4,388 research outputs found

    Muon-spin-rotation measurements of the penetration depth in Li_2Pd_3B

    Full text link
    Measurements of the magnetic field penetration depth λ\lambda in the ternary boride superconductor Li2_2Pd3_3B (Tc≃7.3T_c\simeq7.3 K) have been carried out by means of muon-spin rotation (μ\muSR). The absolute values of λ\lambda, the Ginzburg-Landau parameter κ\kappa, and the first Hc1H_{c1} and the second Hc2H_{c2} critical fields at T=0 obtained from μ\muSR were found to be λ(0)=252(2)\lambda(0)=252(2) nm, κ(0)=27(1)\kappa(0)=27(1), μ0Hc1(0)=9.5(1)\mu_0H_{c1}(0)=9.5(1) mT, and μ0Hc2(0)=3.66(8)\mu_0H_{c2}(0)=3.66(8) T, respectively. The zero-temperature value of the superconducting gap Δ0=\Delta_0=1.31(3) meV was found, corresponding to the ratio 2Δ0/kBTc=4.0(1)2\Delta_0/k_BT_c=4.0(1). At low temperatures λ(T)\lambda(T) saturates and becomes constant below T≃0.2TcT\simeq 0.2T_c, in agreement with what is expected for s-wave BCS superconductors. Our results suggest that Li2_2Pd3_3B is a s-wave BCS superconductor with the only one isotropic energy gap.Comment: 6 pages, 7 figure

    Virtual light-by-light scattering and the g factor of a bound electron

    Full text link
    The contribution of the light-by-light diagram to the g factor of electron and muon bound in Coulomb field is obtained. For electron in a ground state, our results are in good agreement with the results of other authors obtained numerically for large Z. For relatively small Z our results have essentially higher accuracy as compared to the previous ones. For muonic atoms, the contribution is obtained for the first time with the high accuracy in whole region of Z.Comment: 10 pages, 3 figures, RevTe

    Hidden magnetic transitions in thermoelectric layered cobaltite, [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2]

    Full text link
    A positive muon spin rotation and relaxation (μ+\mu^+SR) experiment on [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2], ({\sl i.e.}, Ca3_3Co4_4O9_9, a layered thermoelectric cobaltite) indicates the existence of two magnetic transitions at ∼\sim 100 K and 400 - 600 K; the former is a transition from a paramagnetic state to an incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state. The anisotropic behavior of zero-field μ+\mu^+SR spectra at 5 K suggests that the {\sf IC-SDW} propagates in the aa-bb plane, with oscillating moments directed along the c-axis; also the {\sf IC-SDW} is found to exist not in the [Ca2_2CoO3_3] subsystem but in the [CoO2_2] subsystem. In addition, it is found that the long-range {\sf IC-SDW} order completes below ∼\sim 30 K, whereas the short-range order appears below 100 K. The latter transition is interpreted as a gradual change in the spin state of Co ions %% at temperatures above 400 K. These two magnetic transitions detected by μ+\mu^+SR are found to correlate closely with the transport properties of [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2].Comment: 7 pages, 8 figures. to be appeared in Phys. Rev.

    Developing the future of gamma-ray astrophysics with monolithic silicon pixels

    Get PDF
    This paper explores the potential of AstroPix, a project to develop Complementary Metal Oxide Semiconductor (CMOS) pixels for the next generation of space-based high-energy astrophysics experiments. Multimessenger astrophysics is a rapidly developing field whose upcoming missions need support from new detector technology such as AstroPix. ATLASPix, a monolithic silicon detector optimized for the ATLAS particle detector at CERN, is the beginning of the larger AstroPix project. Energy resolution is a driving parameter in the reconstruction of gamma-ray events, and therefore the characterization of ATLASPix energy resolution is the focus of this paper. The intrinsic energy resolution of the detector exceeded our baseline requirements of <10% at 60 keV. The digital output of ATLASPix results in energy resolutions insufficient to advance gamma-ray astronomy. However, the results from the intrinsic energy resolution indicate the digital capability of the detector can be redesigned, and the next generation of pixels for the larger AstroPix project have already been constructed. Iterations of AstroPix-type pixels are an exciting new technology candidate to support new space-based missions

    A common behavior of thermoelectric layered cobaltites: incommensurate spin density wave states in [Ca2_2Co4/3_{4/3}Cu2/3_{2/3}O4_4]0.62_{0.62}[CoO2_2] and [Ca2_2CoO3_3]0.62_{0.62}[CoO2_2]

    Full text link
    Magnetism of a misfit layered cobaltite [Ca2_2Co4/3_{4/3}Cu2/3_{2/3}O4_4]xRS_x^{\rm RS}[CoO2_2] (x∼x \sim 0.62, RS denotes a rocksalt-type block) was investigated by a positive muon spin rotation and relaxation (μ+\mu^+SR) experiment. A transition to an incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state was found below 180 K (= TConT_{\rm C}^{\rm on}); and a clear oscillation due to a static internal magnetic field was observed below 140 K (= TCT_{\rm C}). Furthermore, an anisotropic behavior of the zero-field μ+\mu^+SR experiment indicated that the {\sf IC-SDW} propagates in the aa-bb plane, with oscillating moments directed along the c axis. These results were quite similar to those for the related compound [Ca2_2CoO3_3]0.62RS_{0.62}^{\rm RS}[CoO2_2], {\sl i.e.}, Ca3_3Co4_4O9_9. Since the {\sf IC-SDW} field in [Ca2_2Co4/3_{4/3}Cu2/3_{2/3}O4_4]0.62RS_{0.62}^{\rm RS}[CoO2_2] was approximately same to those in pure and doped [Ca2_2CoO3_3]0.62RS_{0.62}^{\rm RS}[CoO2_2], it was concluded that the {\sf IC-SDW} exist in the [CoO2_2] planes.Comment: 15 pages, 6 figures. accepted for publication in J. Phys.: Condens. Matte

    Evidence for Static Magnetism in the Vortex Cores of Ortho-II YBa2_2Cu3_3O6.50_{6.50}

    Full text link
    Evidence for static alternating magnetic fields in the vortex cores of underdoped YBa2_2Cu3_3O6+x_{6+x} is reported. Muon spin rotation measurements of the internal magnetic field distribution of the vortex state of YBa2_2Cu3_3O6.50_{6.50} in applied fields of H=1H = 1 T and H=4H = 4 T reveal a feature in the high-field tail of the field distribution which is not present in optimally doped YBa2_2Cu3_3O6.95_{6.95} and which fits well to a model with static magnetic fields in the vortex cores. The magnitude of the fields is estimated to be 18(2) G and decreases above T=10T = 10 K. We discuss possible origins of the additional vortex core magnetism within the context of existing theories.Comment: Submitted to PRL; corresponding author: [email protected]

    On the topology of adiabatic passage

    Full text link
    We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage (SCRAP). Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can selectively control the level which will be populated in STIRAP process in Lambda or V systems by the choice of the peak amplitudes or the pulse sequence

    Transport of strong-coupling polarons in optical lattices

    Get PDF
    We study the transport of ultracold impurity atoms immersed in a Bose-Einstein condensate (BEC) and trapped in a tight optical lattice. Within the strong-coupling regime, we derive an extended Hubbard model describing the dynamics of the impurities in terms of polarons, i.e. impurities dressed by a coherent state of Bogoliubov phonons. Using a generalized master equation based on this microscopic model we show that inelastic and dissipative phonon scattering results in (i) a crossover from coherent to incoherent transport of impurities with increasing BEC temperature and (ii) the emergence of a net atomic current across a tilted optical lattice. The dependence of the atomic current on the lattice tilt changes from ohmic conductance to negative differential conductance within an experimentally accessible parameter regime. This transition is accurately described by an Esaki-Tsu-type relation with the effective relaxation time of the impurities as a temperature-dependent parameter.Comment: 25 pages, 6 figure

    Cutting Gordian Knots: Reducing Prejudice Through Attachment Security

    Get PDF
    The positive role of secure attachment in reducing intergroup biases has been suggested in prior studies. We extend this work by testing the effects of secure attachment primes on negative emotions and aggressive behaviors toward outgroup members across four experiments. Results from Studies 1A and 1B reveal that secure attachment prime, relative to neutral, can reduce negative outgroup emotions. In addition, Studies 1B and 3 results rule out positive mood increase as an alternative explanation for the observed effects. Results from Studies 2 and 3 reveal that secure attachment primes can reduce aggressive behavior toward an outgroup member. The effect of secure attachment primes on outgroup harm was found to be fully mediated by negative emotions in Studies 2 and 3. An interaction between secure attachment primes and ingroup identification in Study 2 indicated that the positive effects of secure attachment in reducing outgroup harm may be especially beneficial for highly identified ingroup members
    • …
    corecore