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Abstract 
Background. Many physical interventions can improve locomotor function in individuals with motor incomplete 
spinal cord injury (iSCI), although the training parameters that maximize recovery are not clear. Previous studies 
in individuals with other neurologic injuries suggest the intensity of locomotor training (LT) may positively 
influence walking outcomes. However, the effects of intensity during training of individuals with iSCI have not 
been tested. Objective. The purpose of this pilot, blinded-assessor randomized trial was to evaluate the effects 
of LT intensity on walking outcomes in individuals with iSCI. Methods. Using a crossover design, ambulatory 
participants with iSCI >1 year duration performed either high- or low-intensity LT for ≤20 sessions over 4 to 6 
weeks. Four weeks following completion, the training interventions were alternated. Targeted intensities 
focused on achieving specific ranges of heart rate (HR) or ratings of perceived exertion (RPE), with intensity 
manipulated by increasing speeds or applying loads. Results.Significantly greater increases in peak treadmill 
speeds (0.18 vs 0.02 m/s) and secondary measures of metabolic function and overground speed were observed 
following high- versus low-intensity training, with no effects of intervention order. Moderate to high correlations 
were observed between differences in walking speed or distances and differences in HRs or RPEs during high- 
versus low-intensity training. Conclusion.This pilot study provides the first evidence that the intensity of stepping 
practice may be an important determinant of LT outcomes in individuals with iSCI. Whether such training is 
feasible in larger patient populations and contributes to improved locomotor outcomes deserves further 
consideration. 

Keywords spinal cord injury, exercise intensity, locomotor training 

Introduction 
Approximately half of those with spinal cord injury (SCI) are classified as motor incomplete (iSCI), indicating 
partial preservation of descending supraspinal pathways.1 The extent of lower extremity movement in patients 
with iSCI may provide some potential for recovery of independent ambulation,2,3 although strategies that 
maximize walking function are unclear. Previous basic and applied studies have suggested specific physical 
training parameters may augment plastic changes in neuromuscular and cardiopulmonary systems that can 
influence locomotor performance following neurological injury.4-6 For example, in animal models of SCI, 
provision of large amounts of stepping (ie, walking) practice can facilitate greater locomotor recovery as 
compared to less stepping practice or practice of other tasks.7-9 In individuals with subacute or chronic SCI, the 
efficacy of specific stepping, or locomotor training (LT) strategies varies,10-12 although some studies suggest 
practice of walking-related tasks elicits greater improvements in locomotor function than nonwalking 
activities.13,14 

While the amount of stepping practice may be important, other training variables could also influence 
locomotor recovery. Specifically, the intensity of exercise has been shown to influence locomotor performance 
in able-bodied individuals15 and in patients with cardiovascular16 or neurological disorders.17,18 Despite 
inconsistent definitions in the literature,19-22 “intensity” is defined here as workload or power output, consistent 
with definitions used in exercise physiology.23 Locomotor intensity is readily manipulated by altering movement 
(ie, walking) speeds or loads carried, and estimated indirectly using cardiopulmonary or subjective measures, 
such as heart rate (HR) or ratings of perceived exertion (RPE). Mechanisms underlying gains in locomotor 
function following high-intensity training across populations may include increased metabolic capacity15,24-
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26 through changes in cardiopulmonary capacity25 and efficiency,26 muscular metabolic alterations,27,28 and 
increased synthesis and release of neurotrophic factors29,30 that may underlie plastic changes in supraspinal or 
spinal circuits.31 

Despite these potential gains, the contribution of high-intensity training to locomotor recovery following iSCI is 
unknown. In patients with other acute-onset neurological injuries (ie, patients poststroke), LT performed at 
moderate to high intensities (ie, up to 85% of maximum HR) has been shown to improve walking function as 
compared with lower intensity interventions,32,33 even when the amount of practice is controlled.17,18While gains 
in cardiopulmonary capacity have been observed with such training,26 improvements in neuromuscular 
impairments34 and walking function35,36 have also been demonstrated. 

Few studies have attempted to investigate the specific effects of exercise intensity during LT in individuals with 
iSCI.11,14,37 Gorman and colleagues14 recently reported higher peak oxygen consumption (VO2peak) following 
robotic-assisted LT versus a conventional training program. However, the specific effects of locomotor exercise 
intensity were not clear, as treatments varied in both the amount and types of practice, and robotic-assisted LT 
is typically performed at lower intensities.38,39 Another study by Yang et al11comparing skilled walking training 
versus massed stepping practice (endurance training) on a treadmill found the latter to result in significantly 
greater improvements in selected locomotor outcomes. However, the primary emphasis in this trial was on 
differences in types of training rather than exercise intensity. While selected recent studies indicate positive 
influences of high-intensity LT on locomotor function, neurotrophin synthesis, and metabolic capacity,30 no 
studies have demonstrated whether higher versus lower intensity LT can elicit greater improvements in walking 
outcomes following iSCI. 

The goal of this study was to evaluate the effects of high- versus low-intensity LT in subjects with iSCI on clinical 
and metabolic measures of gait performance. Using a randomized crossover design with blinded assessments, 
the effects of high- versus low-intensity training focused only on stepping was assessed in individuals >1 year 
following iSCI. Consistent with previous studies, we hypothesized that measures of locomotor function would 
improve to a greater extent following high-intensity LT. Such information may provide further rationale for 
employing high-intensity training during the rehabilitation of patients with iSCI. 

Methods 
Study Sample and Design 
Individuals were recruited if they presented with a motor iSCI (classified as C or D using the American Spinal 
Injury Association Impairment Scale) at neurological injury level of T10 or above for >1 year duration. Additional 
inclusion criteria were the follwoing: 18 to 75 years old; overground self-selected walking speed <1.0 m/s 
without physical assistance but with assistive devices and bracing below the knee as needed; intact quadriceps 
and plantarflexor tendon reflexes; and medical clearance to participate. Exclusion criteria included severe lower 
extremity contractures; osteoporosis; cardiovascular or metabolic instability; unhealed decubiti or existing 
infection; active heterotrophic ossification; previous history of other central nervous system injury; and inability 
to adhere to study requirements. Participants could not be enrolled in physical therapy during training. The 
project was approved by the Northwestern University Institutional Review Board and all participants provided 
written informed consent. 

Using a repeated-measures crossover design, participants were randomized to receive up to 20 sessions of 
either a high- or low-intensity LT over 4 to 6 weeks, followed by a 4-week wash-out, after which participants 
received the other training paradigm (Figure 1). Given the potential limitations and difficulties of traditional 
randomized trials,40 the crossover deign was used to increase the efficiency of the sample size used. A previous 
study suggested 12 individuals poststroke were necessary to demonstrate significant between-group differences 
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following high- versus low-intensity LT for primary outcomes,17 and 16 to 18 total subjects were targeted to 
accommodate for differences in patient populations, including greater impairments (ie, less volitional control 
bilaterally). Subjects were stratified by gait speed (<0.5 m/s and 0.5-1.0 m/s) and block-randomized (4 per block) 
into high- or low-intensity LT first. 

 
Figure 1. CONSORT (Consolidated Standards of Reporting Trials) flow diagram of randomized crossover design. 

Intervention 
Both high- and low-intensity LT consisted of up to 20 one-hour sessions at a frequency of 3 to 5 days/week over 
≤6 weeks. To ensure consistency of training sessions using the crossover design, the number of sessions for the 
second training protocol was matched to the first protocol. The goals of LT sessions were to achieve 40 minutes 
of stepping practice while maintaining the desired HRs or RPEs. The use of assistive devices and therapist 
assistance varied according to each subject’s capability and safety. The primary measure of intensity was 
training HRs, which was monitored continuously using pulse-oximetry, and correlates well with oxygen 
consumption in intact and impaired individuals. With determination of maximum age-predicted HR (208 − (0.7 × 
age)), the goal of high-intensity LT was to maintain HRs within 70% to 85% of predicted maximum HR 
(HRmax)35,36 while low-intensity training targeted 50% to 65% HRmax; these HR ranges approximate those 
observed during conventional physical therapy.35,41 If targeted HR zones could not be achieved during training, 
the rating of perceived exertion (RPE) scale42,43 was also used as a secondary measure of intensity, with targeted 
ratings of 15 to 17 (“hard” to “very hard”) for the high-intensity LT protocol and 11 to 13 (below “somewhat 
hard”) for low-intensity LT protocol.17,26,35 

The primary goals of stepping practice during both high- and low-intensity LT included (1) maximizing successful 
stepping practice in a specific direction (eg, forward, backward, sideways), (2) achieving specific aerobic 
intensities (high or low), and (3) increasing difficulty of skilled walking tasks as tolerated. Each session was 
composed of 4 different stepping tasks practiced over ~10 minutes per session, including speed-dependent 
treadmill training, skill-dependent treadmill training, overground training, and stair climbing (also see appendix 
in Holleran et al36). Speed-dependent treadmill training was focused on walking forward on a treadmill while 
maintaining targeted HR or RPE ranges. Limb swing assistance, body weight support, and nylon straps stabilizing 
the pelvis were provided only as needed to ensure successful stepping, characterized by positive step lengths, 
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lack of stance-phase limb collapse, and sagittal/frontal plane stability. Skill-dependent treadmill training was 
performed by applying perturbations to challenge postural stability, propulsion, and limb swing during treadmill 
walking, and included stepping in multiple directions, over inclines and obstacles, with limited handrail use as 
tolerated. Additional loads (weighted vest or leg weights) or resistance (posterior elastic forces at the trunk or 
thighs) we applied as necessary to reach the targeted intensities while focusing on specific biomechanical gait 
components (stability, propulsion, limb swing). Perturbations were applied such that 2 to 5 different stepping 
tasks were repeated every 10 minutes. Overground training focused on speed- or skill-dependent locomotor 
activities similar to those described above, with use of a gait belt or overhead suspension system for safety. 
Additional stepping activities included walking over uneven or narrow surfaces and stepping around obstacles. 
Stair climbing was performed over static or rotating stairs (Stairmaster, Vancouver, WA) with attempts to use 
reciprocal gait patterns and progression to higher speeds and reduced hand rail use as able. If the HR/RPE was 
outside the targeted range, the loads carried or walking speeds were manipulated to alter the neuromuscular 
demands of walking. Stepping activity during each session was measured using accelerometers on the ankle of 
the more impaired limb (StepWatch, Modus, Washington DC). 

Outcomes 
Participants were assessed prior to and following each 4- to 6-week training paradigm. Primary measures 
included the 6-minute walk test (6MWT) distance and peak treadmill (TM) speed,44 with simultaneous collection 
of cardiorespiratory function using a portable indirect calorimetry system (K4b2, CosMed, Chicago, IL). The 
6MWT has previously been shown to be sensitive to the effects of aerobic training in patients poststroke.33 In 
addition, peak TM speed often improves with high-intensity activities in both stroke and iSCI.30,32 The 6MWT was 
performed by blinded assessors, with instructions to “cover as much ground as possible.” Bracing and use of 
assistive devices were consistent with participants’ preferences during community mobility and were identical at 
all assessments. Peak TM speed was evaluated during a modified graded TM test, during which individuals 
began walking on a motorized TM at 0.1 m/s for 1 minute with speed increased by 0.1 m/s every minute until 
the subject experienced significant gait instability, could not continue walking at that speed, or requested to 
stop. Patients wore a safety harness during training, and cardiorespiratory data were collected during testing. 
Specific measures included the rate of O2 consumption (VO2, mL O2/kg/min), which was collected on a breath-
by-breath basis, with HRs evaluated throughout and documented each minute, and blood pressure measured 
immediately prior to and following testing. All participants wore a safety harness without weight support. Peak 
TM speed was the highest speed achieved for 1 minute. 

Secondary blinded clinical measures included: walking speed over short distances at self-selected speeds (SSS) 
and fastest-possible speeds (FS; GaitMat, Equitest Inc, Chalfont, PA); the Berg Balance Scale (BBS); and, the 
Lower Extremity Motor Score (LEMS). Secondary metabolic measures were not blinded and included measures 
of VO2 during the graded TM test and 6MWT. Peak metabolic capacity (VO2peak) was calculated as the average 
VO2 achieved over the last 30 seconds of the peak TM speed. Gait efficiency was estimated by comparing VO2 at 
the highest matched treadmill speeds from pre- to posttesting (VO2 match). In addition, comparisons of VO2peak 
and VO2match at posttesting (VO2peak-match) were calculated as a more precise estimate of combined changes 
in metabolic capacity and efficiency that may be better correlated with walking outcomes.26 For overground 
measures, gait economy, or the cost of transport (O2cost, ml O2/kg/m), was evaluated during the 6MWT, and 
calculated by averaging data from the last 3 minutes of the 6MWT; this measure reflects the rate of 
O2 consumption per unit distance, and has been shown to improve under certain training conditions.32,45 

Analysis 
Training parameters collected included total number of sessions and average steps/session, with measures of 
training intensity (ie, RPE and HR) documented every 5 minutes. The average peak HR/session (reported as 
%HRmax), and average peak RPE/session were specific measures of intensity during each session. 
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For statistical analysis, data were analyzed on-protocol versus intent-to-treat to evaluate the specific effects of 
manipulating LT intensity. Data are presented as mean ± standard deviation in the text with standard error in 
the figures. One-sample Kolmogorov-Smirnov tests were used to determine normality for primary and 
secondary outcomes, with all measures with normal distributions except O2cost. Outcomes assessed 
immediately prior to and following each training intervention were of primary interest to understand the 
relative contribution of LT intensity to observed changes in locomotor dysfunction. Statistical analysis of primary 
outcomes (peak TM speed, 6MWT) for the crossover investigation were performed using a mixed-model analysis 
of variance (ANOVA), with primary main effects of time (prior to and following each LT period, repeated), order 
(high-intensity first or second), and LT intensity (high or low, repeated). We were specifically interested in the 
significant main effects of time (pre- vs post-LT) and interaction effects of time × intensity, and time × intensity × 
order. Bonferroni corrections were made for multiple comparisons for the primary measures of 6MWT and peak 
TM speed (adjusted α = 0.025). Considering the potential carry-over effects of the crossover design, we also 
performed a separate analysis of the initial parallel-group randomization, evaluating differences in outcomes 
following the first training intervention, without the second training epoch considered. These latter analyses 
also used a mixed-model ANOVA with primary main effects of time (pre-LT vs post-LT, repeated) and training 
intensity (high vs low). All outcomes of the second training period are presented in Table 2, although outcomes 
that were significant for the initial 3-way ANOVA are highlighted in the text. 

Similar analyses were performed for secondary clinical measures, with Bonferroni corrections determined 
separately for the 4 clinical measures (SSS, FS, BBS and LEMS; adjusted α = 0.0125). Additional differences for 
secondary metabolic measures included, VO2peak, VO2match, VO2peak-match and gait economy (O2cost) during 
the 6MWT, with similar Bonferroni corrections. 

Potential associations between the ability to achieve targeted intensities were compared with demographics or 
baseline assessment, and to changes in locomotor outcomes were evaluated using Pearson and Spearman’s 
correlation analyses as appropriate. Specific differences in training intensities were calculated by subtracting the 
average peak HR or RPE throughout high- vs low-intensity training (ie, ΔHR = average HR during high-intensity LT 
vs average HR during low-intensity LT) with differences in changes in outcomes following each training paradigm 
(ie, the differences in the change scores for specific outcomes following high- vs low-intensity LT; eg, Δ6MWT 
prior to and following high-intensity – Δ6MWT prior to and following low-intensity). In addition, specific changes 
in secondary metabolic or non-walking measures were compared with changes in primary or secondary 
locomotor outcomes to evaluate potential mechanisms underlying the results. 

Results 
Seventeen of 19 individuals initially consented for the study fulfilled inclusion criteria and were randomized, 
although only 15 individuals were able to complete all training; 1 individual terminated his participation due to 
increased back pain during low-intensity training, and another did not tolerate high-intensity LT. Seven subjects 
who completed training were randomized into the high-intensity LT protocol first (8 into low-intensity first). No 
significant adverse events were noted in subjects who completed both training paradigms. The flow diagram for 
patients enrolled is provided in Figure 1, with demographic and clinical characteristics of those who completed 
both training protocols provided in Table 1. 

Table 1. Demographics and Baseline Characteristics (C, cervical; T, thoracic). 
Age (years), mean ± SD 49 ± 8.1 
Gender (male/female) 11/4 
Race (white/other) 10/5 
Lesion level  

high cervical (C1-C4) 4 
low cervical (C5-C8) 6 
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thoracic (T1-T10) 5 
Duration post–iSCI (years), mean ± SD 7.7±7.9 
Ankle foot orthosis/devices (n) 9/6 
Lower Extremity Motor Score, mean ± SD 37±11 
Medication use  

Antispastics (yes/no) 8/7 
Antidepressants (yes/no) 4/11 
Antihypertensives (yes/no) 2/13 

Abbreviation: motor incomplete spinal cord injury 

 

Training Parameters 
The average number of sessions completed (19 ± 2.3 vs 18 ± 2.5 sessions, P = .91) and number of steps within 
sessions (2143 ± 1052 vs 1797 ± 722 steps/session, P = .12) were not significantly different between high- versus 
low-intensity training. Average peak HRs achieved during each session were different between groups, with 
high-intensity training achieving average HRs of 70% ± 12% HRmax and low-intensity LT reaching 60% ± 11% 
HRmax (10% ± 6% HRmax difference; P < .01). Despite these differences, the targeted intensities were difficult to 
achieve in selected patients; 5 subjects were unable to reach within 5% of the targeted high-intensity HR range 
(range: 48%-65%) and 3 subjects achieved higher HRs during low-intensity training than desired (72%-
80%HRmax). For the former group unable to achieve high-intensity ranges, increases in speed or added 
resistance/assistance failed to increase HR sufficiently to reach the target zones. In the latter group with higher 
HRs greater than the targeted low-intensity range, reducing speed or providing assistance did not lower HR 
responses, and stepping was continued at a substantially decreased speed. Nonetheless, average RPEs during 
high- versus low-intensity LT were 16 ± 1.4 and 13 ± 1.1 (P < .01), respectively, and within targeted ranges. In 
addition, there was a low but significant correlation between HRs and RPEs (r = 0.48, P = .02), although 
measures of intensity were not significantly correlated to demographic variables or baseline clinical measures. 
However, those with HRs higher than the targeted ranges were more impaired subjects (LEMS range, 9-32; BBS 
range, 5-14), while those with blunted HR responses all presented with iSCI above C5 levels. 

Primary and Secondary Outcomes 
Assessment of primary outcomes revealed significant differences following high- versus low-intensity LT. 
Significant main effects of time (P < .01) but not time × intensity interactions were observed for 6MWT (changes 



following high- vs low-intensity LT: 26 ± 27 vs 14 ± 30 m; P = .16; Figure 2A and Table 2). For peak TM speed, 
however, main effects of both time and time × intensity interactions were significant (0.18 ± 0.14 vs 0.02 ± 0.02 
m/s, P = .02 and P < .01, respectively; Figure 2B). No significant interaction effects of order were observed for 
either measure (both Ps > .30). Statistical analysis of the initial parallel-group only (ie, excluding the crossover 
training) revealed significantly greater gains in peak TM speed following high- vs low-intensity training 
performed first (0.21 ± 0.13 vs 0.00 ± 0.12 m/s, P < .01; Table 2) with similar gains following the second training 
period (0.15 ± 0.14 vs 0.03 ± 0.10 m/s). There were no significant differences between changes in 6MWT 
following lower vs high intensity training performed first (Table 2). 

 
Figure 2. Differences in primary locomotor outcomes of (A) 6-minute walk test (6MWT), (B) peak treadmill (TM) 
speed, and secondary outcomes of (C) self-selected speed (SSS) and (D) fastest-possible speed (FS); pre-A and 
post-A indicated pre- and post-training performed first; pre-B and post-B indicated second training conditions; 
dark lines indicate high-intensity training, dashed lines indicate low-intensity training, triangle symbols denote 
high-intensity training performed first, low-intensity second; squares denote low-intensity first, high-intensity 
second. 
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Table 2. Pretraining and Posttraining data for High- Versus Low-Intensity Training.a 
 

 High-
Intensity 

 Low Intensity  Crossover P-
Values 

 Initial Groups P-
Values 

 

 
Primary 

 
Pretraining 

 
Posttraining 

 
Pretraining 

 
Posttraining 

 
Time 

Time × 
Intensity 

 
Time 

Time × 
Intensity 

6MWT (m) 196 ± 128 223 ± 147 197 ± 131 211 ± 
136 

<.01 .16 <.01 .24 

TM speed (m/s) 0.72 ± 
0.46 

0.90 ± 0.48 0.77 ± 0.40 0.79 ± 0.44 .02 <.01 <.01 <.01 

Secondary: Clinical         
SSS (m/s) 0.49 ± 

0.30 
0.54 ± 0.32 0.49 ± 0.28 0.48 ± 0.27 .43 .02 .24 .52 

FS (m/s) 0.64 ± 
0.41 

0.76 ± 0.46 0.71 ± 0.45 0.78 ± 0.49 .01 .01 .02 .23 

BBS (a.u.) 32 ± 15 31 ± 15 32 ± 16 32 ± 15 .74 .42 .71 .45 
LEMS (a.u.) 35 ± 10 37 ± 13 36 ± 11 37 ± 12 .15 .57 .48 .66 

Secondary: Metabolic         
VO2peak 
(mL/kg/min) 

20 ± 7.9 20 ± 7.5 18 ± 6.8 18 ± 6.1 .20 .27 .94 .21 

VO2match 
(mL/kg/min) 

20 ± 7.9 17 ± 7.3 18 ± 6.8 17 ± 6.1 .08 .21 .16 .75 

VO2peak-match 
(mL/kg/min) 

20 ± 7.5 17 ± 7.3 18 ± 6.1 17 ± 6.1 <.01 .01 <.01 .01 

O2cost (mL/kg/m) 0.62 ± 
0.36 

0.52 ± 0.23 0.67 ± 0.48 0.51 ± 0.24 .05 .56 .11 .17 

Abbreviations: 6MWT, 6-minute walk test; TM, treadmill; SSS, self-selected speed; FS, fastest possible speed; a.u., arbitrary units; BBS, Berg Balance 
Scale; LEMS, Lower Extremity Motor Score. 
aSignificant differences for main effect of time for time × intensity are provided. 
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For secondary clinical outcomes, significant main effects of time and time × intensity interactions were observed 
for FS (Figure 2C; 0.12 ± 0.10 vs 0.03 ± 0.13 m/s, P = .01; Table 2), with a trend for significant time × intensity 
interactions for SSS (0.04 ± 0.08 vs −0.01 ± 0.07 m/s; P = .02). No significant main or interaction effects were 
observed for BBS or LEMS. Analysis of secondary clinical measures for the initial training groups reveal no 
significant time × intensity interactions for FS (0.14 ± 0.11 vs 0.05 ± 0.14 m/s, P = .23), or SSS (0.04 ± 0.10 vs 0.01 
± 0.05 m/s, P = .52). For both measures, however, similar changes were observed following the second training 
period (FS, 0.10 ± 0.09 vs 0.02 ± 0.12 m/s and SSS, 0.05 ± 0.07 vs −0.03 ± 0.09 m/s). 

Analysis of secondary metabolic outcomes revealed no significant differences for VO2peak or O2cost for the time 
× intensity interaction, although main effects of time for VO2match and O2cost approached significance (P = .08 
and .05). However, combined changes of both changes in peak metabolic capacity and efficiency (ie, VO2peak-
match; Figure 2D) revealed significant main effects of time (P < .01) and time × intensity interactions (P = .01) 
favoring high- versus low-intensity training (2.2 ± 1.9 vs 0.37 ± 2.0 mL O2/kg/min). Analysis of the initial training 
conditions without the crossover also revealed significant between-group differences (2.6 ± 1.7 vs −0.22 ± 2.0 
mL O2/kg/min, P = .01), although smaller differences were observed in changes in VO2peak-match during the 
second training period (1.9 ± 2.1 vs 1.1 ± 1.8 mL O2/kg/min). No significant interaction effects of order were 
observed for any secondary measure. 

Correlation Analyses 
Correlation analyses were performed to compare differences in HR and RPE during high- vs low-intensity 
training (eg, average %HR max during high-intensity − average %HR max during low-intensity; or ΔHR) to 
differences in outcomes during each training condition (eg, Δ6MWT following high-intensity – low-intensity). For 
primary outcomes, Figure 3A demonstrates the significant correlation between differences in Δ6MWT following 
high- and low-intensity training and Δ%HR during each training episode (P = .03), whereas similar correlations 
were not significant for peak TM speed (Figure 3B). Secondary locomotor measures of ΔSSS (P < .01) and ΔFS 
(P = .03) were also significant (Figure 3C and D). In addition, significant associations were observed between 
ΔRPE versus Δ6MWT (r = 0.53, P = .03) and versus ΔFS (r = 0.85, P < .01). 
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Figure 3. Correlations between differences in changes (Δ) for selected outcome measures (ie, Δ6MWT indicates 
differences in changes observed following high-intensity LT versus changes following low-intensity LT, change in 
6MWT) versus differences in training intensity (%HRmax) between high- and low-intensity conditions: (A) 
Δ6MWT, (B) Δpeak TM speed, (C) ΔSSS, and (D) ΔFS during high- versus low-intensity training. Significant 
differences were observed for Δ6MWT, ΔSSS, and ΔFS (all Ps < .05). 6MWT, 6-minute walk test; LT, locomotor 
training; TM, treadmill; HR, heart rate; SSS, self-selected speed; FS, fastest possible speed. 

Gains in locomotor outcomes were also compared to changes in primary impairments (strength, balance, 
metabolic function). Changes in BBS and LEMS were unrelated to gains in primary or secondary locomotor 
outcomes (all rs< 0.30, P > .05). While most measures of changes inVO2peak and VO2match were also not related 
to gains in locomotor function, a significant negative correlation was observed between differences in ΔSSS and 
ΔVO2match (r = −0.40; P = .03). In addition, ΔVO2peak-match demonstrated significant correlations between 
ΔSSS (r = 0.42; P = .02) and Δpeak TM speed (r = 0.62; P < .01). 

Discussion 
The primary findings of this study indicate high-intensity LT elicited greater gains in selected locomotor and 
metabolic outcomes than low-intensity LT in individuals with chronic iSCI. Significantly greater improvements in 
peak TM speed, FS, and VO2peak-match were observed following high-intensity training, while changes in SSS 
and 6MWT approached significance. In addition, moderate to strong correlations were observed between 
differences of the observed changes in 6MWT, SSS, and FS following high- versus low-intensity protocols and 
differences in LT intensities (HR and RPE). The combined data suggest the intensity of stepping protocols may 
influence walking function in patients with chronic iSCI, without differences in stepping amount or number of 
sessions. 

The present findings are consistent with previous studies in patients poststroke that evaluated the effects of 
intensity of stepping exercise on walking outcomes.17,18 In those studies, high-intensity stepping training limited 
to forward treadmill and overground walking elicited greater gains in 6MWT than lower intensity LT even with 
attempts to match total workload (distance) or amount of stepping practice. In the present study, the duration 
and number of training sessions were similar between groups, although differences in measures of intensity 
were different. Previous studies in patients with iSCI have not attempted to evaluate the specific effects of LT 
intensity while controlling for the type and duration of task practice. Rather, most investigations focus on 
manipulating the type of walking interventions provided,10,12-14 with limited information on amount and intensity 
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of training (see, however, Alexeeva et al46). An important exception is a recent study by Yang and 
colleagues11 that measured stepping activity and intensity during endurance (ie, treadmill) versus variable 
(skilled) LT. In that study, the authors reported ~3-fold greater stepping amounts and higher HRs during 
endurance versus variable training, which may have contributed to greater gains in 6MWT observed. The 
present study further supports the contributions of LT intensity as a substantial contributor to improved 
locomotor outcomes. 

Despite the potential influence of LT intensity on the observed outcomes, the mean difference in stepping 
amounts and %HRs were smaller than expected. For stepping activity, smaller differences between training 
groups could be due to increased loads or resistance applied to the trunk or limbs to increase HRs. For stepping 
intensity, however, peak HRs were separated by ~10% predicted HR (70 vs 60% during high- vs low-intensity LT), 
whereas previous studies manipulating LT intensity in patients poststroke revealed greater HR differences (18 
%HR differences).35 The relatively smaller difference was highlighted by blunted HR responses in selected 
participants regardless of training intensity, and by others with greater HRs than the targeted low-intensity 
range. Altered HR responses may be due to factors related to the injury (ie, altered autonomic function), lack of 
mobility and deconditioning following injury, or individual variations that existed prior to the iSCI. Caution may 
be warranted in specific patients when targeted HR levels may not be attainable, and use of surrogate measures 
(RPE) may be appropriate. For example, specific differences between changes following high- and low-intensity 
training were associated with differences in RPE, and measures of either HR or RPE may be warranted to help 
differentiate LT intensity in patients with iSCI. 

Considering the limitations in intensity measures, the statistically significant differences between training groups 
were not as large as expected. Specifically, changes in gait speed and endurance (6MWT) were below minimal 
detectable changes (MDCs) according to selected research, although other data suggest that the changes in SSS 
or FS were above minimally clinically important differences (MCIDS) for patients with neurological injury47 (≥0.05 
m/s for SSS or FS and ≥20 m for 6MWT). The lack of expected differences may be due to the chronicity or degree 
of injury of this patient population, or potentially the lack of ability to elicit greater differences in HR/RPE 
responses during high- versus low-intensity stepping. However, the present data nonetheless provide further 
evidence for the utility of intensity of stepping practice, consistent with previous studies involving patients 
poststroke.17,18 

Potential mechanisms underlying the changes in locomotor performance following high- versus low-intensity LT 
are not clear but are likely multifactorial. Previous data suggest that high-intensity LT in individuals with 
stroke24,33 results in gains in VO2peak, which may contribute to improved walking function. In the present study, 
greater changes in VO2match vs VO2peak were observed following high- versus low-intensity LT, although was 
neither significant nor related to walking function. As in previous work, however, the combined gains in 
metabolic capacity and efficiency26 (VO2peak-match) compensated for individual variations and demonstrated 
stronger associations with walking outcomes. 

Given the larger changes in metabolic efficiency versus capacity, mechanisms underlying improved locomotor 
function in this study could be due to neuromuscular factors. Potential changes include improved 
neuromuscular coordination, which can be achieved through altered kinematic37,45 and/or muscle activation 
strategies48,49 (ie, reduced co-activation) to achieve faster speeds without large increases in VO2peak. However, 
previous training studies in patients with stroke48,49 and iSCI37 suggest improved speeds without altered co-
activation strategies, and alterations in gait kinematics may be a more likely contributor. Mechanisms underlying 
improved kinematic coordination deserves further study, but suggests altered neural strategies underlie the 
observed changes. Indeed, stepping training has been shown to elicit increases in supraspinal50 and spinal 
circuits51 that may contribute to locomotor improvements. These changes may be enhanced with high-intensity 
training, which can result in the synthesis and release of various trophic factors (eg, brain-derived neurotrophic 
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factors, or BDNF; for review, please see Huang et al52 and Knaepen et al53) that may facilitate neuroplastic 
alterations.30 Many other neuromuscular factors could contribute to the observed changes, included altered 
muscle metabolism, and are of interest in future studies. 

Limitations of this pilot study include the small sample size and lack of blinded assessors for the graded TM and 
metabolic testing, although future trials can use these findings to understand potential effect sizes observed 
with these interventions. In addition, the potential carryover effect of high-intensity training necessitated 
analysis of only the initial training groups, which revealed consistent significant differences in peak TM speed 
and VO2peak-VO2match. Despite significant changes in selected locomotor outcomes (peak TM speed and FS), 
effect sizes for differences in SSS (Cohen’s d = 0.67) and 6MWT (d = 0.36) indicate greater subject numbers (21 
and 63 subjects, respectively) would be sufficient to obtain significant differences. The sample sizes required to 
obtain significant differences in some of these outcomes were larger for FS and SSS than those observed in the 
data from Yang and colleagues,11 although our relative changes in 6MWT were certainly smaller. More work is 
required to evaluate the effects of training intensity in iSCI. 

Conclusions 
In summary, the present study details an initial to delineate the effects of intensity of locomotor practice in 
patients with motor iSCI, revealing significantly greater improvements following high- versus low-intensity 
training in individuals in selected locomotor variables and combined metabolic capacity and efficiency. More 
directly, stepping practice at lower intensities without substantial demands to neuromuscular and 
cardiopulmonary systems results in smaller changes in locomotor function. In the clinical setting, intensity of 
stepping exercise can be readily manipulated and indirectly monitored using cardiopulmonary and subjective 
measures, and may be recommended with further research. 
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