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Rapid Ertapenem Susceptibility Testing and Klebsiella pneumoniae
Carbapenemase Phenotype Detection in Klebsiella pneumoniae Isolates
by Use of Automated Microscopy of Immobilized Live Bacterial Cells

Carey-Ann D. Burnham,a,b Rachel A. Frobel,a Monica L. Herrera,c Brian L. Wickesc

Department of Pathology and Immunologya and Department of Pediatrics,b Washington University School of Medicine, St. Louis, Missouri, USA; Department of
Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USAc

We evaluated detection of ertapenem (ETP) resistance and Klebsiella pneumoniae carbapenemase (KPC) in 47 Klebsiella pneu-
moniae isolates using a novel automated microscopy system. Automated microscopy correctly classified 22/23 isolates as ETP
resistant and 24/24 as ETP susceptible and correctly classified 21/21 isolates as KPC positive and 26/26 as KPC negative.

Carbapenem-resistant Enterobacteriaceae (CRE) are emerging
as a global threat; the plasmid-borne carbapenemase gene

blaKPC is the predominant mechanism conferring carbapenem re-
sistance in North America (1–5). This resistance gene has been
reported in most species of Enterobacteriaceae, but it is most com-
monly found in Klebsiella pneumoniae. Timely detection of car-
bapenem resistance is critical for prompt optimization of antimi-
crobial therapy, but the sensitivity of antimicrobial susceptibility
testing methods for CRE detection is variable and turnaround
time can be slow (6–10). It has been demonstrated that in vitro
detection of K. pneumoniae carbapenemase (KPC) expression can
be difficult, varying by bacterial species and level of enzyme ex-
pression.

(This study was presented in part at the 113th American Soci-
ety for Microbiology General Meeting, Denver, CO, May 2013.)

The objective of our study was to evaluate automated micros-
copy for detection of ertapenem (ETP) resistance in K. pneu-
moniae and the ability to attribute the mechanism of this resis-
tance to the KPC enzyme. Forty-six K. pneumoniae isolates
recovered from clinical specimens obtained at Barnes-Jewish
Hospital (St. Louis, MO) and one KPC-negative, extended-spec-
trum �-lactamase (ESBL)-positive K. pneumoniae quality control
strain, ATCC 700603, were tested (Table 1). The ertapenem and
meropenem (MEM) susceptibility profiles of the isolates were de-
termined by disk diffusion according to CLSI standards (11), and
isolates were characterized for blaKPC using a laboratory-devel-
oped real-time PCR assay (6).

For automated microscopy, bacterial suspensions were centri-
fuged (12,000 � g for 4 min), washed in 1 mM L-histidine buffer at
a pH of 7.2, and resuspended in a low-ionic-strength electroki-
netic buffer containing 10 mM L-3,4-dihydroxyphenylalanine (L-
DOPA) and 1 mM L-histidine at a pH of 7.0 (reagents from Sigma-
Aldrich, St. Louis, MO). This created an inoculum of approximately
1 � 106 CFU/ml for testing, and then automated microscopy was
performed. Bacterial inocula were pipetted into independent flow
cells of a multichannel disposable fluidic cassette (Accelerate Di-
agnostics Inc., Tucson, AZ). Bacteria were immobilized on the
transparent lower surface of each flow cell using electrokinetic
concentration (Fig. 1). Mixtures of antibiotics in Mueller-Hinton
broth (Becton, Dickinson, Franklin Lakes, NJ) containing 0.85%
noble agar (Affymetrix, Santa Clara, CA) were introduced into
each flow cell channel. Dark-field images of each flow cell channel
were taken at 10-min intervals during a fixed 3-h antibiotic expo-

sure period. An offline image analyzer tracked each immobilized
bacterial progenitor cell as it replicated into a clone of daughter
cells throughout a series of time-lapse images for each flow cell.
The analyzer computed a growth probability score for each grow-
ing clone derived from coefficients of a cubic polynomial [f(x) �
ax3 � bx2 � cx � d] fitted to the computed log of relative clone
mass (integrated pixel intensity) versus time. The growth proba-
bility score transformed each clone’s growth data into a numerical
score ranging between 0 and 1 that represented the probability of
the clone continuing to grow (�0.8), to arrest (0.2 to 0.8), or to
lyse (�0.2). The slope of a straight line fit by linear regression was
used to calculate the division rates for individual clones. The me-
dian clonal division rate (div/h), weighted for the number of
growing clones and growth probability, was used to calculate a
resistance score for each test condition.

A total of 10 �g/ml of ETP (Merck, Whitehouse Station, NJ)
was used for susceptibility testing, and KPC detection used four
flow cell channels per sample. The first KPC channel contained 16
�g/ml of MEM (Sigma-Aldrich), the second contained 32 �g/ml
of MEM, the third contained 16 �g/ml of MEM plus 32 �g/ml
3-nitrophenylboronic acid (NPBA; Sigma-Aldrich), and the
fourth contained 32 �g/ml of MEM plus 32 �g/ml NPBA. NPBA
was included because it is an inhibitor of the KPC enzyme (12).
Interpretation algorithms in the image analyzer computed the dif-
ference between resistance scores in MEM alone and those in
MEM plus NPBA to obtain an inhibition score, weighted by the
number of growing clones in each condition. The operator inter-
preting the ETP susceptibility and KPC status of the isolate was
blinded to the phenotypic data and the blaKPC PCR result.

The automated microscopy system classified 22/23 Klebsiella
pneumoniae isolates as ETP resistant and 24/24 as ETP susceptible
using a resistance score cutoff of 1.4 (Fig. 2) and therefore
achieved 96% sensitivity (95% confidence interval [CI], 76% to
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100%) and 100% specificity (95% CI, 83% to 100%) for detection
of ETP resistance. There was one instance of susceptibility re-
ported by automated microscopy for an isolate that tested as re-
sistant by disk diffusion (KP-505; 13-mm ETP zone diameter,
microscopy score of 0.93). Growth controls had an average and
standard deviation of 55 	 27 growing clones per field of view, a
number which was therefore the number of viable clones in all
channels. The average resistance score and standard deviation was
0.46 	 0.41 (range, 0.00 to 1.25) for ETP-susceptible isolates and
1.89 	 0.24 (range, 0.93 to 2.17) for ETP-resistant isolates. Images
of ETP-resistant isolate wu33 and ETP-susceptible isolate wu9 at
0, 90, and 180 min after exposure to 10 �g/ml ETP are shown in
Fig. 3. Upon exposure to 10 �g/ml ETP, ETP-resistant strains
showed robust growth with minimal lysis, with most clones grow-
ing in a spheroidal clone morphology. In contrast, ETP-suscepti-
ble strains exhibited rapid growth arrest and lysis (Fig. 3).

The microscopy system classified 21/21 isolates as KPC posi-
tive and 26/26 strains as KPC negative compared to PCR results.
Upon exposure to MEM alone, spheroidal clone morphology was
observed for KPC-positive clones with minimal lysis (Fig. 4).
Rapid growth arrest and lysis were observed for KPC-positive iso-
lates in the presence of MEM plus NPBA as well as for all KPC-
negative isolates upon exposure to MEM and MEM plus NPBA.
The microscopy method achieved 100% sensitivity (95% CI, 81%
to 100%) and 100% specificity (95% CI, 83% to 100%) for KPC
characterization of the isolates. The mean inhibition score and
standard deviation was 0.54 	 0.19 (range, 0.19 to 0.91) for KPC-
positive isolates and 
0.75 	 0.38 (range, 
1.00 to 
0.08) for
KPC-negative isolates. Images of KPC-positive strain wu15 at 0,
90, and 180 min are shown in Fig. 4. All 21 KPC-positive strains

were classified as ETP resistant by microscopy analysis and by disk
diffusion.

Of note, two strains evaluated in this study (KP-456 and KP-
505) were negative for KPC by PCR but resistant to both ETP and
MEM using disk diffusion. The microscopy analysis correctly
classified both strains as KPC negative. Microscopy analysis cor-
rectly classified KP-456 as ETP resistant but incorrectly classified
KP-505 as ETP susceptible (Fig. 2). Additional susceptibility test-
ing of isolate KP-505 demonstrated that the isolate was susceptible
to piperacillin-tazobactam, ticarcillin-clavulanic acid, cefotetan,
amikacin, and tobramycin and resistant to gentamicin; this profile
is different from those of the KPC-producing strains in this study.
The KPC-producing strains were typically gentamicin susceptible
and resistant to piperacillin-tazobactam, ticarcillin-clavulanic
acid, amikacin, and tobramycin. Together, these data suggest that
in isolate KP-505, carbapenem resistance may be attributed to an
ESBL-producing strain with a porin or efflux mutation(s). Visual
examination of the time-lapse images for isolate KPC-505 re-
vealed that the microscopy error was due to technical limitations,
including loss of focus in two of the six fields of view and very low
clone counts in the remaining four fields of view, issues which
weighted the scoring algorithm toward a score in the susceptible
range. Improvements in instrument focus, setting of strict re-
quirements for the number of clones analyzed prior to reporting,
and algorithm optimization may help to reduce or eliminate these
sources of error in future analyses. For isolate KP-456, additional
susceptibility testing results revealed cefepime susceptibility and
cefotetan resistance, suggesting that in this isolate, an acquired
AmpC with a porin and/or efflux mutation may be a plausible

TABLE 1 Characterization of bacterial strains

Strain type
No. of
isolates

No. of isolates with each result as determined by automated
microscopy

Mean (range) zone diameter
(mm) witha:

KPC ETP resistance

ETP MEMPositive Negative Positive Negative

KPC positive 21 21 0 21 0
KPC-2 positive 13 13 0 13 0 8 (6–11) 10 (8–12)
KPC-3 positive 8 8 0 8 0 12 (8–15) 13 (12–14)

KPC negative 26 0 26 1 25
Ertapenem resistant 2 0 2 1 1 15 (13–16) 18 (17–19)
Ertapenem susceptible 24 0 24 0 24 28 (26–35) 27 (25–30)

a The CLSI susceptibility breakpoint for ETP is �22 mm, and the CLSI susceptibility breakpoint for MEM is �23 mm.

FIG 1 Bacterial cell immobilization by electrokinetic concentration. (Left) Sample suspension flows in and then stops. (Right) Electric field forces bacterial cells
to the positively charged poly-L-lysine (PLL) capture coating. PLL binds cells upon contact and immobilizes them after the electric field turns off. ITO, indium
tin oxide.
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explanation for the observed carbapenem resistance in the ab-
sence of KPC.

The KPC type of each strain was determined (Table 1) as pre-
viously described (13). In addition, enterobacterial repetitive in-
tergenic consensus PCR (ERIC-PCR) was used to assess the ge-
netic relatedness of the KPC-producing strains. PCR products
were resolved using DiversiLab DNA chips (bioMérieux, Dur-
ham, NC) on the Agilent 2100 system (Agilent Technologies,
Santa Clara, CA). DiversiLab software was used to compare band-
ing patterns and determine the similarity of the isolates (using a
similarity index [SI]), with identical isolates having an SI of 85%
or greater (14–17). Molecular typing of the specific KPC variants
contained in the isolates identified 13 blaKPC-2- and 8 blaKPC-3-
containing strains (Table 1). With ERIC-PCR, the isolates clus-
tered into 4 major strain types: the first cluster with 5 isolates, the
second with 3 isolates, the third with 12 isolates, and the fourth
with 1 isolate.

State-of-the-art automated antimicrobial susceptibility testing
systems vary in their ability to detect carbapenemase production
(8, 18). Reliable detection of carbapenem resistance is important
to guide selection of appropriate therapy. Automated microscopy,
as evaluated in this study, detected ETP resistance and showed
promising phenotypic results that were consistent with KPC ex-
pression, using data acquired in 3 h. Using ETP as an indicator, the
automated microscopy method evaluated in this study was 96%
sensitive and 100% specific for detection of carbapenem resis-

FIG 2 Scatter plot of the automated microscopy resistance score versus ertap-
enem disk diffusion reference. Vertical dashed lines indicate 2013 CLSI break-
points for susceptible and resistant, and the horizontal dashed line indicates
the microscopy score interpretation criterion value of 1.4. Strains KP-456 and
KP-505 were KPC negative by PCR but resistant by disk diffusion for ertap-
enem and meropenem.

FIG 3 Ertapenem-resistant (ETP-R) (wu33; ETP disk zone � 8 mm) and -susceptible (ETP-S) (wu9; ETP disk zone � 35 mm) K. pneumoniae strains. Rows show
clone images at 90-min intervals after exposure to growth medium alone (growth control) or 10 �g/ml ertapenem (ETP-R and ETP-S). Images are zoomed in and
contrast enhanced. Scale bar, 20 �m.

Burnham et al.
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tance. This rapid result may be important for guiding antimicro-
bial therapy in critically ill patients and quickly initiating appro-
priate infection control measures.
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