426 research outputs found

    Effects of Training Intensity on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study

    Get PDF
    Background. Many physical interventions can improve locomotor function in individuals with motor incomplete spinal cord injury (iSCI), although the training parameters that maximize recovery are not clear. Previous studies in individuals with other neurologic injuries suggest the intensity of locomotor training (LT) may positively influence walking outcomes. However, the effects of intensity during training of individuals with iSCI have not been tested. Objective. The purpose of this pilot, blinded-assessor randomized trial was to evaluate the effects of LT intensity on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory participants with iSCI \u3e1 year duration performed either high- or low-intensity LT for ≤20 sessions over 4 to 6 weeks. Four weeks following completion, the training interventions were alternated. Targeted intensities focused on achieving specific ranges of heart rate (HR) or ratings of perceived exertion (RPE), with intensity manipulated by increasing speeds or applying loads. Results. Significantly greater increases in peak treadmill speeds (0.18 vs 0.02 m/s) and secondary measures of metabolic function and overground speed were observed following high- versus low-intensity training, with no effects of intervention order. Moderate to high correlations were observed between differences in walking speed or distances and differences in HRs or RPEs during high- versus low-intensity training. Conclusion. This pilot study provides the first evidence that the intensity of stepping practice may be an important determinant of LT outcomes in individuals with iSCI. Whether such training is feasible in larger patient populations and contributes to improved locomotor outcomes deserves further consideration

    Rapid ertapenem susceptibility testing and Klebsiella pneumoniae carbapenemase phenotype detection in Klebsiella pneumoniae isolates by use of automated microscopy of immobilized live bacterial cells

    Get PDF
    We evaluated detection of ertapenem (ETP) resistance and Klebsiella pneumoniae carbapenemase (KPC) in 47 Klebsiella pneumoniae isolates using a novel automated microscopy system. Automated microscopy correctly classified 22/23 isolates as ETP resistant and 24/24 as ETP susceptible and correctly classified 21/21 isolates as KPC positive and 26/26 as KPC negative

    The Use of the North Alabama Lightning Mapping Array (NALMA) in the Real-Time Operational Warning Environment During the March 2nd, 2012 Severe Weather Outbreak in Northern Alabama

    Get PDF
    The North Alabama Lightning Mapping Array (NALMA) is a three-dimensional very high frequency (VHF) detection network consisting of 11 sensors spread across north central Alabama and two sensors located in the Atlanta, Georgia region. The primary advantage of this network is that it detects total lightning, or the combination of both cloud-to-ground and intra-cloud lightning, instead of cloud-to-ground lightning alone. This helps to build a complete picture of storm evolution and development, and can serve as a proxy for storm updraft strength, particularly since intra-cloud lightning makes up the majority of all lightning in a typical thunderstorm. While the NALMA data do not directly indicate severe weather, they can indirectly indicate when a storm is strengthening (weakening) due to increases (decreases) in updraft strength, as the updraft is responsible for charging mechanisms within the storm. Data output are VHF radiation sources, which are produced during lightning breakdown processes. These sources are made into 2x2 km source density grids and are ported into the Advanced Weather Interactive Processing System (AWIPS) for National Weather Service (NWS) offices in Huntsville, AL, Nashville, TN, Morristown, TN, and Birmingham, AL, in near real-time. An increase in sources, or source densities, correlates to increased lightning activity and trends in updraft magnitude as long as the storm is within about 125 km of the center of the LMA network. Operationally, these data have been used at the Huntsville NWS office since early 2003 through a collaborative effort with NASA s Short-term Prediction Research and Transition (SPoRT) Center. Since then, total lightning observations have become an essential tool for forecasters during real-time warning operations. One of the operational advantages of the NALMA is the two-minute temporal resolution of the data. This provides forecasters with two to three updates during a typical volume scan of the WSR-88D radar

    High intensity variable stepping training in persons with motor incomplete spinal cord injury: a case series

    Get PDF
    Background and Purpose: Previous data suggest that large amounts of high intensity stepping training in variable contexts (tasks and environments) may improve locomotor function, aerobic capacity and treadmill gait kinematics in individuals post-stroke. Whether similar training strategies are tolerated and efficacious for patients with other acute-onset neurological diagnoses, such as motor incomplete spinal cord injury (iSCI) is unknown, particularly with potentially greater, bilateral impairments. This case series evaluated the feasibility and preliminary short and long-term efficacy of high intensity variable stepping practice in ambulatory participants >1 year post-iSCI. Case Series Description: Four participants with iSCI (neurological levels C5-T3) completed up to 40 1-hr sessions over 3–4 months. Stepping training in variable contexts was performed at up to 85% maximum predicted heart rate, with feasibility measures of patient tolerance, total steps/session, and intensity of training. Clinical measures of locomotor function, balance, peak metabolic capacity and gait kinematics during graded treadmill assessments were performed at baseline and post-training, with >1 year follow-up. Outcomes: Participants completed 24–40 sessions over 8–15 weeks, averaging 2222±653 steps/session, with primary adverse events of fatigue and muscle soreness. Modest improvements in locomotor capacity where observed at post-training, with variable changes in lower extremity kinematics during treadmill walking. Discussion: High intensity, variable stepping training was feasible and tolerated by participants with iSCI although only modest gains in gait function or quality were observed. The utility of this intervention in patients with more profound impairments may be limited

    A Network-Individual-Resource Model for HIV Prevention

    Get PDF
    HIV is transmitted through dyadic exchanges of individuals linked in transitory or permanent networks of varying sizes. A theoretical perspective that bridges key individual level elements with important network elements can be a complementary foundation for developing and implementing HIV interventions with outcomes that are more sustainable over time and have greater dissemination potential. Toward that end, we introduce a Network-Individual-Resource (NIR) model for HIV prevention that recognizes how exchanges of resources between individuals and their networks underlies and sustains HIV-risk behaviors. Individual behavior change for HIV prevention, then, may be dependent on increasing the supportiveness of that individual’s relevant networks for such change. Among other implications, an NIR model predicts that the success of prevention efforts depends on whether the prevention efforts (1) prompt behavior changes that can be sustained by the resources the individual or their networks possess; (2) meet individual and network needs and are consistent with the individual’s current situation/developmental stage; (3) are trusted and valued; and (4) target high HIV-prevalence networks

    Viability of a Reusable In-Space Transportation System

    Get PDF
    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented

    Updates in the management of brain metastases

    Get PDF
    The clinical management/understanding of brain metastases (BM) has changed substantially in the last 5 years, with key advances and clinical trials highlighted in this review. Several of these changes stem from improvements in systemic therapy, which have led to better systemic control and longer overall patient survival, associated with increased time at risk for developing BM. Development of systemic therapies capable of preventing BM and controlling both intracranial and extracranial disease once BM are diagnosed is paramount. The increase in use of stereotactic radiosurgery alone for many patients with multiple BM is an outgrowth of the desire to employ treatments focused on local control while minimizing cognitive effects associated with whole brain radiotherapy. Complications from BM and their treatment must be considered in comprehensive patient management, especially with greater awareness that the majority of patients do not die from their BM. Being aware of significant heterogeneity in prognosis and therapeutic options for patients with BM is crucial for appropriate management, with greater attention to developing individual patient treatment plans based on predicted outcomes; in this context, recent prognostic models of survival have been extensively revised to incorporate molecular markers unique to different primary cancers

    Assessment of reproducibility of matrix-assisted laser desorption ionization - Time of flight mass spectrometry for bacterial and yeast identification

    Get PDF
    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification

    Venezuelan Equine Encephalitis Virus Capsid Implicated in Infection-Induced Cell Cycle Delay in vitro

    Get PDF
    Venezuelan equine encephalitis virus (VEEV) is a positive sense, single-stranded RNA virus and member of the New World alphaviruses. It causes a biphasic febrile illness that can be accompanied by central nervous system involvement and moderate morbidity in humans and severe mortality in equines. The virus has a history of weaponization, lacks FDA-approved therapeutics and vaccines in humans, and is considered a select agent. Like other RNA viruses, VEEV replicates in the cytoplasm of infected cells and eventually induces apoptosis. The capsid protein, which contains a nuclear localization and a nuclear export sequence, induces a shutdown of host transcription and nucleocytoplasmic trafficking. Here we show that infection with VEEV causes a dysregulation of cell cycling and a delay in the G0/G1 phase in Vero cells and U87MG astrocytes. Cells infected with VEEV encoding a capsid NLS mutant or treated with the capsid-importin α interaction inhibitor G281-1485 were partially rescued from this cell cycle dysregulation. Pathway analysis of previously published RNA-sequencing data from VEEV infected U87MG astrocytes identified alterations of canonical pathways involving cell cycle, checkpoint regulation, and proliferation. Multiple cyclins including cyclin D1, cyclin A2 and cyclin E2 and other regulators of the cell cycle were downregulated in infected cells in a capsid NLS dependent manner. Loss of Rb phosphorylation, which is a substrate for cyclin/cdk complexes was also observed. These data demonstrate the importance of capsid nuclear localization and/or importin α binding for inducing cell cycle arrest and transcriptional downregulation of key cell cycle regulators
    corecore