26 research outputs found

    Detection of the myxosporean parasite Parvicapsula pseudobranchicola in Atlantic salmon (Salmo salar L.) using in situ hybridization (ISH)

    Get PDF
    -Parvicapsula pseudobranchicola is a marine myxosporean parasite infecting farmed Atlantic salmon (Salmo salar). A major site for the parasite is the pseudobranch, which may be destroyed in heavily infected fish. Parvicapsulosis may be associated with significant mortality, although the main effect of infections seems to be runting. In situ hybridization (ISH) is, in the absence of specific antibodies, the preferred method for the detection of cell- and tissue tropisms of myxozoans in the early phases of infection of the host, and provides information about the possible association between the pathogen and pathology. A positive diagnosis of parvicapsulosis is based on histopathology and PCR. The aim of the present work was to develop a specific, sensitive and robust ISH assay for the detection of P. pseudobranchicola in tissues

    Phenotypic and genetic characterization of Piscirickettsia salmonis from Chilean and Canadian salmonids

    Get PDF
    Background. The study presents the phenotypic and genetic characterization of selected P. salmonis isolates from Atlantic salmon and rainbow trout suffering from SRS (salmonid rickettsial septicemia) in Chile and in Canada. The phenotypic characterization of the P. salmonis isolates were based on growth on different agar media (including a newly developed medium), different growth temperatures, antibiotics susceptibility and biochemical tests. Results. This is the first study differentiating Chilean P. salmonis isolates into two separate genetic groups. Genotyping, based on 16S rRNA-ITS and concatenated housekeeping genes grouped the selected isolates into two clades, constituted by the Chilean strains, while the Canadian isolates form a branch in the phylogenetic tree. The latter consisted of two isolates that were different in both genetic and phenotypic characteristics. The phylogenies and the MLST do not reflect the origin of the isolates with respect to host species. The isolates included were heterogeneous in phenotypic tests. Conclusions. The genotyping methods developed in this study provided a tool for separation of P. salmonis isolates into distinct clades. The SRS outbreaks in Chile are caused by minimum two different genetic groups of P. salmonis. This heterogeneity should be considered in future development of vaccines against this bacterium in Chile. Two different strains of P. salmonis, in regards to genetic and phenotypic characteristics, can occur in the same contemporary outbreak of SRS.publishedVersio

    Experimental induction of mouthrot in Atlantic salmon smolts using Tenacibaculum maritimum from Western Canada

    Get PDF
    Mouthrot, or bacterial stomatitis, is a disease which mainly affects farmed Atlantic salmon, (Salmo salar, L.), smolts recently transferred into salt water in both British Columbia (BC), Canada, and Washington State, USA. It is a significant fish welfare issue which results in economic losses due to mortality and antibiotic treatments. The associated pathogen is Tenacibaculum maritimum, a bacterium which causes significant losses in many species of farmed fish worldwide. This bacterium has not been proven to be the causative agent of mouthrot in BC despite being isolated from affected Atlantic salmon. In this study, challenge experiments were performed to determine whether mouthrot could be induced with T. maritimum isolates collected from outbreaks in Western Canada and to attempt to develop a bath challenge model. A secondary objective was to use this model to test inactivated whole‐cell vaccines for T. maritimum in Atlantic salmon smolts. This study shows that T. maritimum is the causative agent of mouthrot and that the bacteria can readily transfer horizontally within the population. Although the whole‐cell oil‐adjuvanted vaccines produced an antibody response that was partially cross‐reactive with several of the T. maritimum isolates, the vaccines did not protect the fish under the study's conditions.publishedVersio

    A new intracellular bacterium, Candidatus Similichlamydia labri sp. nov. (Chlamydiaceae) producing epitheliocysts in ballan wrasse, Labrus bergylta (Pisces, Labridae)

    Get PDF
    Certain wrasse species (Labridae) are used as cleaner fish in salmon farms on the Norwegian coast, reducing salmon louse intensities. The pathogen repertoire of wrasse in Norway is poorly known, and the objective of the present study is to describe a novel intracellular bacterium detected in Norwegian Labrus bergylta. Histological examination of gill tissues from ballan wrasse, L. bergylta, revealed epitheliocysts occurring basally to the secondary lamellae in the interlamellar epithelium. Ultrastructurally, these had bacteria-filled inclusions with thickened membranes and radiating ray-like structures (actinae). 16S rRNA gene sequences from the gill bacteria showed the highest (97.1 %) similarity to Candidatus Similichlamydia latridicola from the gills of the latrid marine fish Latris lineata in Australia and 94.9 % similarity to Candidatus Actinochlamydia clariae, causing epitheliocystis in the freshwater catfish Clarias gariepinus in Uganda. A total of 47 gill samples from L. bergylta from Western Norway were screened by real time RT-PCR with an assay targeting Candidatus Actinochlamydiaceae 16S rRNA. Prevalence was 100 %. We propose the name Candidatus Similichlamydia labri sp. nov. for this new agent producing gill epitheliocysts in L. bergylta

    First isolation, identification and characterisation of Tenacibaculum maritimum in Norway, isolated from diseased farmed sea lice cleaner fish Cyclopterus lumpus L

    Get PDF
    The use of cleaner fish as biological controls of salmon lice (Lepeophtheirus salmonis) has increased exponentially in the last decade in Norwegian Atlantic salmon (Salmo salar) production. This alternative to chemical treatments has resulted in the emergence of lumpsucker (Cyclopterus lumpus) hatcheries and culture facilities in Norway. It has been shown that the use of lumpsuckers can be an effective, biological approach for the removal of salmon lice, but it has also been shown that there are a number of biological challenges (i.e. parasites and bacteria) with the production and use of these fish. This study describes the first case of isolation of Tenacibaculum maritimum, a significant fish pathogen worldwide, in cultured juvenile lumpsuckers in Norway. The fish were lethargic and showed skin lesions characterised by increased mucus production and presence of whitish necrotic tissue especially in the head region. Skin scrapings revealed large amounts of bacteria dominated by rod-shaped Tenacibaculum-like bacteria, which were shown to be closely related to T. maritimum type strain through genetic and phenotypic characterisation. Histopathological analysis showed that the bacteria was closely associated with the pathology and therefore could be contributing to the disease and/or mortality

    Variable Number of Tandem Repeats (VNTR) analysis of Flavobacterium psychrophilum from salmonids in Chile and Norway

    Get PDF
    Background Flavobacterium psychrophilum causes serious fish diseases such RTFS and BCWD, affecting the aquaculture industry worldwide. Commercial vaccines are not available and control of the disease depends on the use of antibiotics. Reliable methods for detection and identification of different isolates of this bacterium could play an important role in the development of good management strategies. The aim of this study was to identify genetic markers for discrimination between isolates. A selection of eight VNTRs from 53 F. psychrophilum isolates from Norway, Chile, Denmark and Scotland were analyzed. The results were compared with previous work on the same pathogen using MLST for genetic differentiation. Results The VNTR analysis gave a separation between the F. psychrophilum isolates supporting the results of previous MLST work. A higher diversity was found among the Chilean isolates compared to those from Norway, which suggests a more homogenous reservoir in Norway. Transgenerational transmission of F. psychrophilum from other countries, exporting salmon embryos to Chile, may explain the differences in diversity. The same transmission mechanisms could also explain the wide geographical distribution of identical isolates in Norway. But, this could also be a result of movement of smolts and embryos. The selected VNTRs are stable genetic markers and no variation was observed after several passages on agar plates at different temperatures. Conclusions These VNTRs are important additions for genotyping of F. psychrophilum isolates. Future studies on VNTRs of F. psychrophilum should include isolates from more host species from a wider geographical area. To get a more robust genotyping the VNTRs should be used in concert with MLST. Future studies of isolates with high and low virulence should focus on identifying virulence markers using VTNRs and MLST

    Genotyping of Tenacibaculum maritimum isolates from farmed Atlantic salmon in Western Canada

    Get PDF
    Mouthrot infections (bacterial stomatitis) have a significant impact on the Atlantic salmon aquaculture industry in Western Canada due to economic losses and fish welfare. Bacteria isolated from lesions in the field have been identified as Tenacibaculum maritimum. Mouthrot is different to classical tenacibaculosis, which is most commonly associated with ulcerative lesions, frayed fins and tail rot. The marine fish pathogen T. maritimum is found worldwide; however, in Western Canada, the knowledge of the genetic profile of T. maritimum is limited. This study looked at increasing this knowledge by genotyping T. maritimum isolates collected from Atlantic salmon from farms in Western Canada. These genotypes were compared to other species of the genus Tenacibaculum, as well as other known sequence types within the species. The Western Canadian isolates belong to two new sequence types within the T. maritimum species. Phylogenetic analysis shows that the isolates form a distinct branch together with T. maritimum NCIMB 2154T separate from other Tenacibaculum type strains, and they are most closely related to strains from Norway and Chile

    Concurrent jellyfish blooms and tenacibaculosis outbreaks in Northern Norwegian Atlantic salmon (Salmo salar) farms

    No full text
    Tenacibaculosis is an increasing problem in the Norwegian Atlantic salmon aquaculture industry causing significant economic losses. In September 2015, two separate outbreaks of suspected tenacibaculosis occurred at two Atlantic salmon farms in Finnmark County in Northern Norway. The events resulted in major losses of smolts newly transferred into seawater. Prior to, and during the outbreaks, large numbers of small jellyfish, identified as Dipleurosoma typicum (Boeck) were observed in the vicinity of the farms and inside the net-pens. This study investigates the possible link between the jellyfish, Tenacibaculum spp. and the tenacibaculosis outbreaks. Bacteriology, histology, scanning and transmission electron microscopy, and real-time RT-PCR screening were performed on both fish and jellyfish samples. Based on the findings, Tenacibaculum finnmarkense was found to be the dominant bacteria associated with the tenacibaculosis outbreaks at both sites and that D. typicum is unlikely to be a vector for this fish pathogenic bacterium. However, results do show that the jellyfish caused direct damage to the fish’s skin and may have exacerbated the bacterial infection by allowing an entry point for bacteria

    Infection dynamics and tissue tropism of Parvicapsula pseudobranchicola (Myxozoa: Myxosporea) in farmed Atlantic salmon (Salmo salar)

    No full text
    Background The myxosporean parasite Parvicapsula pseudobranchicola commonly infects farmed Atlantic salmon in northern Norway. Heavy infections are associated with pseudobranch lesions, runting and mortality in the salmon populations. The life-cycle of the parasite is unknown, preventing controlled challenge experiments. The infection dynamics, duration of sporogony, tissue tropism and ability to develop immunity to the parasite in farmed Atlantic salmon is poorly known. We conducted a field experiment, aiming at examining these aspects. Methods Infections in a group of Atlantic salmon were followed from before sea-transfer to the end of the production (604 days). Samples from a range of tissues/sites were analysed using real-time RT-PCR and histology, including in situ hybridization. Results All salmon in the studied population rapidly became infected with P. pseudobranchicola after sea-transfer medio August. Parasite densities in the pseudobranchs peaked in winter (November-January), and decreased markedly to March. Densities thereafter decreased further. Parasite densities in other tissues were low. Parasite stages were initially found to be intravascular in the pseudobranch, but occurred extravascular in the pseudobranch tissue at 3 months post-sea-transfer. Mature spores appeared in the pseudobranchs in the period with high parasite densities in the winter (late November-January), and were released (i.e. disappeared from the fish) in the period January-March. Clinical signs of parvicapsulosis (December-early February) were associated with high parasite densities and inflammation in the pseudobranchs. No evidence for reinfection was seen the second autumn in sea. Conclusions The main site of the parasite in Atlantic salmon is the pseudobranchs. Blood stages occur, but parasite proliferation is primarily associated with extravascular stages in the pseudobranchs. Disease and mortality (parvicapsulosis) coincide with the completion of sporogony. Atlantic salmon appears to develop immunity to P. pseudobranchicola. Further studies should focus on the unknown life-cycle of the parasite, and the pathophysiological effects of the pseudobranch infection that also could affect the eyes and vision
    corecore