17 research outputs found

    Obesity-Induced Colorectal Cancer Is Driven by Caloric Silencing of the Guanylin-GUCY2C Paracrine Signaling Axis.

    Get PDF
    Obesity is a well-known risk factor for colorectal cancer but precisely how it influences risks of malignancy remains unclear. During colon cancer development in humans or animals, attenuation of the colonic cell surface receptor guanylyl cyclase C (GUCY2C) that occurs due to loss of its paracrine hormone ligand guanylin contributes universally to malignant progression. In this study, we explored a link between obesity and GUCY2C silencing in colorectal cancer. Using genetically engineered mice on different diets, we found that diet-induced obesity caused a loss of guanylin expression in the colon with subsequent GUCY2C silencing, epithelial dysfunction, and tumorigenesis. Mechanistic investigations revealed that obesity reversibly silenced guanylin expression through calorie-dependent induction of endoplasmic reticulum stress and the unfolded protein response in intestinal epithelial cells. In transgenic mice, enforcing specific expression of guanylin in intestinal epithelial cells restored GUCY2C signaling, eliminating intestinal tumors associated with a high calorie diet. Our findings show how caloric suppression of the guanylin-GUCY2C signaling axis links obesity to negation of a universal tumor suppressor pathway in colorectal cancer, suggesting an opportunity to prevent colorectal cancer in obese patients through hormone replacement with the FDA-approved oral GUCY2C ligand linaclotide

    Intestinal GUCY2C prevents TGF-β secretion coordinating desmoplasia and hyperproliferation in colorectal cancer.

    Get PDF
    Tumorigenesis is a multistep process that reflects intimate reciprocal interactions between epithelia and underlying stroma. However, tumor-initiating mechanisms coordinating transformation of both epithelial and stromal components are not defined. In humans and mice, initiation of colorectal cancer is universally associated with loss of guanylin and uroguanylin, the endogenous ligands for the tumor suppressor guanylyl cyclase C (GUCY2C), disrupting a network of homeostatic mechanisms along the crypt-surface axis. Here, we reveal that silencing GUCY2C in human colon cancer cells increases Akt-dependent TGF-β secretion, activating fibroblasts through TGF-β type I receptors and Smad3 phosphorylation. In turn, activating TGF-β signaling induces fibroblasts to secrete hepatocyte growth factor (HGF), reciprocally driving colon cancer cell proliferation through cMET-dependent signaling. Elimination of GUCY2C signaling in mice (Gucy2c(-/-)) produces intestinal desmoplasia, with increased reactive myofibroblasts, which is suppressed by anti-TGF-β antibodies or genetic silencing of Akt. Thus, GUCY2C coordinates intestinal epithelial-mesenchymal homeostasis through reciprocal paracrine circuits mediated by TGF-β and HGF. In that context, GUCY2C signaling constitutes a direct link between the initiation of colorectal cancer and the induction of its associated desmoplastic stromal niche. The recent regulatory approval of oral GUCY2C ligands to treat chronic gastrointestinal disorders underscores the potential therapeutic opportunity for oral GUCY2C hormone replacement to prevent remodeling of the microenvironment essential for colorectal tumorigenesis

    GUCY2C Opposes Systemic Genotoxic Tumorigenesis by Regulating AKT-Dependent Intestinal Barrier Integrity

    Get PDF
    The barrier separating mucosal and systemic compartments comprises epithelial cells, annealed by tight junctions, limiting permeability. GUCY2C recently emerged as an intestinal tumor suppressor coordinating AKT1-dependent crypt-villus homeostasis. Here, the contribution of GUCY2C to barrier integrity opposing colitis and systemic tumorigenesis is defined. Mice deficient in GUCY2C (Gucy2c−/−) exhibited barrier hyperpermeability associated with reduced junctional proteins. Conversely, activation of GUCY2C in mice reduced barrier permeability associated with increased junctional proteins. Further, silencing GUCY2C exacerbated, while activation reduced, chemical barrier disruption and colitis. Moreover, eliminating GUCY2C amplified, while activation reduced, systemic oxidative DNA damage. This genotoxicity was associated with increased spontaneous and carcinogen-induced systemic tumorigenesis in Gucy2c−/− mice. GUCY2C regulated barrier integrity by repressing AKT1, associated with increased junction proteins occludin and claudin 4 in mice and Caco2 cells in vitro. Thus, GUCY2C defends the intestinal barrier, opposing colitis and systemic genotoxicity and tumorigenesis. The therapeutic potential of this observation is underscored by the emerging clinical development of oral GUCY2C ligands, which can be used for chemoprophylaxis in inflammatory bowel disease and cancer

    Bacterial Heat-Stable Enterotoxins: Translation of Pathogenic Peptides into Novel Targeted Diagnostics and Therapeutics

    Get PDF
    Heat-stable toxins (STs) produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C). Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities offered by STs, reflecting the unique characteristics of GC-C, in treating irritable bowel syndrome and chronic constipation, and in preventing and treating colorectal cancer

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Evaluating the outcomes and implementation determinants of interventions co-developed using human-centered design to promote healthy eating in restaurants: an application of the consolidated framework for implementation research

    Get PDF
    BackgroundRestaurants are an emerging yet underutilized setting to facilitate healthier eating, particularly among minoritized communities that disproportionately experience health inequities. The present study aimed to examine outcomes from interventions co-developed using Human-Centered Design (HCD) in two Latin American restaurants, including sales of healthier menu items (HMI) and the consumer nutrition environment. In addition, we aimed to assess implementation outcomes (acceptability, fidelity, and sustainability) and elucidate the determinants for implementation using the Consolidated Framework for Implementation Research.MethodsThis study used a mixed-methods, longitudinal design. Data were collected pre-, during, and post-intervention testing. Intervention outcomes were examined through daily sales data and the Nutrition Environment Measures Survey for Restaurants (NEMS-R). Changes in HMI sales were analyzed using interrupted time series. Implementation outcomes and determinants were assessed through site visits [observations, interviews with staff (n = 19) and customers (n = 31)], social media monitoring, and post-implementation key informant interviews with owners and staff. Qualitative data were analyzed iteratively by two independent researchers using codes developed a priori based on CFIR.ResultsThe HCD-tailored interventions had different outcomes. In restaurant one (R1), where new HMI were introduced, we found an increase in HMI sales and improvements in NEMS-R scores. In restaurant two, where existing HMI were promoted, we found no significant changes in HMI sales and NEMS-R scores. Acceptance was high among customers and staff, but fidelity and sustainability differed by restaurant (high in R1, low in R2). Barriers and facilitators for implementation were found across all CFIR constructs, varying by restaurant and intervention. Most relevant constructs were found in the inner setting (restaurant structure, implementation climate), individual characteristics, and process (HCD application). The influence of outer setting constructs (policy, peer pressure) was limited due to lack of awareness.ConclusionOur findings provide insights for interventions developed in challenging and constantly changing settings, as in the case of restaurants. This research expands the application of CFIR to complex and dynamic community-based settings and interventions developed using HCD. This is a significant innovation for the field of public health nutrition and informs future interventions in similarly dynamic and understudied settings
    corecore