38 research outputs found

    Multi-heme Cytochromes in Shewanella oneidensis MR-1:Structures, functions and opportunities

    Get PDF
    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies

    Metabolite Damage and Damage Control in a Minimal Genome

    Get PDF
    Analysis of the genes retained in the minimized Mycoplasma JCVI-Syn3A genome established that systems that repair or preempt metabolite damage are essential to life. Several genes known to have such functions were identified and experimentally validated, including 5-formyltetrahydrofolate cycloligase, coenzyme A (CoA) disulfide reductase, and certain hydrolases. Furthermore, we discovered that an enigmatic YqeK hydrolase domain fused to NadD has a novel proofreading function in NAD synthesis and could double as a MutT-like sanitizing enzyme for the nucleotide pool. Finally, we combined metabolomics and cheminformatics approaches to extend the core metabolic map of JCVI-Syn3A to include promiscuous enzymatic reactions and spontaneous side reactions. This extension revealed that several key metabolite damage control systems remain to be identified in JCVI-Syn3A, such as that for methylglyoxal. IMPORTANCE Metabolite damage and repair mechanisms are being increasingly recognized. We present here compelling genetic and biochemical evidence for the universal importance of these mechanisms by demonstrating that stripping a genome down to its barest essentials leaves metabolite damage control systems in place. Furthermore, our metabolomic and cheminformatic results point to the existence of a network of metabolite damage and damage control reactions that extends far beyond the corners of it that have been characterized so far. In sum, there can be little room left to doubt that metabolite damage and the systems that counter it are mainstream metabolic processes that cannot be separated from life itself

    Mapping out the gut microbiota-dependent trimethylamine N-oxide super pathway for systems biology applications

    No full text
    The metabolic axis linking the gut microbiome and heart is increasingly being researched in the context of cardiovascular health. The gut microbiota-derived trimethylamine/trimethylamine N-oxide (TMA/TMAO) pathway is responsible along this axis for the bioconversion of dietary precursors into TMA/TMAO and has been implicated in the progression of heart failure and dysbiosis through a positive-feedback interaction. Systems biology approaches in the context of researching this interaction offer an additional dimension for deepening the understanding of metabolism along the gut-heart axis. For instance, genome-scale metabolic models allow to study the functional role of pathways of interest in the context of an entire cellular or even whole-body metabolic network. In this mini review, we provide an overview of the latest findings on the TMA/TMAO super pathway and summarize the current state of knowledge in a curated pathway map on the community platform WikiPathways. The pathway map can serve both as a starting point for continual curation by the community as well as a resource for systems biology modeling studies. This has many applications, including addressing remaining gaps in our understanding of the gut-heart axis. We discuss how the curated pathway can inform a further curation and implementation of the pathway in existing whole-body metabolic models, which will allow researchers to computationally simulate this pathway to further understand its role in cardiovascular metabolism

    Thermodynamics of Electron Flow in the Bacterial Deca-heme Cytochrome MtrF

    No full text
    Electron-transporting multi-heme cytochromes are essential to the metabolism of microbes that inhabit soils and carry out important biogeochemical processes. Recently the first crystal structure of a prototype bacterial deca-heme cytochrome (MtrF) has been resolved and its electrochemistry characterized. However, the molecular details of electron transport along heme chains in the cytochrome are difficult to access via experiment due to the nearly identical chemical nature of the heme cofactors. Here we employ large-scale molecular dynamics simulations to compute the redox potentials of the 10 hemes of MtrF in aqueous solution. We find that as a whole they fall within a range of ∌0.3 V, in agreement with experiment. Individual redox potentials give rise to a free energy profile for electron transport that is approximately symmetric with respect to the center of the protein. Our calculations indicate that there is no significant potential bias along the orthogonal octa- and tetra-heme chains, suggesting that under aqueous conditions MtrF is a nearly reversible two-dimensional conductor

    Comparison of metabolic states using genome-scale metabolic models

    No full text
    Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks
    corecore