56 research outputs found

    XPAD: pixel detector for material sciences

    No full text
    Currently available 2D detectors do not make full use of the high flux and high brilliance of third generation synchrotron sources. The XPAD prototype, using active pixels, has been developed to fulfil the needs of materials science scattering experiments. At the time, its prototype is build of eight modules of eight chips. The threshold calibration of /spl ap/4 10/sup 4/ pixels is discussed. Applications to powder diffraction or SAXS experiments prove that it allows to record high quality data

    Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    Get PDF
    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS

    XPAD: A Photons Counting Pixel Detector for Material Sciences and Small Animal imaging

    No full text
    A paraître dans NIMInternational audienceExperiments on high flux and high brilliance 3rd generation synchrotron X-ray sources are now limited by detector performance. Photon counting hybrid pixel detectors are being investigated as a solution to improve the dynamic range and the readout speed of the available 2D detectors. The XPAD2 is a large surface hybrid pixel detector (68 x 65 mm2^2) with a dynamic response which ranges from 0.01 photons/pixel/s up to 106^6 photons/pixel/s. High resolution data have been recorded using the XPAD2. The comparison with data measured using a conventional setup shows a gain on measurement duration by a factor 20 and on dynamic range. A new generation of pixel detector (XPAD3) is presently under development. For this, a new electronic chip (the XPAD3) has been designed to improve spatial resolution by using 130 μ\mum pixels and detector efficiency by using CdTe sensors. XPAD2 is also operated with PIXSCAN, a CT-scanner for mice

    Contribution du CNRS/IN2P3 Ă  l'upgrade d'ATLAS. Proposition soumise au Conseil Scientifique de l'IN2P3 du 21 Juin 2012

    Get PDF

    ATLAS pixel detector electronics and sensors

    Get PDF
    The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    A 20 kpixels CdTe photon-counting imager using XPAD chip

    No full text
    A 20 kpixels CdTe sensor has been hybridized on XPAD3S CMOS photon counting chips, forming a 19200 pixels imaging device. P-type CdTe with rectifying contact has been employed. This sensor works in hole collection mode with a pulse shaping time of about 150 ns. Detector construction and operation are described and first results obtained with 241Am source as well as diffraction images using an X-ray synchrotron beam are presented. Polarisation effects are present but remain at a very manageable level. Keywords: pixel detector, photon counting, CdTe, hole collection, XPAD

    The hybrid pixel single photon counting detector XPAD

    No full text
    International audienceThe XPAD detector is a 2D X-ray imager based on hybrid pixel technology, gathering 38400 pixels on a surface of 68*68 mm(2). It is a photon counting detector, with low noise, wide dynamic range and high speed read out, which make it particularly suitable for third generation synchrotron applications, such as diffraction, small angle X-ray scattering or macro-molecular crystallography, but also for small animal imaging. High resolution powder diffraction data and in situ scattering data of crystallization of liquid oxides are presented to illustrate the properties of this detector, resulting in a significant gain in data acquisition time and a capability to follow fast kinetics in real time experiments. The characteristics of the future generation of XPAD detector, which will be available in 2007, are also presented
    • …
    corecore