spotlight procedure). The results of this analysis imply that hubs 

defined at the group level are not particularly malleable regions and 

are probably best characterized as hubs at the individual level. Future 

research should elucidate the many questions regarding the correspon- 

dence between individual level and group level hubs. 

4.3. Variants are not strong group-level hubs 

Thus far, we have framed our results and discussion in terms of what 

our findings reveal for hubs. However, our findings also provide insights 

into variant locations. As locations of idiosyncratic functional connectiv- 

ity, it is possible that variants are manifestations of flexible bridges be- 

tween networks, which drives their inconsistency in their network mem- 

bership across subjects ( Vázquez-Rodríguez et al., 2019 ; Zhang et al., 

2016 ). Yet, we did not find a clear correspondence between variants and 

participation coefficient hubs across several analyses in two datasets. 

While there is a correspondence between variants and community den- 

sity hubs, this may be artifactual, due to averaging across people, rather 

than a manifestation of variants arising from a hub-like nature. These 

results suggest that, as a general rule, variants do not overlap with sites 

of group level connector hubs, implying that variants do not have a 

functional role as chameleon-like integrative regions. However, it is still 

possible that specific variants may show overlap with individual-level 

hubs that are not captured with this group approach. Future work will 

be needed to further investigate the properties of variants and their cor- 

respondence to individual-level hubs. 

4.4. Community density is a hub metric that should be used with caution in 

group-level analyses 

Unlike hubs defined by the participation coefficient, community den- 

sity hubs defined in group-average data had a relatively strong corre- 

spondence with idiosyncratic variant regions. Community density hubs 

are defined based on their proximity to multiple different networks 

( Power et al., 2013 ), following the assumption that hubs should be po- 

sitioned spatially intermediate to the systems that they bridge. How- 

ever, although distributed somewhat similarly to participation coeffi- 

cient hubs ( Power et al., 2013 ), community density hubs in the group 

average are found more ventrally in the anterior insula, along the supe- 

rior frontal cortex, and near the temporoparietal junction – locations in 

closer accord with locations of inter-subject variation ( Fig. 5 ). 

This correspondence with regions of inter-subject variation suggests 

that group hubs defined with community density represent either mal- 

leable regions or artifactual hubs caused by mixed signals across indi- 

viduals. Individual differences in brain networks often occur near the 

boundaries between systems ( Dworetsky et al., 2021 ; Seitzman et al., 

2019 ). As community density hubs sit at a nexus of multiple networks, 

then they may be more vulnerable to contamination from these shifting 

boundaries and the appearance of artifactual hubs. Future work using 

community density hubs should be cautious of this potential correspon- 

dence, especially if the hubs are identified with group average data. A 

solution to this issue may be to identify community density hubs within 

individual subject data instead, where hub inflation caused by inter- 

subject variation can be ruled out. In those cases, it may be possible to 

identify better representations of community density hubs that help to 

mediate interactions between networks based on their proximity. 

4.5. Conclusion 

Our findings from two independent datasets suggest that group- 

average brain hubs are relatively consistent in their functional topog- 

raphy across individuals. These findings suggest that hub locations may 

be a relatively conserved property of brain networks, perhaps due to the 

critical role these regions have been proposed to have in cognition and 

brain function. Alternative metrics for hubs based on spatial proximity, 

such as community density, can overlap more strongly with locations 

of individual variability and should be used with more caution in the 

group average. 

Data & code statement 

All of the data have previously been made publicly 

available (HCP: https://www.humanconnectome.org/ ; MSC: 

https://openneuro.org/datasets/ds000224/versions/ 00,002; WashU 

120: https://legacy.openfmri.org/dataset/ds000243/ ). Code for 

analysis related to network variants in MATLAB is available 

at: https://github.com/GrattonLab/SeitzmanGratton- 2019- PNAS ; 

other code related to MSC processing can be found at: https: 

//github.com/MidnightScanClub . Code related specifically to the 

analyses in this article will be located at this link upon publication: 

https://github.com/GrattonLab/ . 
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