68 research outputs found

    Apixaban for Primary Prevention of Venous Thromboembolism in Patients With Multiple Myeloma Receiving Immunomodulatory Therapy

    Get PDF
    Immunomodulatory drugs (IMiDs), including thalidomide, lenalidomide, and pomalidomide, have improved survival of patients with multiple myeloma (MM). However, these therapies are associated with an increased risk of venous thromboembolism (VTE). Apixaban has been approved for treatment of acute VTE and for risk reduction of recurrent VTE following initial therapy. In this phase IV single-arm study (NCT02958969), we aim to prospectively evaluate the safety and efficacy of apixaban for primary prevention of VTE in patients with MM. The primary efficacy objective of this trial is to determine the rate of symptomatic VTE, including deep vein thrombosis (DVT) and pulmonary embolism (PE), over 6 months. The primary safety objective is to determine the rate of major bleeding in MM patients receiving apixaban prophylaxis. If proven safe and effective, apixaban will emerge as a promising option for oral VTE prophylaxis in MM patients

    Extracorporeal Photopheresis versus Anticytokine Therapy as a Second-Line Treatment for Steroid-Refractory Acute GVHD: A Multicenter Comparative Analysis

    Get PDF
    AbstractThe optimal therapy for steroid-refractory (SR) acute graft-versus-host disease (aGVHD) is undefined. We studied patients with SR aGVHD, comparing extracorporeal photopheresis (ECP; n = 57) and anticytokine therapy (n = 41). In multivariate analyses, ECP, adjusted for steroid dose (odds ratio, 3.42; P = .007), and grade >II aGVHD (odds ratio, 68; P < .001) were independent predictors of response. ECP therapy, adjusted for conditioning regimen intensity and steroid dose, was associated with superior survival (hazard ratio [HR], 4.6; P = .016) in patients with SR grade II aGVHD. Grade >II aGVHD at onset of salvage therapy (HR, 9.4; P < .001) and lack of response to therapy (HR, 3.09; P = .011) were associated with inferior survival. These findings require validation in a prospective randomized study

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases

    Get PDF
    The lymphatic clearance pathways of the brain are different compared to the other organs of the body and have been the subject of heated debates. Drainage of brain extracellular fluids, particularly interstitial fluid (ISF) and cerebrospinal fluid (CSF), is not only important for volume regulation, but also for removal of waste products such as amyloid beta (A?). CSF plays a special role in clinical medicine, as it is available for analysis of biomarkers for Alzheimer’s disease. Despite the lack of a complete anatomical and physiological picture of the communications between the subarachnoid space (SAS) and the brain parenchyma, it is often assumed that A? is cleared from the cerebral ISF into the CSF. Recent work suggests that clearance of the brain mainly occurs during sleep, with a specific role for peri- and para-vascular spaces as drainage pathways from the brain parenchyma. However, the direction of flow, the anatomical structures involved and the driving forces remain elusive, with partially conflicting data in literature. The presence of A? in the glia limitans in Alzheimer’s disease suggests a direct communication of ISF with CSF. Nonetheless, there is also the well-described pathology of cerebral amyloid angiopathy associated with the failure of perivascular drainage of A?. Herein, we review the role of the vasculature and the impact of vascular pathology on the peri- and para-vascular clearance pathways of the brain. The different views on the possible routes for ISF drainage of the brain are discussed in the context of pathological significance

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease

    Palladium Intercalated into the Walls of Mesoporous Silica as Robust and Regenerable Catalysts for Hydrodeoxygenation of Phenolic Compounds

    No full text
    Nanostructured noble-metal catalysts traditionally suffer from sintering under high operating temperatures, leading to durability issues and process limitations. The encapsulation of nanostructured catalysts to prevent loss of activity through thermal sintering, while maintaining accessibility of active sites, remains a great challenge in the catalysis community. Here, we report a robust and regenerable palladium-based catalyst, wherein palladium particles are intercalated into the three-dimensional framework of SBA-15-type mesoporous silica. The encapsulated Pd active sites remain catalytically active as demonstrated in high-temperature/pressure phenol hydrodeoxygenation reactions. The confinement of Pd particles in the walls of SBA-15 prevents particle sintering at high temperatures. Moreover, a partially deactivated catalyst containing intercalated particles is regenerated almost completely even after several reaction cycles. In contrast, Pd particles, which are not encapsulated within the SBA-15 framework, sinter and do not recover prior activity after a regeneration procedure
    corecore