7,919 research outputs found

    On buoyant convection in binary solidification

    Get PDF
    We consider the problem of nonlinear steady buoyant convection in horizontal mushy layers during the solidification of binary alloys. We investigate both cases of zero vertical volume flux and constant pressure, referred to as impermeable and permeable conditions, respectively, at the upper mush???liquid interface. We analyze the effects of several parameters of the problem on the stationary modes of convection in the form of either hexagonal cells or non-hexagonal cells, such as rolls, rectangles and squares. [More ...]published or submitted for publicationis not peer reviewe

    Epitope mapping using mRNA display and a unidirectional nested deletion library

    Get PDF
    In vitro selection targeting an anti-polyhistidine monoclonal antibody was performed using mRNA display with a random, unconstrained 27-mer peptide library. After six rounds of selection, epitope-like peptides were identified that contain two to five consecutive, internal histidines and are biased for arginine residues, without any other identifiable consensus. The epitope was further refined by constructing a high-complexity, unidirectional fragment library from the final selection pool. Selection by mRNA display minimized the dominant peptide from the original selection to a 15-residue functional sequence (peptide Cmin: RHDAGDHHHHHGVRQ; K-D = 38 nM). Other peptides recovered from the fragment library selection revealed a separate consensus motif (ARRXA) C-terminal to the histidine track. Kinetics measurements made by surface plasmon resonance, using purified Fab (antigen-binding fragment) to prevent avidity effects, demonstrate that the selected peptides bind with 10- to 75-fold higher affinities than a hexahistidine peptide. The highest affinity peptides (K-D approximate to 10 nM) encode both a short histidine track and the ARRXA motif, suggesting that the motif and other flanking residues make important contacts adjacent to the core polyhistidine-binding site and can contribute > 2.5 kcal/mol of binding free energy. The fragment library construction methodology described here is applicable to the development of high-complexity protein or cDNA expression libraries for the identification of protein-protein interaction domains

    Micro Black Holes at the LHC and an X-ray survey of the ATLAS SCT

    Get PDF
    Microscopic Black Holes (MBH) are a potential consequence of strong gravity at short length scales. The production of MBHs at the LHC would present a prominent signal and radically change the current understanding of gravity. This chapter describes the physics involved in the production and evolution of Microscopic Black Holes. The physics described is relevant to MBH events that occur in hadron collider experiments such as ATLAS

    Sensitivity of the r-process to nuclear masses

    Get PDF
    The rapid neutron capture process (r-process) is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an r-process to occur and a vast lack of knowledge about the properties of nuclei far from stability. There is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. This work is an attempt to determine the most crucial nuclear masses to measure using an r-process simulation code and several mass models (FRDM, Duflo-Zuker, and HFB-21). The most important nuclear masses to measure are determined by the changes in the resulting r-process abundances. Nuclei around the closed shells near N=50, 82, and 126 have the largest impact on r-process abundances irrespective of the mass models used.Comment: 5 pages, 4 figures, accepted in European Physical Journal

    The impact of prior information on estimates of disease transmissibility using Bayesian tools

    Get PDF
    The basic reproductive number (R₀) and the distribution of the serial interval (SI) are often used to quantify transmission during an infectious disease outbreak. In this paper, we present estimates of R₀ and SI from the 2003 SARS outbreak in Hong Kong and Singapore, and the 2009 pandemic influenza A(H1N1) outbreak in South Africa using methods that expand upon an existing Bayesian framework. This expanded framework allows for the incorporation of additional information, such as contact tracing or household data, through prior distributions. The results for the R₀ and the SI from the influenza outbreak in South Africa were similar regardless of the prior information (R0 = 1.36-1.46, μ = 2.0-2.7, μ = mean of the SI). The estimates of R₀ and μ for the SARS outbreak ranged from 2.0-4.4 and 7.4-11.3, respectively, and were shown to vary depending on the use of contact tracing data. The impact of the contact tracing data was likely due to the small number of SARS cases relative to the size of the contact tracing sample

    On the Moduli Space of SU(3) Seiberg-Witten Theory with Matter

    Full text link
    We present a qualitative model of the Coulomb branch of the moduli space of low-energy effective N=2 SQCD with gauge group SU(3) and up to five flavours of massive matter. Overall, away from double cores, we find a situation broadly similar to the case with no matter, but with additional complexity due to the proliferation of extra BPS states. We also include a revised version of the pure SU(3) model which can accommodate just the orthodox weak coupling spectrum.Comment: 32 pages, 25 figures, uses JHEP.cls, added references, deleted joke
    • …
    corecore