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Abstract

Tunable consistency guarantees in big data stores help in achieving optimized consistency guarantees with
improved performance. Commercial data stores offer tunable consistency guarantees at transaction level where
the user specifies the desired level of consistency in terms of number of participating replicas in read and write
consensus. Selective data consistency model applies strict consistency to a subset of data objects. The consistency
guarantees of data attributes or objects are measured using an application independent metric called consistency
index (CI). Our consistency model is predictive and helps in expression of data consistency as a function of known
database design parameters, like workload characteristics and number of replicas of the data object. This work
extends the causal relationships presented in our earlier work and presents adaptive consistency guarantees of this
consistency model. The adaptive consistency guarantees are implemented with a consistency tuner, which probes
the consistency index of an observed replicated data object in an online application. The tuner uses statistically
derived threshold values of an optimum time gap, which, when padded in a workload stream, guarantees a desired
value of consistency index for the observed data object. The tuner thus works like a workload scheduler of the
replicated data object and pads only the required time delay between the requests in such a way that desired level
of consistency is achieved with minimal effect on performance metrics like response time.
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Introduction
The consistency, availability and partition tolerance
(CAP) theorem [1] states that it is not possible to pro-
vide strong consistency and high availability together in
presence of network partitioning. Contemporary web
and cloud applications achieve high performance and
availability by compromising data consistency to an ac-
ceptable level.
Optimization of consistency guarantees for better per-

formance is a research area. In replicated databases, data
consistency refers to the agreement of the data across
multiple copies (replicas) in the system. In a geographic-
ally distributed system, a read and update can occur on
any replica. When a read operation succeeds an update
operation on a data object and cannot read its updated
value, it is called a stale read. There is a time delay be-
tween an update on one replica and communication of
update to other replicas. It is a period of consensus and
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this period is called unsafe period as most of the reads
that occur in this period are likely to be incorrect (highly
probable). In our work, consistency guarantees of a data
object are measured with a probabilistic metric called
Consistency Index (CI). CI enumerates the ratio of the
occurrence of correct reads to the total number of reads
on a data object in an observed period. In our earlier
work, we proposed and proved that selective data
consistency model with CI promises better performance
as against the consistency models that apply the same
consistency constraints to all the data objects.
It is also shown in [2] that CI of any data attribute or

object is a predictable consistency metric and can be es-
timated to a satisfactory level of precision using work-
load characteristics and the database design parameters.
The workload characteristics include the number of
reads, updates and the time of their arrival, whereas
database replication policy includes characteristics like
replication policy and number of replicas of the ob-
served object. In this work, we further extend our earlier
work [2] and use CI as a tunable consistency metric. In
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this work we show that, CI based consistency model can
be used to tune the consistency level of data objects or
attributes on fly. This feature is important for those
applications that exhibit temporal load characteristics.
Some web-applications require dynamic adjustment of
consistency requirements of data attributes or objects at
different levels, as opposed to constant predefined level
of consistency for the data attributes or objects in the
database. The online auction application requires the
bids to be submitted before specified closing time. When
an auction starts, a few bids may be submitted, whereas
a large number of bids may be submitted just before the
closing time of the auction. So the consistency require-
ments of the bid data object can be less stringent till the
auction gains popularity and will be strict towards the
closing date and time. This is adaptability of consistency
protocol. Our CI based consistency model is capable of
providing this kind of adaptive consistency guarantees to
the data objects or attributes.
In any real time workload in cloud based or web based

applications, a read may be preceded by an update. Pre-
dicting correctness of the next read operation is an im-
portant milestone for adaptive consistency guarantees.
In this work we have used statistical technique of logistic
regression to classify next read as correct or incorrect
read. This is further enhanced by a neural network clas-
sifier. Then the correctness of next read on any data
attribute or object can be ensured by introduction of
optimum time delay (tg) and allowing read transaction
after this optimum time delay period. The introduction
of time delay will prevent the occurrence read transac-
tion in unsafe period. In this work we also derive a rela-
tion between the number of replicas (Rp) of a data object
or data attributes and minimum optimum time gap (tg) to
be introduced between a read and the preceding update.
This time delay would also introduce latencies in the re-
sponsiveness of the application affecting its performance.
Hence tg is required to be only long enough to ensure cor-
rectness of a read. This leads to the development of a
workload scheduler, which introduces only the required
threshold time gap (to) between an update and a read
operation on any data attributes or objects causing min-
imal adverse effects on the response time. The scheduler
is statistically derived and has significant correctness in its
prediction. Thus the paper makes following contributions:

� It builds and validates a statistical model that
predicts the correctness of next incoming read
transaction on a data object or attribute, at any
instant of time t (thereby CI) with known number of
replicas (Rp) and the time gap (tg) between the
observed read and preceding latest update using
logistic regression and radial basis function artificial
neural network (RBFNN).
� It estimates minimal threshold time gap (to) that
must fall between read and update operation on any
N- replicated data object which ensures correctness
in next read operation.

� Finally it presents the design and implementation of
a prototype of a transaction workload scheduler.
This scheduler is implemented by consistency tuner
for adjusting the consistency level of a selected data
object or data attributes to a desired value (adaptive
consistency) with minimum effect on the response
time.

The rest of the paper is organized as follows. In
Section 2, the related work on tunable consistency
guarantees is presented. In Section 3, we discuss our
CI based consistency model. In Section 4, experimental
set up for estimating the correctness of successive read in
a workload stream is discussed. The logistic regression
and neural network based models for predicting correct-
ness of next read is presented in Section 5 and section 6
respectively. Design and implementation of CI based
Consistency Tuner is discussed in Section 7 and section 8
respectively. We present results and discussions in Section
9 and conclude in Section 10.

Related work
In a distributed system, the consistency model has three
core dimensions [3]: conflict definition policy, conflict
handling policy and conflict resolution policy. In this con-
text, conflict definition policy implies the different defini-
tions proposed for data inconsistencies. Researchers have
come up with different strategies of defining access con-
flict or inconsistency detection for different web-based
applications in transactional or non-transactional context.
In [4], a new class of replication systems is proposed

called TRAPP (Tradeoff in Replication Precision and Per-
formance), where a query is specified with a precision con-
stant. The constant denotes the maximum acceptable range
for imprecision in the answer. In the TACT (Tunable Avail-
ability and Consistency Tradeoffs) model [5], the authors
develop a conit-based continuous consistency model to
capture the consistency spectrum using three application-
independent metrics viz numerical error, order error, and
staleness for the replicated data. The numerical error
limits the weight of the writes that can be applied across
all replicas before being propagated to a given replica.
Order error limits the number of tentative writes that
can be outstanding at any one replica, and staleness
places a real time bound on the delay of write propagation
among replicas. A window based quantitative model that
describes consistency as the number of missed updates is
proposed in [6]. It is called FRACS (Flexible Replication
Architecture for a Consistency Spectrum). This model
measures inconsistency in terms of obsoleteness in the
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data with number of missed updates. Each replica is
assigned an update window, which is the maximum num-
ber of updates that can be buffered without consensus.
The concept of probabilistically bounded staleness (PBS)
provides a probability approach using partial quorums to
find expected bounds on staleness with respect to both
versions of the replicas and wall clock time has been pro-
posed in [7]. Inconsistency is measured as the number of
conflicting updates on data in [8]. An Infrastructure for
Detection–based Adaptive Consistency Control in repli-
cated services (IDEA) model [9]–an Internet scale middle-
ware uses an inconsistency detection mechanism of finding
version difference in terms of numerical error, order
error and staleness. This is an extension to the TACT
model [5] for adaptive consistency guarantees with bet-
ter performance.
Adaptive consistency protocols are also proposed in

the distributed shared memory (DSM). A low overhead
measurement-based performance metric to determine
the most appropriate consistency protocol for each seg-
ment in DSM is suggested in [10]. The factors that influ-
ence the performance of a consistency protocol, such as
network bandwidth, congestion, latency, and topology
are considered. DSM models, which adaptively select
consistency protocols using heuristic analysis of recent
access patterns, have also been proposed. A page-based
Lazy Release consistency protocol called Adaptive DSM
(ADSM) that constantly and efficiently adapts to the ap-
plication’s sharing patterns is introduced in [11]. Adapta-
tion in ADSM is based on dynamic categorization of the
type of sharing experienced by each page. An approach
called Harmony [12] uses an intelligent estimation
model of stale reads allowing elastically scale up or scale
down of the number of replicas involved in read opera-
tions. It uses the factors like number of conflicting updates
and probability of stale read from [8] for the estimations.
File heat based self-adaptive replica consistency strategy
[13] allows the system to auto-select an adequate level of
consistency by considering the file heat, which is calcu-
lated by pattern of file access time and frequency. Upward
trend of file heat indicates its criticality and hence system
switches to strong consistency guarantees from eventual
consistency guarantee. This adaptively reduces the net-
work bandwidth consumption. A work on adaptive leases
in web application [14] presents a leases-approach in con-
text of cache consistency in a distributed file system and
focusses on finding optimal lease duration to the data
object where it would be solely held by a leaser and no
modifications to the object would be done without passing
of request/reply messages.
Our consistency model like [8] implements consistency

as a data characteristic and further extends to selectively
apply these constraints to critical data objects for per-
formance. Consistency is measured using CI, which is
an application independent metric and can be applied
to data of any granularity (data object, tables, collection
of tables, row, attribute etc.). CI is well predicted in and
its causal relationships with the independent factors like
number of reads, updates, number of replicas, and average
time gap between a read and preceding update are statisti-
cally proved.
This work presents tunable guarantees of our CI based

consistency model. Theoretically, tuning any one of the
independent determinants would guarantee a desired
value of CI. An input workload (R, U) is a random se-
quence in practice. The number of replicas can be set to
a maximum allowable value and is inherently limited by
infrastructure. The only dynamically tunable and flexible
variable is the time gap between an observed read and a
preceding update. Adjusting the value of time gap, it is
possible to guarantee the desired level of consistency. Our
consistency index based consistency tuner (CICT) imple-
ments a workload scheduler, which introduces optimum
minimum time delay in the incoming workload in such a
way that desired value of CI is achieved for any data attri-
butes or objects for any number of replicas and with mini-
mum impact on performance metrics like response time.

CI based selective data consistency model
We present the selective data consistency model and its
inconsistency detection logic here.
A selective data consistency model implies that we

apply strict consistency to a subset of data objects which
are critical. Thus consistency is treated as a data charac-
teristic. We now present our inconsistency detection
logic which finds an incorrect read on a replicated data
object. This is followed by definition of an application
independent consistency metric called consistency index
which is a subject to tunable consistency guarantees.

Unsafe period and incorrect reads
A transaction in a database is a sequence of reads and
writes operations on different data objects (or attri-
butes). In a fully replicated distributed system, a read
and update operation in two different transactions can
occur simultaneously on different replicas of a data ob-
ject to ensure high availability and low response time.
When a replica is updated, the update is conveyed to all
other replicas in the system to ensure consistency [15].
The update convergence may be carried immediately
(strong consistency with atomic update policy) or with
some delay (eventual consistency or deferred write pol-
icy). This may lead to stale replicas. Any read on stale
replica is an incorrect read. The period between an up-
date on a replica and propagation of the updates to all
the replicas [t, t + d] is the period of consensus. This
period, which has highest probability of incorrect reads,
is hereby called unsafe period.
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Consistency index
A replicated data object undergoes numerous reads and
updates in the system. Consistency Index (CI) of a repli-
cated data object is a fraction of correct reads on the ob-
ject to the total number of reads on all its replicas in the
system for an observed period. The formula suggests
that CI falls between [0, 1]. Value of CI closer to 1 im-
plies higher consistency whereas value of CI closer to 0
implies lower consistency.

CI ¼ Number of Correct Reads Rcð Þ
Total number of Reads Rð Þ ð1Þ

For a data object when a read is preceded by an up-
date, its correctness depends on:

1. The number of replicas of the data object(Rp)

Higher the number of replicas, larger is the period of
consensus [t, t + d]

2. The time gap between the read and the latest
preceding update (tg)

If tg < d, then the read will fall in the unsafe period and
can lead to an incorrect read.
Fig. 1 Normalized TPCC schema
Experimental set up for CICT implementation model
We have chosen Transaction Processing Council-C
(TPCC) benchmark [16] using Amazon SimpleDB [17]
data store of Amazon Web services. It is a popular
benchmark for comparing OLTP performance on vari-
ous software and hardware configurations. It simulates
complete computing environment where population of
users executes transaction against database. TPCC work-
loads are a mixture of read only and update intensive
transactions for online shopping. It performs five trans-
actions as New Order transaction (which creates new
order), Payment transaction (execution of payment),
Stock level transaction (reads stock level), Delivery
transaction (Delivery of items to the customer) and
Order Status transaction (Status of Order placed) on 9
entities. The normalized TPCC schema is shown in the
Fig. 1.
Amazon SimpleDB is a highly available and flexible

non-relational data store. Developers simply store and
query data items via web services requests and Amazon
SimpleDB does the rest. It is a No-SQL document ori-
ented data store with a very simple and flexible schema.
With weaker consistency guarantees, Amazon SimpleDB
is optimized to provide high availability and flexibility,
with little or no administrative burden. SimpleDB cre-
ates and manages multiple geographically distributed
replicas of your data automatically to enable high
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availability and data durability. It organizes data in do-
mains within which you can write data, retrieve data, or
run queries. Domains consist of items that are described
by attribute name-value pairs. Amazon SimpleDB keeps
multiple copies of each domain. A successful write guar-
antees that all copies of the domain will durably persist.
Amazon SimpleDB supports two read consistency op-

tions: eventually consistent read and consistent read. An
eventually consistent read might not reflect the results of
a recently completed write. Consistency across all copies
of the data is usually reached within a second; repeating a
read after a short time should return the updated data. A
consistent read returns a result that reflects all writes that
received a successful response prior to the read.

TPCC relational domain mapped on to SimpleDB
In a relational data model, a TPCC object is modelled with
a relation and the properties are modelled using attributes.
SimpleDB is a No-SQL document oriented data store
where domain is the unit of data modelling. Also, a Sim-
pleDB domain is a unit of consistency enforcement. A do-
main is a collection of documents and a document is a
collection of fields. A field has value(s) and type. We have
mapped a relation in RDBMS to a domain in SimpleDB, a
row in RDBMS to a document in SimpleDB, and an attri-
bute in relational model to a field in SimpleDB.

TPCC transaction management
Every normalized table in TPCC is mapped to a separate
domain in SimpleDB. TPCC implements five online
shopping transactions: New-order transaction, stock-
level transaction, order-status transaction, delivery trans-
action and payment transaction. Every transaction is
managed by a separate transaction manager (TM) for
scalability. A transaction was subdivided into sub trans-
actions depending on data that they access. Every sub
transaction deals with data access or updates of data
from different domains to improve throughput with par-
allelism. In this application, a sub transaction accesses or
updates data from a single domain.
Workload on a data object is thus a series of the read

and update operations from sub transactions of different
transactions with different time stamp. Workload is thus
represented by an ordered sequence of read and update
operations on the domain. We have then observed the
consistency guarantees of the individual domains in
isolation. A stock data object in TPCC is accessed by sub-
transaction of new-order transaction and sub-transaction
of stock level transaction and so is the case with different
data objects.

Observed data set structure
Every observation in our data set consists of input pre-
dictors and output variable. In our hidden Markov based
CI predictive model (HMM-CI) [2], we observe that a
read on a data object can be a hidden state and it may
be observed as a correct read (1) state or incorrect read
(0) state. The output of the read on a data object is pre-
dicted with the following parameters:

1. Number of replicas(Rp) of the data object
2. The time gap between the observed read and the

latest preceding update request (tg)

In SimpleDB, a domain is a unit of replication. We
have varied the number of replicas (Rp) of stock domain
from 1 to 10. We also varied the workload by changing
the time gap (tg) between an incoming observed read
and a preceding update in range of 0–2000 milliseconds
(ms) in multiples of 500 ms. We have observed the out-
put (O) of a read request by varying Rp and tg. Thus the
triplet (Rp, tg, O) formed the data set. The predictor was
number of replicas (Rp) and was treated as a categorical
predictor. For a given value of tg and Rp of a replicated
data object, we predicted the correctness of an incoming
read request using logistic regression classifier and neural
network classifier as described in the next section.

Statistical model of predicting the correctness of
a read operation using logistic regression
Logistic regression [18] is widely used to predict a binary
response from predictors and is very efficient to predict
the outcome of a categorical dependent variable. In our
application, the output of a read is categorical, i.e. cor-
rect (1) or incorrect (0). Hence the use of logistic regres-
sion classifier is suggested.
The regression analysis is run on the collected data set.

The Hosmer-Lemeshow test [18] is used for goodness of
fit for logistic regression models. Rp is a categorical deter-
minant as the read classifier showed a characteristic be-
havior in the predicted output for a given value of replica
(Rp) with change in time tg. It is discussed in detail in the
next section. The test Chi-Square test statistic with (G-2)
degrees of freedom, where G is number of groups, is
used to test goodness of fit. In this case, the degree of
freedom in Table 1 is 8 (Rp-2). The significance level is
close to 0.00. Hence the statistical inferences are
significant.
In a logistic regression model fit, the primary measure

is pseudo R2, which are approximations of an indicator
of the percentage of variation in the dependent variable
explained by the model. Cox and Snell’s R2 depends on
the log likelihood for the model with independent vari-
ables. Hence its maximum value is less than 1.0 (ap-
proximately 0.75 in many cases). It is 0.54 in our results.
Nagelkerke’s R2 divides the Cox and Snell’s R2 value by
its maximum value and is 0.79 in our results, which im-
plies significant goodness of fit.



Table 1 CI for stock logistic regressive predictor: model summary

Step −2 Log likelihood Cox & Snell R Square Nagelkerke R Square

1 174.892 .592 .790

Hosmer and Lemeshow Test

Step Chi-square Degree of Freedom Significance

1 54.346 8 .000

Classification Table

Observed output Percentage Correct

0 1

Step 1 Output 0 152 18 89.4

1 18 171 90.5

Overall Percentage 90.0

Table 2 CI for stock ANN predictive model summary

Training Sum of Squares Error 9.748

Percent Incorrect Predictions 37.2 %

Training Time 0:00:00.11

Testing Sum of Squares Error 1.953a

Percent Incorrect Predictions 8.3 %

Classification

Sample Observed Predicted

0 1 Percent Correct

Training 0 11 9 55.0 %

1 7 16 69.6 %

Overall Percent 41.9 % 58.1 % 62.8 %

Testing 0 4 0 100.0 %

1 1 7 87.5 %

Overall Percent 41.7 % 58.3 % 91.7 %
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In the logistic regression model, the classification table
shows the accuracy in the prediction of a sample in a
group. The classification percentage was found to be
52 % without the application of the predictor variables
where membership of a sample to group is based on the
majority (null model). After the application of the pre-
dictor variables, the predictive model gave us the classifi-
cation rate as 90 %, which implies that the classification of
a read request into correct read (1) or incorrect read
category (0) was accurate to the extent of 90 % after the
application of the two predictor variables. This means
that the classification model is statistically significant.

Statistical model of CI using radial basis function
neural network
The Radial Basis function neural network (RBFNN) [19]
has been widely used for prediction and classification
tasks. We use the Radial Basis function to model the re-
lationship of correctness of read operation with the same
set of independent variables as above. The same data set
is used for prediction. The time gap (tg) is taken as a fac-
tor predictor and the number of replicas (Rp) is taken as
covariate for the reasons to be discussed later. The input
data is partitioned as 60 % data as training data set and
40 % testing data set. We have chosen the number of
hidden layers as 1. The sum of squared error of test data
is 1.953 and the percent incorrect predictions of test
data is 8.3 %. The commonly used performance metric
for a classifier is the percent correct classification. It is
found to be 91.7 % indicating statistically significant re-
sults. The mean-squared error (MSE) [20] of 0.22 is ob-
tained in the present case. The readings of RBF based
output predictor is shown in Table 2. Statistical deriva-
tions are done with IBM SPSS [21] tool.

Consistency index based consistency tuner (CICT)
Working principle
It features adaptive consistency guarantees. In [2] we sta-
tistically proved that significant variation in CI (dependent
variable/outcome) for an observed time period t can be
explained by following independent variables with mul-
tiple linear regressions:

1. Number of updates (U) that occur in the observed
period t

2. Number of reads(R) that occur in the observed period
t

3. Average time gap (tg) between a read that follows an
update operation that occur in the observed period t

4. Number of replicas (Rp) for the observed data object

Hence CI can also be written as
CI (O, t) = α + β1U + β2R + β3T + β4Rp + ε, where ε is

error term, O an object and t is the observed time period.
A workload (R, U) is a random and generally unpre-

dictable for an application. The number of replicas is
not changed on-fly and generally set to a maximum
value in a data store for high availability. The dynamic-
ally configurable parameter of time-gap (tg) is period



a

b

Fig. 2 a Block diagram of architecture of CI based consistency model.
b Functions of Data manager of CI based consistency Model
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between a read and the latest preceding update. In the
input workload stream, a time gap is introduced between
an update and its successive read. We introduce a delay
between a succeeding read and its preceding update so
that the read will not fall in the unsafe period. This will,
however, have an adverse effect on the performance of
application in terms of response time. Hence finding
minimal time gap which assures correctness of the read
operation is the critical issue.
Our consistency model is a CI based selective data

consistency model. CI is a data characteristic. Here it
may be also noted that the introduction of the time gap
would be done on a workload stream on a specific data
object. This would be done only when the observed CI
of a data object is lesser than desired level of CI, i.e. the
observed consistency guarantees of a data object are
below the desired ones. Introduction of time delays are
avoided for the data objects where observed consistency
index is already above the desired value. When the
observed value of CI is less than the desired value, a
workload scheduler pads an appropriate time gap in a
workload stream. This would be done in such a way that
there is minimum effect on the performance metrics like
response time.
As the insertion of time gap is done only when needed,

the tuner stabilizes the value of CI of a data object to a de-
sired value guaranteeing performance with desired level of
consistency. The working of our Consistency Index based
Consistency Tuner (CICT) for adaptive consistency guar-
antees is discussed in detail in the following sub sections.

Architecture of web based database application with CICT
We discuss the architecture of the CICT based web
database application with a block diagram as shown in
Fig. 2a and b.

The transaction manager (TM)
An application TM manages the transactions. As dis-
cussed, TM is responsible for synchronizing the transac-
tions. In our implementation, it distributes transactions
into sub transactions where every sub-transaction ac-
cesses a different data object. The atomicity of the sub-
transactions is left to the TM. As TM distributes a sub
transaction to a data object, a data manager perceives
every sub transaction as an independent request to ac-
cess or update the underlying data object. Thus a data
manager works on a stream of read, update requests on
the underlying data-object.

The data store
The data store can be a trivial distributed file system or
a virtualized No-SQL data store which supports replica-
tion. For the deployment of CICT, the data store needs
to implement configurable number of replicas. We chose
SimpleDB data store in Amazon which is a highly avail-
able and flexible non-relational data store. The update
policy is write-through i.e. an update to one of the rep-
licas is notified to all the replicas. The succeeding opera-
tions are allotted to the replicas with the load allocation
policy discussed in the sub-sections. Thus read opera-
tions may fall in the unsafe period and these are enu-
merated as incorrect reads.

The data manager (DM)
The DM carries out the data management operations on
the underlying data stores with different data units like
domains in SimpleDB [17], HTables in HBase [22] and
so on. This layer is a middleware between the raw data
store and the application. It performs the three import-
ant data management functions, which are otherwise im-
plicitly carried out by databases like RDBMS. DM of a
data object controls the number of replicas, location of
the replicas. DM can be deployed as a part of application
server or can be independent. It works over the replicated
data store and the underlying data store is accessed with
the APIs provided through DM. Hence our DM is data
store dependent.
The CICT works as an integral part of DM. CICT can

be very conveniently built on a raw data store as our
intelligent DM carries out all the important data man-
agement functions. It provides an interface to input the
desired values of CI, number of replicas, load balancing
policy and replica-update policy to the user. These three
important data management functions are represented
in Fig. 2b.
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1. Replica update policy management implies level of
consistency to be implemented. When strong
consistency is to be implemented, we use an atomic
update policy on the replicas. With eventual
consistency policy, we may implement a deferred
write policy on the replicas.

2. Load distribution policy implies delegation of a
request to one of the replicas. Different strategies
like round robin, nearest replica, or heuristic based
replica selection policies can be used to improve the
performance. Our implementation chooses round
robin distribution technique.

3. CICT tunes consistency of the underlying replicated
data object to a desired value. The block diagram of
CICT is shown in Fig. 3 and discussed below.

We now introduce the architecture of CICT. In the
sub sections we elaborate the important building blocks
of CICT and they are outlined in Fig. 4.

Threshold time predictor
It is the most important part of CICT which realizes its
objectives. As discussed in the previous section, the time
gap between read and update request on a replicated
data object is dynamically configurable and tunable pre-
dictor of CI, which is efficiently employed so that read
does not occur in the unsafe period. Thus the value of
CI increases. However the increase in the time gap
should be just sufficient to lead a correct read and
Fig. 3 Steps of CI based Consistency Tuning
minimally affect the response time. Hence we require
finding the minimum value of time gap between an up-
date and a succeeding read request on N-replicated data
object which will assure correctness in the read. We
refer this minimal time gap as threshold time gap (to).

Finding relationship between Rp and tg to find to for
a data object O There exists a relationship between the
number of replicas (Rp) and time gap between read and
update (tg) on a data object O, which is shown in Fig. 5.
For a particular value of Rp, it is observed that when tg
is equal or greater than a threshold value to, the output
of the read classifier is 1. The value of to depends upon
the number of replicas (Rp) and are positively related.
We captured this relationship with statistical linear re-
gression analysis between Rp and to. We, however, note
that the underlying data store, replication policy and the
size of the object O would also affect the analysis. The
analysis holds significant if these factors are held con-
stant. This analysis is different for different data objects.
Here we demonstrate how for a stock data object (do-
main) in TPCC on SimpleDB, we analyzed the relation-
ship. With write-through replication policy, we varied
the number of replicas from 1 to 10 and noted to. The
graph in Fig. 5 shows the value of to for values of Rp for
stock data object. A statistical linear regression is then
run to predict the threshold value (to) for any number of
replicas (Rp). The coefficient of determination is 0.817
and R2 is 0.667, which indicates that the regression is



Fig. 4 Stability of CICT for different levels of CI desired and different number of Rp for stock domain in TPCC
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statistically significant. The coefficients in Table 3 indi-
cate the direction as well as the strength of relationship.
Also the significance of Rp on to is high and validates
our hypothesis. The statistical results are shown in
Table 3. For CICT of stock data object in TPCC, the
threshold was estimated with the coefficient equation
given as

t0 ¼ Rp � 726þ 4723 ð2Þ

The threshold predictor of the CICT for stock data ob-
ject was then used to find the minimum time gap (to)
Fig. 5 Relationship between Rp and tg to find to for a data object O
that must be inserted between a read and the latest pre-
ceding update to assure a correct read (1) on the stock do-
main. The threshold predictor of CICT of stock domain
in TPCC uses Equation 2 to calculate the t0 for given
value of Rp of stock data object. The threshold value (t0) is
then used by the time gap padder to introduce a mini-
mum time gap, which will guarantee the correctness in
the read by minimally affecting the performance.

Time gap padder
CICT probes the value of CI periodically. The period-
icity can be after every operation or periodically after



Table 3 Linear Regression results between Rp and t0 for stock

Model R R Square Adjusted R Square Change Statistics

R Square Change F Change Sig. F Change

1 .817 .667 .666 .667 756.658 .000

Coefficients’

Model Unstandardized Coefficients Standardized Coefficients t Sig. 95.0 % Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound

(Constant) 4723.333 151.707 31.135 .000 4425.038 5021.628

Replicas 726.553 26.413 .817 27.507 .000 674.618 778.488
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some time gap. We chose a time gap of 5 s. If the ob-
served CI is less than the desired value of CI, we trigger
the time gap padder. The padder inputs the threshold
value for the given database design (t0) from threshold
predictor and then pads the input workload with t0 so
that the read follows the update with t0 delay to ensure
the correctness of the read operation. Time gap padding
is operationally implemented by delaying the read oper-
ation by t0. Thus the reads are refrained from the unsafe
period and outputted as correct reads. This results in
improvement in the value of CI. If the CI is above the
desired value, the time gap padder is bypassed and
the workload is directed to the replica allocator. Thus
the performance is maintained. Thus we get a stable desired
value of CI with minimal compromise on performance.
Workload allocator
The workload allocator implements a replica selection
policy. The replica selection policy can be based on one
of the strategies like round robin policy which is simple
to implement. The other strategies include the least busy
replica policy, which promises a good response time with
an overhead of maintaining the status information and
the nearest replica policy, where the geographical dis-
tance between the requestor and the replica should be
tracked and nearest replica should reply. Round robin
load balancing policy is chosen for our implementation.
We have implemented CICT on TPCC application

with SimpleDB data store. CICT is implemented in the
data manager of every data object.
Implementation of CICT for TPCC
We have implemented CICT on the TPCC workload
benchmark [16] which models an online shopping appli-
cation. The original relational database of TPCC was mi-
grated to Amazon SimpleDB [17] as already described in
the previous section. We implemented five (5) transac-
tions as distributed sub-transactions, where every sub-
transaction accessed different data object. A data manager
thereby gets a stream of sub transactions which are
dedicated on the underlying data object.
The input workload to a CICT is a series of read and
update operations. In case of a real time web application,
this input is a random sequence of read and update op-
erations separated with random time gap. As we had to
control the input workload, the sub transactions on a
data object are modelled using a multithreaded, ran-
domly generated sequence of read and updates. Thus
the workload was randomized with respect to the num-
ber of reads and updates and their occurrence. The data-
base design in terms of number of replicas was statically
fed to the tuner and varied for observations. The desired
value of CI (CIdesired) was fed and varied for different ob-
servation sequence. The threshold–time predictor uses
the statistical linear regression between the time gap and
number of replicas as discussed in 7.2.4. The time gap
padder then pads the minimum time gap between an
update and a succeeding read so that it results in correct
read. This results in increase in the value of CI at the cost
of response time. When CI reaches the user defined value,
the time delay is not introduced until the next poll.

Results and discussion
The graph in Fig. 4 shows the stability of the CICT for
the object stock (stock domain) in the TPCC schema. We
have varied the desired value of CI as well as the number
of replicas (Rp) for the stock domain. For each pair, we
have observed that the tuner assures a stable value of CI
which is close to its desired value. The graph in Fig. 6
shows that the time gap (to) required to introduce be-
tween an update and read increases with the increase in
the number of replicas. This is also obvious with the sta-
tistically derived Equation 2. This implies that response
time is higher with higher number of replicas and high
values of desired CI. This is shown in Fig. 7.
New-order transaction accesses five different data ob-

jects. Response time of the transaction is the summation
of the average response time of all its sub-transactions.
We adopt our selective consistency model where critical
data objects are strictly observed. The tuner applies the
desired value of consistency index to selected data ob-
ject. It allows the user to tune consistency level of differ-
ent data objects at different levels and achieve the



Fig. 6 Relationship between threshold time gap (to) and number of replicas (Rp) for stock domain in TPCC
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performance goals of response time with stable and de-
sired consistency guarantees of critical data objects. With
threshold time gap, it works like a workload scheduler for
any workload stream on a data object to achieve desired
value of consistency index with minimal adverse effects on
response time.

Conclusion
The work demonstrates adaptive guarantees of selective
data consistency model. It demonstrates consistency as a
data characteristic. It allows us to be selective to the data.
The inconsistency detection logic is simple and flexible and
Fig. 7 Average response time of a sub-transaction with different number o
guarantees a predictive and tunable consistency metric with
CI. CICT works on the principle of delaying the conflicting
read operations to refrain it from falling in the unsafe
period. The time delay is a statistically derived value
that allows us to stabilize the consistency guarantees of
a data object to a desired value. The time gaps are inter-
spersed between the input workload only when the
consistency guarantees are lower than the desired level.
Thus CICT causes minimal degradation in the perform-
ance. Thus CICT can be efficiently exploited as work-
load scheduler that tunes value of CI of a data object to
a desired value for any number of replicas and any
f replicas and CI desired values for stock domain in TPCC
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random workload to achieve minimal degradation in the
application performance. The work however assumes de-
fault operation strategies for transaction division (into sub-
transactions), replica update policy and load balancing
strategies. The effects of each of these strategies on the
performance can be explored in our future work.
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