352 research outputs found

    Radiation Effects on Flow Characteristics in Combustion Chambers

    Get PDF
    A JANNAF sponsored workshop was held to discuss the importance and role of radiative heat transfer in rocket combustion chambers. The potential impact of radiative transfer on hardware design, reliability, and performance was discussed. The current state of radiative transfer prediction capability in CFD modeling was reviewed and concluded to be substantially lacking in both the physical models used and the radiative property data available. There is a clear need to begin to establish a data base for making radiation calculations in rocket combustion chambers. A natural starting point for this effort would be the NASA thermochemical equilibrium code (CEC)

    Effective optical properties of absorbing nanoporous and nanocomposite thin films

    Full text link
    This paper aims at developing numerically validated models for predicting the through-plane effective index of refraction and absorption index of nanocomposite thin films. First, models for the effective optical properties of such materials are derived from previously reported analysis applying the volume averaging theory (VAT) to the Maxwell's equations. The transmittance and reflectance of nanoporous thin films are computed by solving the Maxwell's equations and the associated boundary conditions at all interfaces using finite element methods. The effective optical properties of the films are retrieved by minimizing the root mean square of the relative errors between the computed and theoretical transmittance and reflectance. Nanoporous thin films made of SiO2 and TiO2 consisting of cylindrical nanopores and nanowires are investigated for different diameters and various porosities. Similarly, electromagnetic wave transport through dielectric medium with embedded metallic nanowires are simulated. The numerical results are compared with predictions from widely used effective property models including (1) the Maxwell-Garnett Theory, (2) the Bruggeman effective medium approximation, (3) the parallel, (4) series, (5) Lorentz-Lorenz, and (6) the VAT models. Very good agreement is found with the VAT model for both the effective index of refraction and absorption index. Finally, the effect of volume fraction on the effective index of refraction and absorption index predicted by the VAT model is discussed. For certain values of wavelengths and volume fractions, the effective index of refraction or absorption index of the composite material can be smaller than that of both the continuous and dispersed phases. These results indicate guidelines for designing nanocomposite materials with desired optical properties

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    Communicating product user reviews and ratings in interfaces for e-commerce: a multimodal approach

    Get PDF
    This paper describes a comparative empirical evaluation study that uses multimodal presentations to communicate review messages in an e-commerce platform. Previous studies demonstrate the effective use of multimodality in different problem domains (e.g. e-learning). In this paper, multimodality and expressive avatars are used to communicate information related to product reviews messages. The data of the reviews was opportunistically collected from Facebook and Twitter. Two independent groups of users were used to evaluate two different presentations of reviews and ratings using as a basis an experimental e- commerce platform. The control group used a text-based with emojis presentation and the experimental group used a multimodal approach based on expressive avatars. Three parameters of usability were measured. These were efficiency, effectiveness, user satisfaction, and user preference. The result showed that the two approaches performed similarly. These findings provide a basis for further experiments in which text, emojis and expressive avatars can be combine to communicate a larger volume of reviews and ratings

    Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia–reperfusion

    Get PDF
    During partial hepatectomy, ischemia–reperfusion (I/R) is commonly applied in clinical practice to reduce blood flow. Steatotic livers show impaired regenerative response and reduced tolerance to hepatic injury. We examined the effects of tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA) in steatotic and non-steatotic livers during partial hepatectomy under I/R (PH+I/R). Their effects on the induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were also evaluated. We report that PBA, and especially TUDCA, reduced inflammation, apoptosis and necrosis, and improved liver regeneration in both liver types. Both compounds, especially TUDCA, protected both liver types against ER damage, as they reduced the activation of two of the three pathways of UPR (namely inositol-requiring enzyme and PKR-like ER kinase) and their target molecules caspase 12, c-Jun N-terminal kinase and C/EBP homologous protein-10. Only TUDCA, possibly mediated by extracellular signal-regulated kinase upregulation, inactivated glycogen synthase kinase-3β. This is turn, inactivated mitochondrial voltage-dependent anion channel, reduced cytochrome c release from the mitochondria and caspase 9 activation and protected both liver types against mitochondrial damage. These findings indicate that chemical chaperones, especially TUDCA, could protect steatotic and non-steatotic livers against injury and regeneration failure after PH+I/R

    Ectopic T Cell Receptor-α Locus Control Region Activity in B Cells Is Suppressed by Direct Linkage to Two Flanking Genes at Once

    Get PDF
    The molecular mechanisms regulating the activity of the TCRα gene are required for the production of the circulating T cell repertoire. Elements of the mouse TCRα locus control region (LCR) play a role in these processes. We previously reported that TCRα LCR DNA supports a gene expression pattern that mimics proper thymus-stage, TCRα gene-like developmental regulation. It also produces transcription of linked reporter genes in peripheral T cells. However, TCRα LCR-driven transgenes display ectopic transcription in B cells in multiple reporter gene systems. The reasons for this important deviation from the normal TCRα gene regulation pattern are unclear. In its natural locus, two genes flank the TCRα LCR, TCRα (upstream) and Dad1 (downstream). We investigated the significance of this gene arrangement to TCRα LCR activity by examining transgenic mice bearing a construct where the LCR was flanked by two separate reporter genes. Surprisingly, the presence of a second, distinct, reporter gene downstream of the LCR virtually eliminated the ectopic B cell expression of the upstream reporter observed in earlier studies. Downstream reporter gene activity was unaffected by the presence of a second gene upstream of the LCR. Our findings indicate that a gene arrangement in which the TCRα LCR is flanked by two distinct transcription units helps to restrict its activity, selectively, on its 5′-flanking gene, the natural TCRα gene position with respect to the LCR. Consistent with these findings, a TCRα/Dad1 locus bacterial artificial chromosome dual-reporter construct did not display the ectopic upstream (TCRα) reporter expression in B cells previously reported for single TCRα transgenes
    corecore