201 research outputs found

    Three-dimensional eye position signals shape both peripersonal space and arm movement activity in the medial posterior parietal cortex

    Get PDF
    Research conducted over the last decades has established that the medial part of posterior parietal cortex (PPC) is crucial for controlling visually guided actions in human and non-human primates. Within this cortical sector there is area V6A, a crucial node of the parietofrontal network involved in arm movement control in both monkeys and humans. However, the encoding of action-in-depth by V6A cells had been not studied till recently. Recent neurophysiological studies show the existence in V6A neurons of signals related to the distance of targets from the eyes. These signals are integrated, often at the level of single cells, with information about the direction of gaze, thus encoding spatial location in 3D space. Moreover, 3D eye position signals seem to be further exploited at two additional levels of neural processing: (a) in determining whether targets are located in the peripersonal space or not, and (b) in shaping the spatial tuning of arm movement related activity toward reachable targets. These findings are in line with studies in putative homolog regions in humans and together point to a role of medial PPC in encoding both the vergence angle of the eyes and peripersonal space. Besides its role in spatial encoding also in depth, several findings demonstrate the involvement of this cortical sector in non-spatial processes

    Decoding information for grasping from the macaque dorsomedial visual stream

    Get PDF
    Neurodecoders have been developed by researchers mostly to control neuroprosthetic devices, but also to shed new light on neural functions. In this study, we show that signals representing grip configurations can be reliably decoded from neural data acquired from area V6A of the monkey medial posterior parietal cortex. Two Macaca fascicularis monkeys were trained to perform an instructed-delay reach-to-grasp task in the dark and in the light toward objects of different shapes. Population neural activity was extracted at various time intervals on vision of the objects, the delay before movement, and grasp execution. This activity was used to train and validate a Bayes classifier used for decoding objects and grip types. Recognition rates were well over chance level for all the epochs analyzed in this study. Furthermore, we detected slightly different decoding accuracies, depending on the task's visual condition. Generalization analysis was performed by training and testing the system during different time intervals. This analysis demonstrated that a change of code occurred during the course of the task. Our classifier was able to discriminate grasp types fairly well in advance with respect to grasping onset. This feature might be important when the timing is critical to send signals to external devices before the movement start. Our results suggest that the neural signals from the dorsomedial visual pathway can be a good substrate to feed neural prostheses for prehensile actions

    Neural coding of action in three dimensions: Task- and time-invariant reference frames for visuospatial and motor-related activity in parietal area V6A

    Get PDF
    Goal-directed movements involve a series of neural computations that compare the sensory representations of goal location and effector position, and transform these into motor commands. Neurons in posterior parietal cortex (PPC) control several effectors (e.g., eye, hand, foot) and encode goal location in a variety of spatial coordinate systems, including those anchored to gaze direction, and to the positions of the head, shoulder, or hand. However, there is little evidence on whether reference frames depend also on the effector and/or type of motor response. We addressed this issue in macaque PPC area V6A, where previous reports using a fixate-to-reach in depth task, from different starting arm positions, indicated that most units use mixed body/hand-centered coordinates. Here, we applied singular value decomposition and gradient analyses to characterize the reference frames in V6A while the animals, instead of arm reaching, performed a nonspatial motor response (hand lift). We found that most neurons used mixed body/hand coordinates, instead of \u201cpure\u201d body-, or hand-centered coordinates. During the task progress the effect of hand position on activity became stronger compared to target location. Activity consistent with body-centered coding was present only in a subset of neurons active early in the task. Applying the same analyses to a population of V6A neurons recorded during the fixate-to-reach task yielded similar results. These findings suggest that V6A neurons use consistent reference frames between spatial and nonspatial motor responses, a functional property that may allow the integration of spatial awareness and movement control

    Covert Shift of Attention Modulates the Ongoing Neural Activity in a Reaching Area of the Macaque Dorsomedial Visual Stream

    Get PDF
    Background: Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control. Methodology/Principal Findings: We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons. Conclusions/Significance: This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with - and perhaps directly derived from - motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements

    Fix Your Eyes in the Space You Could Reach: Neurons in the Macaque Medial Parietal Cortex Prefer Gaze Positions in Peripersonal Space

    Get PDF
    Interacting in the peripersonal space requires coordinated arm and eye movements to visual targets in depth. In primates, the medial posterior parietal cortex (PPC) represents a crucial node in the process of visual-to-motor signal transformations. The medial PPC area V6A is a key region engaged in the control of these processes because it jointly processes visual information, eye position and arm movement related signals. However, to date, there is no evidence in the medial PPC of spatial encoding in three dimensions. Here, using single neuron recordings in behaving macaques, we studied the neural signals related to binocular eye position in a task that required the monkeys to perform saccades and fixate targets at different locations in peripersonal and extrapersonal space. A significant proportion of neurons were modulated by both gaze direction and depth, i.e., by the location of the foveated target in 3D space. The population activity of these neurons displayed a strong preference for peripersonal space in a time interval around the saccade that preceded fixation and during fixation as well. This preference for targets within reaching distance during both target capturing and fixation suggests that binocular eye position signals are implemented functionally in V6A to support its role in reaching and grasping

    Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    Get PDF
    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes

    Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    Get PDF
    Prototypes of the \fermi{} system have been used to read out a prototype of the \atlas{} hadron calorimeter in a beam test at the CERN SPS. The \fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out
    corecore