7 research outputs found

    Cocaine self-administration in the mouse: A low-cost, chronic catheter preparation

    Get PDF
    Intravenous drug self-administration is the most valid animal model of human addiction because it allows volitional titration of the drug in the blood based on an individual’s motivational state together with the pharmacokinetic properties of the drug. Here we describe a reliable low-cost mouse self-administration catheter assembly and protocol that that can be used to assess a variety of drugs of abuse with a variety of protocols. We describe a method for intravenous catheter fabrication that allows for efficient and long-lasting intravenous drug delivery. The intravenous catheters remained intact and patent for several weeks allowing us to establish stable maintenance of cocaine acquisition. This was followed by a dose response study in the same mice. For collaborators interested in premade catheters for research please make a request at www.neuro-cloud.net/nature-precedings/pomerenze

    Cellular Phone-Based Image Acquisition and Quantitative Ratiometric Method for Detecting Cocaine and Benzoylecgonine for Biological and Forensic Applications

    No full text
    Here we describe the first report of using low-cost cellular or web-based digital cameras to image and quantify standardized rapid immunoassay strips as a new point-of-care diagnostic and forensics tool with health applications. Quantitative ratiometric pixel density analysis (QRPDA) is an automated method requiring end-users to utilize inexpensive (~ $1 USD/each) immunotest strips, a commonly available web or mobile phone camera or scanner, and internet or cellular service. A model is described whereby a central computer server and freely available IMAGEJ image analysis software records and analyzes the incoming image data with time-stamp and geo-tag information and performs the QRPDA using custom JAVA based macros ( http://www.neurocloud.org ). To demonstrate QRPDA we developed a standardized method using rapid immunotest strips directed against cocaine and its major metabolite, benzoylecgonine. Images from standardized samples were acquired using several devices, including a mobile phone camera, web cam, and scanner. We performed image analysis of three brands of commercially available dye-conjugated anti-cocaine/benzoylecgonine (COC/BE) antibody test strips in response to three different series of cocaine concentrations ranging from 0.1 to 300 ng/ml and BE concentrations ranging from 0.003 to 0.1 ng/ml. This data was then used to create standard curves to allow quantification of COC/BE in biological samples. Across all devices, QRPDA quantification of COC and BE proved to be a sensitive, economical, and faster alternative to more costly methods, such as gas chromatography-mass spectrometry, tandem mass spectrometry, or high pressure liquid chromatography. The limit of detection was determined to be between 0.1 and 5 ng/ml. To simulate conditions in the field, QRPDA was found to be robust under a variety of image acquisition and testing conditions that varied temperature, lighting, resolution, magnification and concentrations of biological fluid in a sample. To determine the effectiveness of the QRPDA method for quantifying cocaine in biological samples, mice were injected with a sub-locomotor activating dose of cocaine (5 mg/kg; i.p.) and were found to have detectable levels of COC/BE in their urine (160.6 ng/ml) and blood plasma (8.1 ng/ml) after 15–30 minutes. By comparison rats self-administering cocaine in a 4 hour session obtained a final BE blood plasma level of 910 ng/ml with an average of 62.5 infusions. It is concluded that automated QRPDA is a low-cost, rapid and highly sensitive method for the detection of COC/BE with health, forensics, and bioinformatics application and the potential to be used with other rapid immunotest strips directed at several other targets. Thus, this report serves as a general reference and method describing the use of image analysis of lateral flow rapid test strips

    Cocaine infusions earned before and during the dose-response challenge

    No full text
    <p>This data set represents the number of cocaine infusions each subject earned for the last two days preceding (2a), and for the two consecutive sessions during (2b), the dose-response challenge for mice of each genotype. TRPC5 +/+ = wild-type; TRPC5 -/- = knock-down; "-2" = second to last day leading up to dose-response challenge; "-1" = last day leading up to dose-response challenge; S(0.05) = session with dose 0.05 mg/kg/infusion; S(0.1) = session with dose 0.1 mg/kg/infusion; S(0.75) = session with dose 0.75 mg/kg/infusion; S(2.0) = session with does 2.0 mg/kg/infusion; S1 = first daily session with respective dose; S2 = second daily session with respective dose</p

    Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism

    No full text
    Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting thatmost effectors represent species-specific adaptations
    corecore