250 research outputs found

    Children with Juvenile Rheumatoid Arthritis at School

    Full text link
    Parents of 135 children with juvenile rheumatoid arthritis (JRA) completed a mailed questionnaire about problems at school. Writing was the most frequently reported difficulty, with hand involvement causing more problems than decreased mobility. Compared to children with pauciarticular JRA, those with polyarticular or systemic JRA were significantly more likely to miss school, experience problems, participate less in physical education, have an Individualized Educational Plan (IEP) developed, and receive related services. Only 39 parents had heard of PL 94-142, and only 21 of those could define the federal law. Twenty children had an IEP within the previous two years. Possible deficiencies in the implementation of PL 94-142 were discovered. This study demonstrates that the treatment of children with JRA should include efforts to: 1) identify and remediate potential performance limitations before they become problematic at school; 2) communicate this information to parents and school personnel; 3) and improve parents' awareness and understanding of PL 94-142.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67045/2/10.1177_000992288902801104.pd

    Ultrasensitive force and displacement detection using trapped ions

    Full text link
    The ability to detect extremely small forces is vital for a variety of disciplines including precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN/HzaN/\sqrt{Hz} (atto =10−18=10^{-18}) through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including single-electron transistors, superconducting microwave cavities, and individual spins. These experiments have allowed for probing studies of a variety of phenomena, but sensitivity requirements are ever-increasing as new regimes of physical interactions are considered. Here we show that trapped atomic ions are exquisitely sensitive force detectors, with a measured sensitivity more than three orders of magnitude better than existing reports. We demonstrate detection of forces as small as 174 yNyN (yocto =10−24=10^{-24}), with a sensitivity 390±150\pm150 yN/HzyN/\sqrt{Hz} using crystals of n=60n=60 9^{9}Be+^{+} ions in a Penning trap. Our technique is based on the excitation of normal motional modes in an ion trap by externally applied electric fields, detection via and phase-coherent Doppler velocimetry, which allows for the discrimination of ion motion with amplitudes on the scale of nanometers. These experimental results and extracted force-detection sensitivities in the single-ion limit validate proposals suggesting that trapped atomic ions are capable of detecting of forces with sensitivity approaching 1 yN/HzyN/\sqrt{Hz}. We anticipate that this demonstration will be strongly motivational for the development of a new class of deployable trapped-ion-based sensors, and will permit scientists to access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to press embarg

    Evaluating the quality of interaction between medical students and nurses in a large teaching hospital

    Get PDF
    BACKGROUND: Effective health care depends on multidisciplinary collaboration and teamwork, yet little is known about how well medical students and nurses interact in the hospital environment, where physicians-in-training acquire their first experiences as members of the health care team. The objective of this study was to evaluate the quality of interaction between third-year medical students and nurses during clinical rotations. METHODS: We surveyed 268 Indiana University medical students and 175 nurses who worked at Indiana University Hospital, the School's chief clinical training site. The students had just completed their third year of training. The survey instrument consisted of 7 items that measured "relational coordination" among members of the health care team, and 9 items that measured psychological distress. RESULTS: Sixty-eight medical students (25.4%) and 99 nurses (56.6%) completed the survey. The relational coordination score (ranked 1 to 5, low to high), which provides an overall measure of interaction quality, showed that medical students interacted with residents the best (4.16) and with nurses the worst (2.98; p < 0.01). Conversely, nurses interacted with other nurses the best (4.36) and with medical students the worst (2.68; p < 0.01). Regarding measures of psychological distress (ranked 0 to 4, low to high), the interpersonal sensitivity score of medical students (1.56) was significantly greater than that of nurses (1.03; p < 0.01), whereas the hostility score of nurses (0.59) was significantly greater than that of medical students (0.39; p < 0.01). CONCLUSION: The quality of interaction between medical students and nurses during third-year clinical rotations is poor, which suggests that medical students are not receiving the sorts of educational experiences that promote optimal physician-nurse collaboration. Medical students and nurses experience different levels of psychological distress, which may adversely impact the quality of their interaction

    Systematic review of antiepileptic drugs’ safety and effectiveness in feline epilepsy

    Get PDF
    Understanding the efficacy and safety profile of antiepileptic drugs (AEDs) in feline epilepsy is a crucial consideration for managing this important brain disease. However, there is a lack of information about the treatment of feline epilepsy and therefore a systematic review was constructed to assess current evidence for the AEDs’ efficacy and tolerability in cats. The methods and materials of our former systematic reviews in canine epilepsy were mostly mirrored for the current systematic review in cats. Databases of PubMed, CAB Direct and Google scholar were searched to detect peer-reviewed studies reporting efficacy and/or adverse effects of AEDs in cats. The studies were assessed with regards to their quality of evidence, i.e. study design, study population, diagnostic criteria and overall risk of bias and the outcome measures reported, i.e. prevalence and 95% confidence interval of the successful and affected population in each study and in total

    Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques

    Get PDF
    Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy

    Optimized Dynamical Decoupling in a Model Quantum Memory

    Full text link
    We present experimental measurements on a model quantum system that demonstrate our ability to dramatically suppress qubit error rates by the application of optimized dynamical decoupling pulse sequences in a variety of experimentally relevant noise environments. We provide the first demonstration of an analytically derived pulse sequence developed by Uhrig, and find novel sequences through active, real-time experimental feedback. These new sequences are specially tailored to maximize error suppression without the need for a priori knowledge of the ambient noise environment. We compare these sequences against the Uhrig sequence, and the well established CPMG-style spin echo, demonstrating that our locally optimized pulse sequences outperform all others under test. Numerical simulations show that our locally optimized pulse sequences are capable of suppressing errors by orders of magnitude over other existing sequences. Our work includes the extension of a treatment to predict qubit decoherence under realistic conditions, including the use of finite-duration, square π\pi pulses, yielding strong agreement between experimental data and theory for arbitrary pulse sequences. These results demonstrate the robustness of qubit memory error suppression through dynamical decoupling techniques across a variety of qubit technologies.Comment: Subject to press embarg

    eIF2α Kinases Regulate Development through the BzpR Transcription Factor in Dictyostelium discoideum

    Get PDF
    A major mechanism of translational regulation in response to a variety of stresses is mediated by phosphorylation of eIF2α to reduce delivery of initiator tRNAs to scanning ribosomes. For some mRNAs, often encoding a bZIP transcription factor, eIF2α phosphorylation leads to enhanced translation due to delayed reinitiation at upstream open reading frames. Dictyostelium cells possess at least three eIF2α kinases that regulate various portions of the starvation-induced developmental program. Cells possessing an eIF2α that cannot be phosphorylated (BS167) show abnormalities in growth and development. We sought to identify a bZIP protein in Dictyostelium whose production is controlled by the eIF2α regulatory system.Cells disrupted in the bzpR gene had similar developmental defects as BS167 cells, including small entities, stalk defects, and reduced spore viability. β-galactosidase production was used to examine translation from mRNA containing the bzpR 5' UTR. While protein production was readily apparent and regulated temporally and spatially in wild type cells, essentially no β-galactosidase was produced in developing BS167 cells even though the lacZ mRNA levels were the same as those in wild type cells. Also, no protein production was observed in strains lacking IfkA or IfkB eIF2α kinases. GFP fusions, with appropriate internal controls, were used to directly demonstrate that the bzpR 5' UTR, possessing 7 uORFs, suppressed translation by 12 fold. Suppression occurred even when all but one uORF was deleted, and translational suppression was removed when the ATG of the single uORF was mutated.The findings indicate that BzpR regulates aspects of the development program in Dictyostelium, serving as a downstream effector of eIF2α phosphorylation. Its production is temporally and spatially regulated by eIF2α phosphorylation by IfkA and IfkB and through the use of uORFs within the bzpR 5' UTR

    Organizational culture, team climate and diabetes care in small office-based practices

    Get PDF
    Contains fulltext : 71456.pdf ( ) (Open Access)BACKGROUND: Redesigning care has been proposed as a lever for improving chronic illness care. Within primary care, diabetes care is the most widespread example of restructured integrated care. Our goal was to assess to what extent important aspects of restructured care such as multidisciplinary teamwork and different types of organizational culture are associated with high quality diabetes care in small office-based general practices. METHODS: We conducted cross-sectional analyses of data from 83 health care professionals involved in diabetes care from 30 primary care practices in the Netherlands, with a total of 752 diabetes mellitus type II patients participating in an improvement study. We used self-reported measures of team climate (Team Climate Inventory) and organizational culture (Competing Values Framework), and measures of quality of diabetes care and clinical patient characteristics from medical records and self-report. We conducted multivariate analyses of the relationship between culture, climate and HbA1c, total cholesterol, systolic blood pressure and a sum score on process indicators for the quality of diabetes care, adjusting for potential patient- and practice level confounders and practice-level clustering. RESULTS: A strong group culture was negatively associated to the quality of diabetes care provided to patients (beta = -0.04; p = 0.04), whereas a more 'balanced culture' was positively associated to diabetes care quality (beta = 5.97; p = 0.03). No associations were found between organizational culture, team climate and clinical patient outcomes. CONCLUSION: Although some significant associations were found between high quality diabetes care in general practice and different organizational cultures, relations were rather marginal. Variation in clinical patient outcomes could not be attributed to organizational culture or teamwork. This study therefore contributes to the discussion about the legitimacy of the widespread idea that aspects of redesigning care such as teamwork and culture can contribute to higher quality of care. Future research should preferably combine quantitative and qualitative methods, focus on possible mediating or moderating factors and explore the use of instruments more sensitive to measure such complex constructs in small office-based practices
    • …
    corecore