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On buoyant convection in binary
solidification

B.S. OKHUYSEN and D.N. RIAHI

Department of Theoretical and Applied Mechanics, 216 Talbot Laboratory, 104 South Wright
Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

We consider the problem of nonlinear steady buoyant convection in horizontal mushy
layers during the solidification of binary alloys. We investigate both cases of zero vertical
volume flux and constant pressure, referred to as impermeable and permeable conditions,
respectively, at the upper mush-liquid interface. We analyze the effects of several parame-
ters of the problem on the stationary modes of convection in the form of either hexagonal
cells or non-hexagonal calls such as rolls, rectangles and squares. No assumption is made
on the thickness of the mushy layer, and a number of simplifying assumptions made in
previous nonlinear analyses are relaxed here in order to study a richer set of phenomena.
Using both analytical and computational methods, we determine the steady solutions to
the weakly nonlinear problem by using a perturbation technique for both constant and
variable permeability, referred to as passive and reactive mushy layer cases, respectively.
Both nonlinear basic state and reactive mushy zone of the present problem favor hexagon-
pattern convection. The results of the analyses and computations indicate, in particular,
that depending on the range of values of the parameters, bifurcation to non-hexagonal
convection can be either supercritical or subcritical, while bifurcation to hexagon pattern
convection, corresponding to the smallest value of the Rayleigh number, is subcritical. For
reactive mushy layers, subcritical down-hexagons with down-flow at the cell centers and
up-flow at the cell boundaries, which have been observed in related experiments (Tait,
Jahrling & Jaupart 1992) , and supercritical non-hexagons were predicted in particular
range of values of the parameters.

1. Introduction

The present study considers the problem of finite-amplitude steady convection in hor-
izontal mushy layers during the directional solidification of binary alloys. The present
investigation is based on combined analytical and computational methods to derive qual-
itative information about buoyant convection in mushy layers. Although a weakly non-
linear analysis of buoyant convection in binary-alloy solidification is undertaken in the
present study, many of the simplifying assumptions made in previous weakly nonlinear
analyses (Amberg & Homsy 1993; Anderson & Worster 1995; Chung & Chen 2000) are
relaxed in order to study a richer set of phenomena.

The simplified mushy-layer model was introduced first by Amberg & Homsy (1993).
The model was based on a neareutectic approximation and in the limit of large far-field
temperature. It was used to examine the dynamics of the mushy layer in the regime of
small deviation from the classical system of convection in a horizontal porous layer of
constant permeability. Such single-layer model for an actual two-layer model for an alloy
directional solidification system (Worster 1992) focused on the mushy-layer mode of con-
vective flow, which is one of the two modes of buoyant convection discovered by Worster
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(1992) in the two-layer system. To construct such a single-layer model for the mushy zone,
Amberg & Homsy (1993) needed to make a number of simplifying assumptions including
those stated above and the ones that the thickness of the mushy layer is small and such
layer is isolated from the overlying liquid layer. In addition, the authors assumed that
the amplitude of convection is of the same order as the thickness of the mushy layer. The
finite-amplitude steady convection studied in Amberg & Homsy (1993) was limited to
two-dimensional rolls and hexagons only. The authors found that two-dimensional rolls
were supercritical for sufficiently small values of the deviation of the permeability from a
constant value and subcritical if such deviation was not too small, and steady hexagons
were found to be transcritical.

Anderson & Worster (1995) extended the analytical studies of Amberg & Homsy (1993)
to the limit of large Stefan number S , which represents the latent heat release due to
solidification, and the case ε2 ¿ δ ¿ 1. The authors applied a double-series expansion
in powers of and for the rescaled variables and the Rayleigh number R. They focused
on the steady modes of convection and calculated, in particular, the finite amplitude
steady solutions in the form of two-dimensional rolls and hexagons. Chung & Chen (2000)
modified the boundary conditions of the Amberg & Homsy (1993)’s model, replacing the
condition of no vertical volume flux at the top boundary with a condition of constant
pressure. This alteration results in mushy layer that is more coupled to the melt above.
The found better agreement with the results of two-layer linear analysis (Worster 1992)

To date, the phenomena observed by Tait et al. (1992) remains unaccounted for in
theory. The hexagonal planform they observed suggests that an understanding of the
physical mechanisms of chimney formation should be accessible via a weakly nonlinear
analysis. However, the nonlinear analyses undertaken thus far have not produced satis-
factory results consistent with the observation. This lack of consistency may be due to
the assumption of thin mushy layer. While this assumption renders the problem analyti-
cally tractable, the inconsistency with experimental results suggests that some extension
is needed. Here, although a weakly nonlinear analysis of buoyant convection in mushy
layers is undertaken, many of the simplifying assumptions made in previous nonlinear
analyses are relaxed in order to study a richer set of phenomena. The price of this ex-
tended range is that the expressions of the nonlinear analysis are no longer analytical.

The approach taken here is to use weakly nonlinear analysis (Busse 1967) to study
the effect of finite amplitude perturbations. A series of boundary value problems is ob-
tained. While the mathematical systems governing these problems do not yield analytical
solutions, solutions may be obtained by straightforward one-dimensional numerical tech-
niques for integration and boundary value problems. The technique incorporates both
analytical and computational methods to derive qualitative information about buoyant
convection in mushy layers. Such a hybrid methodology has not yet been employed to
study convection in a mushy layer.

In the present investigation we carry out analyses and computations for two cases.
For the first case, we consider the condition where the mushy layer is assumed to be
isolated from the overlying liquid layer in the solidification system, so that the condition
of no vertical volume flux of flow at the top boundary, like that considered in Amberg
& Homsy (1993) and Anderson & Worster (1995), is employed. For the second case
of the present investigation, we follow Chung & Chen (2000) and replace such upper
boundary condition for the vertical volume flux by a condition of constant pressure. As
these authors demonstrated, the condition of constant pressure implies the condition of
zero vertical rate of change of the vertical velocity. This alteration in the upper boundary
condition results in mushy layer that is more coupled to the melt above. Chung & Chen
(2000) , who studied the Amberg & Homsy (1993)’s model subjected to such alteration
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in the upper boundary condition, found better agreement with the results of two-layer
linear analyses (Worster 1992).

One of the main goals to study buoyant convection during the solidification of binary
alloys has often been to understand convection in the mushy layer and in chimneys
leading to a class of defects called freckles, which is of particular concern in binary
alloys. Freckles are roughly cylindrical chimney regions in the solidified materials that
are depleted in solute and often have anisotropically oriented grains. They form along the
direction of solidification and cause a disruption of compositional homogeneity. Freckles
are commonly found in cast binary alloys such as nickel-aluminum, aluminum-copper
and lead-tin, as well as steel. Copley, Giamei, Johnson & Hornbecker (1970) investigated
the origin of freckles by studying the freezing of aqueous ammonium chloride solutions.
Previous studies of freckles were performed on quenched alloy samples, but Copley et al.

(1970) noted that ammonium chloride-water solution was phenomenological similar to
solidifying alloys. By using an aqueous analog of a metal system, they were able to
view fluid flow during solidification. They found that in such a system, convective jets
flowing upward through the mushy layer cause freckles. Thus, clearly understanding the
convection in mushy layers and the mechanisms of chimney development is an important
problem. In the present investigation we study convection and different types of patterns
that could be predicted in mushy layers. Ultimately, the goal will be to understand
chimney formation in the mushy layers and then to leverage our understanding to inhibit
chimney formation. By reducing chimneys, we can reduce or eliminate freckles and thus
improve important manufacturing processes involving metal alloys. Here we take the
first step toward understanding chimneys by studying convection in the mushy layer
and elucidating the preferred flow patterns in a more physical model of the solidifying
alloy through an analysis of weakly nonlinear solutions. Finally, it should be noted that
although the discussion has been framed in terms of metallurgy, an understanding of these
processes has many applications in other fields, including crystal growth, geophysics and
geology.

The following two sections 2 and 3 deal with the mathematical formation of the problem
and the analyses. The results of the steady convection for permeable and impermeable
mush-liquid interface are presented and discussed respectively, in sections 4 and 5, which
are followed by the conclusion and some remarks in section 6.

2. Mathematical formulation

2.1. The model

A binary alloy undergoing solidification at a constant speed V is considered. This system
can be realized by the so-called gradient freeze technique in materials manufacturing, for
which the liquid melt is drawn at constant speed through a fixed temperature gradient.
Solidification takes place in a container, or ampoule. Morphological instability at the
solidification front, induced by constitutional undercooling, causes a distinct mushy layer
to form between the completely solidified material and the liquid melt. As the alloy
solidifies with a given composition, it releases buoyant residual fluid within the mushy
layer. A schematic description of this physical system is shown in figure 1.

In contrast to pure substances, changes in phase in multi-component materials do not
occur at a single temperature. A binary phase diagram characterizes the equilibrium
phase behavior of a binary alloy. A representative binary phase diagram is shown in
figure 2. The point E is the eutectic point. When a cooling melt with eutectic composition
CE passes through the eutectic temperature TE, the liquid phase is transformed into the
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Figure 1. Schematic diagram representing the physical system under consideration. The mush
of constant thickness grows upward into the liquid melt at a rate V .
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Figure 2. Representative binary phase diagram.

two distinct phases. The region ACF represents material of a single phase, in which atoms
of one component are incorporated into the lattice of the other to form a solid solution.

It is often the case in aqueous solutions and binary alloys that solidification of a
melt results in a solid phase of a pure component. We assume that the concentration of
the melt C0 is greater that the eutectic concentration CE . When local thermodynamic
equilibrium in the mush is assumed, a point in the region EBD of the phase diagram
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in figure 2 describes the state of the mushy layer. The concentration of the liquid is
then related to the temperature in the mush by the liquidus. It is well known that the
liquidus is nearly linear in a large number of aqueous and binary alloy systems and so it
is assumed that

T = TL(C) = TE + Γ (C − CE), (2.1)

where T is the temperature, C is the composition and Γ is the constant slope of the liq-
uidus. The density of the fluid l is expressed in terms of its temperature and composition
as

ρl = ρ0[1 − α∗(T − TE) + β∗(C − CE)], (2.2)

where α∗ and β∗ are expansion coefficients for heat and solute, respectively, and ρ0 is a
reference value for the density. Using (2.1) in (2.2), the equation of state may then be
written

ρl = ρ0[1 − (α∗Γ − β∗)(C − CE)], (2.3)

Solidification shrinkage is neglected, so ρs = ρl, where ρs is the density of the solid.
In order for a mushy layer to form, compositional undercooling must manifest. Fol-

lowing Worster (1986), the condition for constitutional undercooling to occur is taken
as

n · ∇̄T < Γn · ∇̄C, (2.4)

where n is a unit vector normal to the solidification front.
The melt ampoule is taken to be a semi-infinite domain described by Cartesian co-

ordinates x̄ = (x̄, ȳ, z̄) with corresponding unit vectors (ex, ey, ez) with ez anti-parallel
to the gravity vector g. The system solidifies at a constant rate V and the solid-mush
interface can be located at z̄ = 0 in a frame moving with the solidification front. The
height of the mushy zone is h̄(x̄, ȳ, t̄).

At the solid-mush interface, z̄ = 0, the temperature is held at the eutectic temperature
and no penetration of fluid into the solid region is possible:

T = TE, ū · ez = 0, (2.5)

where ū is the velocity vector. We assume that the mush is in local thermodynamic equi-
librium. When the mushy layer is in local thermodynamic equilibrium, the temperature
and composition are related by the liquidus curve on the phase diagram, described by
(2.1) throughout the layer.

Typically the length scale of the dendritic structures is much smaller than other length
scales in the problem, therefore the mush is treated as a single homogenous continuum
consisting of solid and liquid phases (Batchelor 1994). The heat and molecular mass
transport properties of the mushy region are taken to be volume-weighted averages of
the two phases, expressed using the volume fraction of liquid, χ̂, as

km = χ̂kl + (1 − χ̂) ks (2.6)

Dm = χ̂Dl + (1 − χ̂)Ds (2.7)

Similarly, the specific heat per unit volume is

cm = χ̂cl + (1 − χ̂) cs (2.8)

cs, cl are the specific heats per unit volume of the solid and the fluid parts of the mush.
We then model the mushy layer as a porous medium where Darcy’s law holds, follow-

ing Roberts & Loper (1983), Fowler (1985),and Worster (1992). When the Oberbeck-
Boussinesq approximation is applied conservation of mass, momentum, heat and species
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may be written

ν

Π(χ̂)
ū = −∇̄

(
p

ρ

)
+

(
ρ

ρ0
− 1

)
g (2.9a)

∇̄ · ū = 0, (2.9b)

cm

(
∂

∂t̄
− V

∂

∂z̄

)
T + clū · ∇̄T = ∇̄ ·

(
km∇̄T

)
− L

(
∂

∂t̄
− V

∂

∂z̄

)
χ̂, (2.9c)

(
∂

∂t̄
− V

∂

∂z̄

)
[χ̂C + (1 − χ̂)Cs] + ū · ∇̄C = ∇̄ ·

(
Dm∇̄C

)
(2.9d)

Here p = p∗/ρ0 − g · x̄ is the pressure,L is the latent heat of solidification.
The model of the solidifying mushy layer described up to this point is similar to models

considered in many previous studies. The differences between these models come from
assumptions about the size of the mushy layer and the boundary conditions at the mush-
liquid interface. Worster (1992) considered the liquid region above the mushy layer to be
a semi-infinite region modeled as an extended Boussinesq fluid (Hills et al. 1983). The
extent of the mushy layer was determined by the definition χ̂ = 1 and the assumption that
the mush-liquid system adopts a state of marginal thermodynamic equilibrium, proposed
by Worster (1986). For a mushy layer to manifest, constitutional supercooling must occur.
If the gradient of the temperature is equal to the liquidus temperature gradient in the
liquid immediately adjacent to the mushy zone, then dendrites cannot exist above that
point, and the thickness of the mushy layer is dictated by the condition

n · ∇̄T = Γn · ∇̄C. (2.10)

In the two layer model, the mush-liquid interface is treated as a free surface, where
heat and solute are conserved

LJχ̂KV = Jkmn · ∇̄T K (2.11)

(C − Cs) Jχ̂KV = JDmn · ∇̄CK. (2.12)

The continuity of mass flux, pressure, temperature, and heat flux at the surface leads to
the following interfacial jump conditions,

Jn · ūK = 0, JpK = 0, JT K = 0, Jn · ∇̄T K = 0 (2.13)

At the mush-liquid interface z̄ = h̄(x̄, ȳ, t̄), it is assumed that there is no slip,

ū − n · ū = 0 (2.14)

and that the temperature is on the liquidus

T = TL (C0) + Γ (C − C0) . (2.15)

Amberg & Homsy (1993) and many subsequent papers take a simpler approach. Rather
than explicitly modeling both the liquid and mushy layers, they focus on the mushy
layer only. The conditions at the solid-mush interface and the condition that χ̂ = 1 at
the mush-liquid interface are retained. However, they introduce the depth of the mushy
layer as a distinct length scale. In order to obtain a system that is tractible by purely
analytical means, they assume that the mushy layer depth is small. To further simplify
their analysis, they chose a condition that the mush-layer interface is impermeable to
flow.

ū · n = 0 at z̄ = h̄. (2.16)
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This choice results in a decoupling of the superposed liquid layer from the mushy zone.
To close the system, they set the temperature at z̄ = h̄ to

T = TL(C0). (2.17)

Chung & Chen (2000) considered the Amberg-Homsy model with one modification.
Instead of considering the mush-liquid interface to be impermeable and using (2.16),
they considered the mush and liquid to be coupled following Emms & Fowler (1994). A
constant pressure condition was used that leads to a vanishing vertical gradient of the
vertical velocity,

n · ∇̄(ū · n) = 0 at z̄ = h̄. (2.18)

Chung and Chen reported quantitative improvements over the Amberg-Homsy model
and better agreement with linear results of the two-layer system.

A hybrid of the single- and double-layer approaches is developed into the model pre-
sented here. We retain the decoupling of the liquid and mushy regions, so that only the
mushy region is considered. However, we presuppose the existence of the liquid region
above and apply the condition of marginal thermodynamic equilibrium to obtain the
mushy layer thickness in terms of the characteristic length due to thermal diffusion. This
approach has been taken for studying linear stability in the two-layer model (Worster
1992; Chen et al. 1994). The models of Amberg-Homsy and Chung-Chen differ by a single
boundary condition. The Chung-Chen model appears to be a more physical formulation,
however a larger body of research exists using the Amberg-Homsy model. We analyze
both cases and write the dynamic boundary conditions at the mush-liquid interface to
be either (2.16) or (2.18).

2.2. Non-dimensional system

The governing equations are non-dimensionalized by using V , κ/V , κ/V 2, ∆C, [(β∗ −
Γα∗)∆C ρ0gκ]/V and ∆T as scales for velocity, length, time, solute, pressure and tem-
perature, respectively. Here κ is the thermal diffusivity, ρ0 is a constant reference density,
β = β∗ − Γα∗, ∆C = C0 − CE and ∆T = TL(C0) − TE. The non-dimensional form of
the equations for momentum, continuity, temperature and solute concentration derived
from (2.9) are then

K̂(χ̂)û = −∇p̂− Rmθ̂ez (2.19a)

∇ · û = 0, (2.19b)

(
∂
∂t − ∂

∂z

) [
θ̂ − S (1 − χ̂)

]
+ û · ∇θ̂ = 4θ̂ (2.19c)

(
∂
∂t − ∂

∂z

) [
χ̂θ̂ + C (1 − χ̂)

]
+ û · ∇θ̂ = εm∇ · χ̂∇θ̂ (2.19d)

where û = ûex + v̂ey + ŵez is the volume flux per unit area, which is also known as the
Darcy velocity vector (Nield 1998);û and v̂ are the horizontal components of û along x-
and y-directions, respectively; ŵ is the vertical component of û along the z-direction; p̂ is
the modified pressure; θ̂ is the non-dimensional composition, or equivalently temperature
(Worster 1992), θ̂ = [T − TL(C0)]/∆T = (C − C0)/∆C; t is the time variable; χ̂ is the
local liquid fraction or porosity; R = β∆CgΠ(1)/(V ν) is the Rayleigh number, Π(0)
is a reference value at χ̂ = 0 of the permeability Π(χ̂) of the porous medium, which is
assumed to be finite (Worster 1992), ν is the kinematic viscosity, g = |g| is acceleration
due to gravity; K(χ̂) = Π(0)/Π(χ̂), εm = Dm/κ is the inverse of the Lewis number;
S = L/(Cm∆T ) is the Stefan number, Cm is the specific heat per unit volume, L is
the latent heat of solidification per unit volume; C = (Cs − C0)/∆C is a concentration
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ratio and Cs is the composition of the solid-phase forming the dendrites. We assume that
temperature equilibrates much faster than mass, so that εm = 0 for all analyses and
results herein.

The governing equations (2.19) are subject to the following boundary conditions:

θ̂ = −1, ŵ = 0 at z = 0 (2.20a,b)

θ̂ = 0, ŵ = 0 or ∂
∂z ŵ = 0, χ̂ = 1 at z= δ, (2.20c–e)

where δ represents the dimensionless depth of the layer.
The permeability relation is

K̂(x, y, z, t) =
Π(1)

Π(χ̂)

and the permeability Π is derived from

Π = χ̂J(x, y, z, t)

to obtain

K̂ = χ̂−J (2.21)

Generally, K̂ will decrease as χ̂ increases. Setting J = 0 correspondes to a constant per-
meability and represents a passive mushy layer with no coupling between permeability
and porosity. When J = 3, equation (2.21) resembles a Kozeny-type equation for perme-
ability in which the specific volumetric surface area of the phase boundaries is considered
constant (Lage 1998). These two relations for K̂ has been used by many authors (Worster
1992; Amberg & Homsy 1993; Emms & Fowler 1994) in similar studies.

3. Analyses

Usually the assumption of a thin mushy layer (δ ¿ 1) and an initial composition that is
close to the eutectic composition are employed to render an analytically tractable system.
In such systems, in particular, the basic-state solution is expressed in terms of asymptotic
expansions in δ and perturbations at each order ε are expanded asymptotically in terms
of δ. Usually either a distinguished limit δ = O (ε) or double-limit where δ = O (1) as
ε→ 0 is chosen yielding complicated, though analytical, expressions. Here an alternative
approach is taken. If the constraint of analytical solutions is removed and the use of one-
dimensional numerical methods is accepted, then the governing system may be studied
in parameter regimes beyond those accessible by previous analyses.

3.1. Steady basic-state and perturbation systems

The perturbation from the basic state is measured by the amplitude ε,

θ̂ = θb(z) + εθ(x, y, z, t), (3.1a)

χ̂ = χb(z) + εχ(x, y, z, t), (3.1b)

û = 0 + εu(x, y, z, t), (3.1c)

p̂ = pb(z) + εp(x, y, z, t), (3.1d)

K̂ = Kb(χb) + εK(χ). (3.1e)

The perturbation is the small deviation of each dependent variable from its basic quantity.
This deviation can vary with respect to spatial and time variables, as is shown in (3.1).

As in Worster (1991), substituting the expressions (3.1) into (2.19), we obtain the
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equations governing the steady basic state:

d2θb

dz2
+

dθb

dz
+ S

dχb

dz
= 0, χb

dθb

dz
+ (θb − C )

dχb

dz
= 0

θb = −1 at z = 0, θb = 0, χb = 1 at z = δ.

From consideration of the melt region above the mush, we obtain the following solutions
for the basic state. We can integrate the heat equation once, then substitute the expres-
sion for ϕb into it, and integrate again to obtain the following relationship between z and
θb:

z(θb) =
a1 − C

a1 − a2
ln

(
1 + a1

a1 − θb

)
+

(C − a2)

a1 − a2
ln

(
1 + a2

a2 − θb

)
(3.2)

where

a1, a2 =
1

2

[
(S + C + θ∞) ±

√
(S + C + θ∞)2 − 4C θ∞

]

and

χb =
C

C − θb
(3.3)

The thickness of the mushy layer, δ, is obtained from the system parameters C ,S and
θ∞ by

δ =
a1 − C

a1 − a2
ln

(
1 + a1

a1

)
+

(C − a2)

a1 − a2
ln

(
1 + a2

a2

)
(3.4)

In previous nonlinear analyses, the assumption of a thin mushy layer δ ¿ 1 leads to
basic-state solutions in terms of asymptotic expansions. In such circumstances, the per-
turbations to liquid fraction are small χ¿ 1 and the permeability factor K is expanded
in a Taylor series about χ = 0. To consider larger mushy layer thicknesses, we need to
model the effect of porosity on permeability. A common choice following from the Kozeny
equation is (2.21) for J > 0. Using (3.1e) in (2.21), we have

Kb = χ−J
b , (3.5)

K ∼ −Jχ−(J+1)
b

(
χ− εJ+1

2 χ−1
b χ2

)
. (3.6)

For analysis of the perturbation system to be presented in this section, it is convenient
to use the general representation

u = ΩP + Eψ, (3.7)

Ω ≡ ∇ × ∇ × ez, E ≡ ∇ × ez, (3.8)

for the divergence-free vector field u (Chandrasekar 1981). Here P and ψ are the poloidal
and toroidal functions for u, respectively. By taking the vertical component of the curl of
(2.19a), it can be shown that the toroidal part Eψ of u must vanish. Taking the vertical
components of the double curl of (2.19a) and using (2.19b) in (2.19)–(2.20), we find the
following system, which will be analyzed in this section:

(Kb4 +K ′

b
∂
∂z )42P − Rm42θ = −ε

[
∂
∂z (∇K · ΩP ) + 4 (K42P )

]
, (3.9a)

(
∂
∂t − ∂

∂z −4
)
θ + S

(
∂
∂t − ∂

∂z

)
χ− θ′b42P = −εΩP · ∇θ, (3.9b)

[
χb(

∂
∂t − ∂

∂z ) − χ′

b

]
θ −

[
(θb − C )( ∂

∂t − ∂
∂z ) − θ′b

]
χ− θ′b42P

= −ε
[
ΩP · ∇θ + χ

(
∂
∂t − ∂

∂z

)
θ + θ

(
∂
∂t − ∂

∂z

)
χ
]
, (3.9c)
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θ = 0, P = 0 at z = 0 (3.10a,b)

θ = 0, P = 0 or ∂
∂zP = 0, χ = 0 at z = δ (3.10c–e)

where

42 ≡ ∂2/∂x2 + ∂2/∂y2.

It will be useful to define the notation q = (θ, χ, P )T and introduce the multilinear oper-
ators L, L̂ and N , defined by (A 1)–(A 3) in the appendix, to represent the perturbation
equations (3.9) succinctly as

(L − RmL̂)q = εN (q, q). (3.11)

The boundary conditions (3.10) are represented generally as

B [q(z = 0), q(z = δ)] = 0 (3.12)

3.2. Linear stability analysis

To investigate the stability of the basic state to arbitrary infinitesimal perturbations, the
perturbation system is linearized. Designating the linear solution by q0 and setting ε = 0
in (3.11)–(3.12), we find the linear system for the perturbations

(
L − RmL̂

)
q0 = 0, B0 [q0(z = 0), q0(z = δ)] = 0. (3.13a)

Since the coefficients in (3.13) are functions of z only, the method of separation of vari-
ables is applicable to obtain the solution. Using normal mode analysis (Chandrasekar
1981), the perturbations are expressed in terms of a complete set of normal modes in the
form of two-dimensional waves. We consider disturbances of the form

q0 = q̃0(z)H(x, y) exp(σt) (3.14)

where σ is the growth rate of the perturbations and the function H(x, y) satisfies

42H = −α2H. (3.15)

Many flows of interest may be described by periodic cells in the horizontal directions. In
such cases, the planform function H is given by

H(x, y) =
∑N

n=−N AnHn, Hn ≡ exp (iαn · x) , (3.16)

where N is a positive integer, αn are the horizontal wavenumber vectors satisfying

αn · ez = 0, |αn| = α, α−n = −αn (3.17)

and the constant coefficients An satisfy the conditions
∑N

n=−N AnA
∗

n = 1, A−n = A∗

n (3.18)

where the asterisk indicates complex conjugation. The z-dependent coefficient q̃0 in (3.14)
satisfies a system of the form (3.13), when ∂/∂t, ∂/∂z,Rm,42, and 4 in L and L̂ are
replaced, respectively, by σ,D ≡ d/dz,R0,−α2, and (D2 − α2), where R0 is defined in
the next paragraph.

For each wavenumber α, a marginal Rayleigh number Rm is computed at which σ = 0.
The result may be plotted to obtain a marginal stability curve. The least stable mode
corresponds to the minimum Rayleigh number and wavenumber αc on this curve. To
simplify notation, the minimum marginal Rayleigh number and corresponding critical
wavenumber are henceforth denoted as R0 and α, respectively.
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3.3. Nonlinear analysis

3.3.1. Adjoint System

In order to compute solvability conditions, the solutions to the adjoint linear problem
are required. Many authors put the equations in self-adjoint form, however we take the
more general approach of computing adjoint solutions. When solutions to (3.13) have the
form of (3.14), the adjoint identity yields adjoint solutions of the form

q
(a)
0n = [θ

(a)
0n , χ

(a)
0n , P

(a)
0n ] = [θ̃

(a)
0 (z), χ̃

(a)
0 (z), P̃

(a)
0 (z)]AnHn(x, y) (3.19)

where the z-dependent coefficient function q̃
(a)
0n = [θ̃

(a)
0 (z), χ̃

(a)
0 (z), P̃

(a)
0 (z)] are the solu-

tions of the linear system

L(a)q̃
(a)
0 = 0, B(a)[q̃

(a)
0 (z = 0), q̃

(a)
0 (z = δ)] = 0. (3.20)

The linear operator L(a) and the boudary conditions represented by B(a) are defined by
(A 4) in the appendix.

3.3.2. Expansions

:q The following expansions are made for the perturbation quantities needed in the
present analysis up to order ε2:

(P, θ, χ,Rm) ∼∑2
n=0 (Pn, θn, χn,Rn) εn (3.21)

It should also be noted that in the present analyses, we have used the following expansion
for K up to order ε

K ∼ K0 + εK1, (3.22)

where it was found from (3.6) that

K0 = −Jχ−(J+1)
b χ0, (3.23a)

K1 = −Jχ−(J+1)
b

(
χ1 − J+1

2 χ−1
b χ2

0

)
. (3.23b)

3.3.3. First Order Problem

At O (ε), the first order perturbation problem is found from (3.11)–(3.12) to be

(L − R0L̂)q1 = R1L̂q0 + N (q0, q0) (3.24a)

B0 [q0(z = 0), q0(z = δ)] = 0. (3.24b)

when the linear solution (3.14) is used in the right-hand-side of (3.24a) and some sim-
plifications are made, we find

(L − R0L̂)q1 = R1L̂(α)q̃0

N∑

n=−N

AnHn +

N∑

k,p=−N

Ñ10(Φlp; z)AkApHkHp (3.25)

where the matrix L̂(α) has the same form as L̂ given by (A 2) with 42 replaced by −α2

and the vector function Ñ10 is given by (A 5) in the appendix.
The double sum over k and p has (2N)2 terms, however symmetries exist which simplify

the expression. First, the HkHp terms are symmetric, HkHp = HpHk, bringing the
number of independent pairs of H to N(2N +1). Sums also involve the parameter Φkp =
αk · αp/α

2. This parameters has the properties

Φkp = Φpk, Φkp = Φ−k,−p, Φk,−p = −Φkp, Φkk = 1 (3.26)

Of the N(2N+1) terms, there are 2N terms associated with Φkk = 1, N terms associated
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with Φk,−k = −1. If k 6= p, then Φk,−p = −Φlp implies that there are only N possible
independent Φ quantities. There are two case independent Φ’s for N = 2, but in the
regular case of square cells they are both zero and therefore not distinct. In the regular
solution for N = 3, corresponding to hexagonal cells, only two Φ’s are possible. In sum-
mary, for the convection patterns considered here: Φkp = ±1 for rolls, Φkp = ±1,± cos γ
for rectangles, Φkp = ±1, 0 for squares and Φkp = ±1,±1/2 for hexagons.

The linear system (3.13) has non-trivial solutions, and for (3.24) to be solvable, the
non-homogenous term must be orthogonal to the solution of the adjoint linear system.
This condition is given by

〈
q

(a)
0n ,R1L̂q0 + N (q0, q0)

〉
= 0, (3.27)

where the angular bracket indicates integration over the whole fluid layer. From this
condition, we find that R1 = 0 except for the case of hexagonal cells (N = 3):

R1 = −2
〈
q̃

(a)
0 , Ñ10(−1/2; z)

〉
√

6
〈
P̃

(a)
0 ,K−1

b θ̃0
〉 . (3.28)

The solution to (3.24) is found to be of the form

q1(x, y, z) = q̃10(z)

N∑

n=−N

AnHn +

N∑

k,p=−N

q̃11(Φkp; z)AkApHkHp, (3.29)

where the boundary value problems for the z-dependent coefficients q̃10 and q̃11 are given
by (A 8) in the appendix.

3.3.4. Second Order Problem

We now consider the system (3.11)–(3.12) at order ε2. The second order perturbation
problem is then

(L − R0L̂)q2 = R1L̂q1 + R2L̂q0 + N (q0, q1) + N (q1, q0) (3.30)

B[q2(z = 0), q2(z = δ)] = 0. (3.31)

The solvability condition at this order yields the expression for R2,

R2 =
−R1

〈
q

(a)
0n , L̂q1

〉
+
〈
q

(a)
0n ,N (q0, q1) + N (q1, q0)

〉
〈
q

(a)
0n , L̂q0

〉 (3.32)

The system (3.30), together with (3.18) and (3.28), can be used to study the steady
solutions in the form of two-dimensional rolls and three-dimensional cells. We shall re-
strict our attention to the simplest types of solutions, which include those observed in the
applications. These solutions are called regular or semi-regular solutions (Busse 1967).
In the case of a regular solution all angles between two neighboring α-vectors are equal
and (3.18) yields

|A1|2 = · · · = |AN |2 = 1
2N (3.33)

In the more general semi-regular solution, where (3.33) still holds, the scalar products
between any of the α-vectors and its two neighboring α-vectors assume the constant
values α1 and α2. An example of a semi-regular solution is that due to rectangular cells
(N = 2), where α1 = −α2. Regular solutions can follow from the semi-regular ones for
the special case α1 = α2. Simple forms of regular solutions correspond to the cases of
two-dimensional rolls (N = 1), square cells (N = 2) and hexagons (N = 3).

The simplest types of solutions, which turn out to be preferred under certain conditions
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in the present study, are described briefly as follows. For steady two-dimensional rolls,
N = 1, An = 1/2 and R1 = 0. For rectangular pattern convection, N = 2, An = 1/2, γ 6=
90◦ and R1 = 0. Here γ is the angle (γ 6 90◦) between two adjacent wavenumber vectors
of any cell. For square pattern convection, N = 2, An = 1/2, γ = 90◦ and R1 = 0. For
hexagonal convection, N = 3, An = 1/6 and R1 6= 0 in general (Busse 1978). As will be
referred to later in sections 4 and 5, the sign of the vertical motion at the cells’ centers
for hexagons, which is determined by the sign of ε, is inferred from the condition

εR1 < 0 (3.34)

for the subcritical hexagons at order ε and from

εR1 > 0 (3.35)

for the supercritical hexagons at order ε. If the sign of the vertical motion at the cells’
centers for the hexagons is negative, such hexagons are referred to as down-hexagons,
while up-hexagons are referred to the case where the sign of the vertical motion is positive
at the cells’ centers.

3.4. Computation

3.4.1. Marginal stability problem

In contrast with previous studies of nonlinear convection in mushy layers, discussed in
section 1, the equations for determining linear stability must be solved numerically. To
determine linear stability, we use a shooting technique (Keller 1976). For a given set of
parameters, linear modes are integrated across the domain of the mush and the Rayleigh
number is varied until boundary conditions are satisfied. By computing this neutral
Rayleigh number for a range of wavenumbers, we produce a marginal stability curve. The
minimum value of R0 with respect to α is then determined from the marginally stable
states for different wavenumbers. The associated solutions q̃0 at that critical Rayleigh
number are the eigenfunctions of the linear system.

We follow Worster (1992) and use the basic-state temperature as the independent
variable in the linear disturbance equations to avoid having to invert the transcendental
equation (3.2). The variable

τ = −θb (3.36)

maps the computational domain of the mushy zone to [0, 1]. In this mapping, τ = 0
corresponds to the mush-liquid interface and the solid-mush interface is located at τ = 1.
The set of ordinary differential equations for q̃0(z) is converted to the corresponding
system with τ as the independent variable prior to employing the shooting method.

3.4.2. Nonlinear problem

Once the minimum Rayleigh number and corresponding wavenumber are found from
the marginal stability problem, we solve the adjoint problem in τ . We checked the nu-
merical integrity of the adjoint solutions by generating a neutral curve from the adjoint
system. The validity was ensured when a neutral curve generated by the same technique
described before for the marginal stability problem, but using the adjoint system instead
of the linear system, was computed and found to be equal to the linear neutral curve.
Once the adjoint solutions are found, we use (3.36) to convert the nonhomogeneous linear
system in z at each order ε into a system with independent variable τ .

For the higher perturbation orders considered, ε and ε2, the solvability conditions
(3.28) and (3.32) were applied to yield higher order corrections to the Rayleigh number.
After calculating R1 using numerical integration over the τ -grid, the O (ε) perturbation
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modes were computed. For each independent constituent perturbation mode, Φlp, as-
sociated with each convection pattern considered, a vertical mode was computed from
systems ordinary differential equations and boundary conditions using local techniques
for boundary value problems (Ascher, Mattheij & Russell 1995). Local techniques were
chosen for their high accuracy. The lower order modes required to satisfy the second
order solvability condition were used to compute R2 by numerical integration. At second
order, the vertical modes associated with (Φlm, Φmp, Φlp) triads for each flow pattern were
computed by similar local techniques. The modes for each order were then combined to
form the corresponding multidimensional solutions.

4. Impermeable mush-liquid interface results and discussion

4.1. Thin mushy layer

We now focus on a regime in which the mushy layer is thin, similar to the one consid-
ered by Amberg & Homsy (1993) in a thin layer approximation. For two-dimensional
convection in the form of horizontal rolls, parameter values were chosen to correspond
to the two-dimensional results of Amberg and Homsy. An exact comparison is not pos-
sible because Amberg and Homsy’s model requires the explicit specification of a mushy
layer thickness instead of the far-field temperature. In the present model the far-field
temperature is specified, and the mushy layer depth is computed as part of the problem.
However, to emulate the regime of the thin layer approximation, we choose θ∞ = 3.
Another requirement of the Amberg & Homsy (1993) analysis is that C À 1, so we set
C = 5. The Stefan number S is set to 1. This choice of parameters yields a mushy layer
thickness of δ = 0.281, which is similar to the choice of δ = 0.3 used by Amberg and
Homsy.

Two explicit cases are examined. The first occurs when the variation of permeability
with liquid fraction is negligible. In this case, the linear stability analysis yields a critical
marginal state with a Rayleigh number of R0 = 120.35 with wavenumber α = 11.183.
The second case corresponds to a reactive mushy layer and is based on the permeability
relation suggested by Worster (1992). In the reactive case, the critical linear Rayleigh
number and wavenumber are R0 = 157.89 and α = 11.217, respectively. These values are
similar to those obtained by Amberg and Homsy.

The maximum vertical velocity occurs at the vertical midpoint in the mushy layer,
which is near z = 0.14 for the parameter set specified. When the dependence of perme-
ability on liquid fraction is negligible, then J = 0. In this case, R2 = 16773. Since R2

is greater than zero, the bifurcation is supercritical. The finite-amplitude solutions ŵ,χ̂
and θ̂ at the vertical midpoint are calculated as functions of the horizontal coordinate x
for both passive mushy layer (constant permeability) and reactive mushy layer (variable
permeability) cases. The solutions were evaluated for an amplitude ε = 0.064, which is
the largest value that makes the liquid fraction not exceed one. A liquid fraction greater
than one is unphysical.

For the passive mushy layer case, the results indicate high values of liquid fraction in
the neighborhood of the middle and at the endpoints of each cell. These regions of high
porosity correspond to regions of rising fluid as are indicated from positive data values for
the vertical velocity. The data for the temperature perturbation show that temperature
is depressed in the porous region. Recalling that temperature throughout the mush is
coupled to solute via the liquidus relation, the colder fluid contains less solute. However,
upflow and downflow are symmetric and there is no localization of the solution. For the
reactive mushy layer case, the results indicate that localization is present with focused
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upflow at the middle and end points of each cell and smaller, more diffuse downflow
around at locations half between middle and end points. Such result is suggestive of
the formation of chimneys in the focused upflow regions, with slower downward motion
where fluid is percolating through regions with increased dendritic growth and subsequent
lower permeability. Our generated data in (x, z)-plane of the liquid fraction of a single
roll parallel to the y-axis, suggest that in the region centered at the middle of the cell,
there is a chimney extending from bottom to top of the mushy layer surrounded by larger,
more solid regions. This result reflects those given for solid fraction in Amberg & Homsy
(1993) and the experiments of Chen & Chen (1991).

We now consider the coupling between mush permeability and porosity generated
in flow. This coupling accounts for the following physical effect: given that temperature
equilibrates much faster than composition, the cold, dilute fluid with incorporate solid via
melting and dissolution to equilibrate composition locally. The effect is enabled the model
by setting J = 3 in the permeability function to reflect a physical permeabilityporosity
relationship. In the reactive mushy layer, R2 = −214235 and the bifurcation is subcritical.
This transition from supercritical to subcritical with the increase in J is consistent with
criterion set forth in Amberg & Homsy (1993).

The principal difference between these results and those found by Amberg & Homsy
(1993) are the quantitative values of the Rayleigh number. Here, the values of R2 are
larger, but this is due to differences in scaling which do not effect the qualitative nature
of the solutions. Specifically, the linear adjoint solutions used here are scaled differently.
These results are entirely consistent with the model of Amberg and Homsy. We now
extend our results to regimes not accessible in their model.

4.2. Extended parameter study

The analysis of Amberg & Homsy (1993) was limited in that it presupposed θ∞ À 1
and C À 1. For this reason, they were unable study the variation of α and R with the
controlling thermodynamic parameters of the mush θ∞, C and S . The current model
has no such limitations, so we now examine these variations for passive and reactive
mushy layers.

4.2.1. Linear system variation with far-field temperature

First, the variation of stability behavior with respect to the supposed far-field tem-
perature θ∞ is discussed. The parameters C and S kept constant and set to one. From
the basic solution, the mushy layer depth δ is plotted as a function of θ∞ in 3. As noted
in Worster (1992), the mushy layer thickness is reduced as far-field temperature is in-
creased. The critical Rayleigh number and wavenumber obtained from the linear analysis
are shown for the passive case J = 0 and the reactive case J = 3, shown in figure 4. In
both cases R0 and α increase with far-field temperature. The increasing critical Rayleigh
number indicates that the mushy layer is more stable, and the increasing wavenumber
reflects the fact that instability manifests a shorter length scales. This behaviour is ex-
pected in as the mushy layers considered get thinner. As was suggested in the linear
results for the thin mush, the reactive mushy layer is generally more stable than the
passive case.

4.2.2. Nonlinear properties

Due to degeneracy of the linear system, the linear results are applicable to both two-
and three- dimensional convection cases. Important quantities due to the nonlinear effects
are the coefficients R1 and R2, which are computed in the present study. These coefficients
represent leading contributions to the change in R required to obtain finite amplitude ε



16 B. S. Okhuysen and D. N. Riahi

0

0.5

1

1.5

2

δ

0.1 2 4 6 8

θ∞

Figure 3. Variation of mushy layer depth with the parameter θ∞ while C = 1 and S = 1.
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Figure 4. Variation of critical Rayleigh number R0 and wavenumber α with the parameter
θ∞ while C = 1 and S = 1 in a reactive mushy layer with no outflow at the top boundary.

for a nonlinear solution. In terms of these coefficients, the amplitude of convection is of
order

|ε| =
{
±|R1| ±

[
R2

1 + 4R2(R − R0)
]1/2

}
/(2R2) (4.1)

As can be seen from (4.1), there are four expressions for |ε| corresponding to plus and
minus signs in front of the |R1| term. For the case εR1 < 0, the two roots with a plus sign
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in front of |R1| provide the expressions for |ε|, while the two roots with a negative sign
preceeding |R1| provide the expressions for |ε| if εR1 > 0. For either case εR1 < 0 or case
εR1 > 0, the expression with a plus sign in front of the square-root term corresponds
to the case where R2 is positive, while the expression with negative sign in front of the
square-root term corresponds to the case where R2 is negative.

The expression (4.1) provides some qualitative results about variations of |ε| with
respect to R. We assume that initially |ε| is sufficiently small. For εR1 < 0 and R2 > 0,
|ε| increases first with decreasing R and then increases with R beyond some value. For
εR1 < 0 and R2 < 0, |ε| increases indefinitely with decreasing R, while for εR1 > 0 and
R2 > 0, |ε| increases indefinitely with increasing R. For εR1 > 0 and R2 < 0, |ε| increases
first with R and then decreases with increasing R beyond some value. The preferred
convection pattern is the one that corresponds to the lowest value of R, a definition that
often corresponds to observations and agrees with the experimental expectation that the
heat or solute transported by the convection pattern (proportional to ε2) should increase
with R. Further, Iooss & Joseph (1990) have shown that those bifurcation branches for
which the amplitude decreases with increasing R are probably unstable and, thus, not
physically realizable. These results may be useful to indicate the realization of a particular
flow pattern if certain information about the values of R1 and R2 is available.

For the case when R1 = 0, which can correspond to two-dimensional rolls, rectangles,
and square pattern convection, then the sign of R2 determines whether the steady solution
exists for values of R above or below R0. When R1 = 0 and convection is supercritical,
where R > R0, the amplitude of convection increases with R and is largest provided the
value of R2 is smallest among all the solutions to the nonlinear problem. For R1 = 0
and subcritical convection, where R < R0, the amplitude of convection decreases with
increasing R and is largest, provided |R2| is the minimum among all solutions. Variations
of R1 with respect to different parameters provide information about various destabilizing
and stabilizing features for hexagonal convection. However, the information about R2 for
hexagons as well as non-hexagons is useful in calculating solute flux, and in cases where
R1 is negligible or zero.

In the present problem, the coefficients R1 and R2 are due to the nonlinear convective
terms in the temperature equation and nonlinear interactions between the flow velocity
and the non-uniform, nonlinear permeability associated with the perturbation to the
basic state liquid fraction.

It should also be noted that the variations of R1 with respect to different parameters
provide information about various destabilizing and stabilizing features for the hexagonal
convection. However, the information about R2 for hexagons and nonhexagons is useful
in the sense that since R2 is the second-order coefficient in the expansion for R in powers
of , R2 plays useful roles in calculating the solute flux and the order of magnitude of in
(4.1) and in cases where R1 is zero or becomes negligible.

4.2.3. Nonlinear system variation with far-field temperature

We now consider patterns of convection from nonlinear terms, and as in the linear
system analog, S and C are kept constant and set to one. The simplest regular solution
is two-dimensional rolls. For this pattern, it was found that R1 is zero. First, the second
order correction to the Rayleigh number R2 is calculated versus θ∞ in the case J = 0
and in the case J = 3 (figure 5), where R2 for rolls is designated by R2 . In both cases
R2 < 0 for all the considered values of indicating subcritical bifurcation. In these cases
bifurcation is probably always subcritical. R1 was also found to be zero for squares and
rectangles. Next, we calculated R2 for squares and rectangles in both cases of passive
mush (J = 0) and reactive mush (J = 3). In the passive mush case, R2 for squares,
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Figure 5. Variation of R2 with the parameter θ∞ while C = 1 and S = 1 in a reactive mushy
layer with no outflow at the top boundary.

designated by R
(s)
2 , and R2 for rectangles, designated by R

(ra)
2 , are found to be negative

and |R(s)
2 | > |R(ra)

2 | > |R(r)
2 | throughout the considered values of the far-field temperature.

However, in the reactive mush case (figure 5), there is an intermediate range in θ∞
where |Rs

2| and |Rra
2 | (for γ = 45◦) are positive, indicating supercritical bifurcations for

these patterns in such intermediate range of far-field temperature.

4.2.4. Nonlinear system variation with concentration ratio

We now considered effects of variation of C , where both S and are kept constant and
set to one. Physically, the concentration ratio C may b viewed as the nondimensional
composition of the consituent dendrites formed during solidification. Out calculated re-
sult for the mushy layer depth indicates that increases monotonically with C . A larger
concentration ratio also increases porosity. Our generated data for R0 and versus C show
that R0 increases slightly and decreases strongly with C in the passive mush case, while
both of these quantities decrease strongly with increasing C in the reactive mush case.
Since the increase in porosity is not coupled with the permeability in the passive mush
case, the resulting effect on the stability of the mush is not large. The mush becomes
slightly more stable in this case. In contrast, the more physical case of the reactive mush
has coupled porosity and permeability, such that permeability increases cubically with
porosity and C can be destabilizing in this case. In both the reactive and passive mushy
layer cases, linear stability analysis yields increasing wavelength with increasing C , con-
sistent with the larger mushy layer.

The generated data for R2 versus C in the cases of rolls, rectangles and squares indicate
that R2 is negative for the passive mush implying subcritical bifurcation for such patterns.
However, the corresponding results for the reactive mush (figure 9) indicate supercritical
bifurcations for each of such patterns, provided C is sufficiently small. The generated
data for R1 versus C in the case of hexagons for the passive and mush indicate that
R1 < 0, while R1 > 0 for the reactive mush only for sufficiently small C . Our generated
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Figure 7. Variation of R1 with the parameter θ∞ while C = 1 and S = 1 in a reactive mushy
layer with no outflow at the top boundary.

data for R2 versus C for the hexagons indicate that for the passive mush, R2 increase
monotonically with C and R2 > 0,unless C is too small. The corresponding results for
the reactive mush indicate that R2 > 0 only for very small C , and as C increases from
small to large values, R2 decreases rapidly first and then increasing modestly with C .
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Figure 9. Variation of R2 for non-hexagonal patterns with the parameter θ∞ while C = 1 and
S = 1 in a reactive mushy layer with no outflow at the top boundary.

4.2.5. Nonlinear system variation with Stefan number

Our calculated data for varies quantities versus S with C and θ∞ kept at the constant
value of 1 indicate the following results. The mushy layer depth decreases with increasing
S . However, in contrast to the effect of the far-field temperature, the effect of increasing
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Figure 10. Variation of R2 with the parameter S for non-hexagonal patterns while C = 1
and θ∞ = 1 in a reactive mushy layer with no outflow at the top boundary.

Stefan number on the linear perturbation is to destabilize the flow. The result is that
higher S results in lower R0 and higher for both J = 0 and J = 3 cases. Stefan number is
representative of latent heat in the system, and a larger latent heat results fewer dissolved
dendrites. The fluid is then less dense and more buoyant. R2 for the cases of non-hexagons
decreases monotonically with increasing S and Rra

2 < Rs
2 < Rr

2 < 0 in the passive
mush implying subcritical bifurcations for such patterns. The corresponding results for
the reactive mush (figure 10) indicate that supercritical bifurcations can be possible for
squares and rectangles only for sufficiently large S . R1 for hexagons is negative and
decreases monotonically with increasing S for both passive mush and reactive mush
(figure 11) implying that subcritical up-hexagons and supercritical down-hexagons are
possible. For the passive mush, R2 for hexagons is positive. For the reactive mush, figure
12 presents variation of R2 for hexagons versus S , which indicates that supercritical
hexagons are possible at higher amplitudes.

5. Permeable mush-liquid interface results and discussion

5.1. System variation with far-field temperature

The variation of mushy layer depth in the case of permeable mush-liquid interface is
identical to the variation in the impermeable case because the difference in the two
models is dynamic coupling and the mushy layer depth is determined for the static
mushy layer. As in the impermeable case, δ decreases with increasing θ∞. Here we look
at the effect of varying θ∞, while holding C = 1 and S = 1. We found that we needed
to consider some differences in the θ∞ ranges for the passive and reactive cases because
of differences in numerical accessibility of values of θ∞ for the two cases.

The linear analysis of variation of R0 and α with respect to θ∞ indicates that, as in
the case of the impermeable interface, both R0 and α increase with far-field temperature
for both passive and reactive mush cases. For the passive mush, variation of the Rayleigh
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Figure 11. Variation of R1 with the parameter S for hexagons while C = 1 and θ∞ = 1 in a
reactive mushy layer with no outflow at the top boundary.

−5000

−2500

0

2500

5000

7500

R2

0.1 2 4 6 8 10

S

Figure 12. Variation of R2 with the parameter S for hexagons while C = 1 and θ∞ = 1 in a
reactive mushy layer with no outflow at the top boundary.

number and wavenumber with the far-field temperature varying from 0.3 to 5 were stud-
ied. At θ∞ = 0.3, the Rayleigh number is 18.7947. As far-field temperature is increased
to 5, R0 increases to 105.977. The minimum wavenumber is 2.1831, which corresponds
to a mushy layer depth of 1.1146, and the maximum wavenumber 13.5374 occurs with a
depth of 0.1732. From the linear stability in the reactive case J = 3, studied for the range



On buoyant convection in binary solidification 23

θ∞ = 0.1 to 4, the Rayleigh number varies from R0 = 34.9664 to 271.36. The Rayleigh
number is generally larger and increases more rapidly the the non-reacting case. When
θ∞ = 0.3, R0 is 48.7509 as opposed to 18.7947 in the passive case. At θ∞ = 0.1, the
critical wave number is 1.7535. It increases to 13.3004 as the far-field temperature is
increased to 4. The difference in wavenumbers between J = 0 and J = 3 cases is smaller.

We now consider the formation of two- and three-dimensional flow patterns near the
onset of convection. First, three non-hexagonal patterns are considered: two-dimensional
rolls, three-dimensional rectangular cells with γ = 45◦ and square cells. For the inert

mush, |R2| increases with θ∞ for rolls and rectangles, and R
(ra)
2 < R

(s)
2 < R

(r)
2 in the range

[0.3, 5] studied for θ∞. The maximum R
(r)
2 is −42.6541 atθ∞ = 0.3 and the minimum is

−255.442 at θ∞ = 5. For rectangles, R
(ra)
2 decreases with increasing θ∞ from 70.6546 to

385.264. The range of Rayleigh number corrections for squares falls between the curves
for rolls and rectangles, decreasing from 31.7683 at θ∞ = 0.3 to 377.872 at θ∞ = 5.
Extrapolating the curves for rolls and rectangles suggests that these patterns may become
supercritical for smaller θ∞. The Rayleigh number correction for squares, where there
is a larger angle γ (γ = 90), increases slightly with θ∞ for θ∞ < 0.4 but decreases as
θ∞ is increased more. Thus all the three patterns show an increasing tendency toward
subcritical branches as far-field temperature is increased.

In figure 13, the result on second order Rayleigh number correction of varying far-field
temperature from 0.1 to 4 for the reactive much with J = 3 is shown. The magnitudes of
R2 are an order larger than the passive case, however it is the qualitative behavior that
is of interest. In the reactive case, the variation in R2 as θ∞ is increased become more
extreme as angle γ increases. The curves are no longer strictly decreasing over the range
of considered. However, as in the passive case, subcritical rolls may be possible over the
whole range of the far-field temperature considered. However, in the case of squares, the
results show that Rm may be supercritical between θ∞ = 2.3699 and 2.9623. Comparing
the results shown in figure 13 to the corresponding ones for the impermeable interface
case (figure 5), we find qualitative similarities in relation to the relative behavior and
variations of R2 for these patterns, but quantitative values and variations are different.

For hexagonal cells, the first order correction R1 is plotted versus far-field temperature
in figure 14 for the passive mush and in figure 15 for the reactive mush. The shapes of the
R1curves in the passive and reactive cases are similar. Both curves indicate decreasing
R1 with increasing when is small, but then turning to increase at higher temperatures.
In both cases R1 changes sign as far-field temperature is increased further. In the passive
case, R1 changes sign at θ∞ = 4.624. In the reactive case, R1 changes sign at a lower
temperature θ∞ = 2.737. Comparing these results to the corresponding ones shown in
the figures 6 and 7 for the impermeable interface case, we find similar shapes, but in the
permeable interface case R1 becomes positive at lower values of the far-field tempera-
ture in both passive and reactive cases. This result indicates, in particular, that in the
permeable case, there is more inclination toward subcritical down-hexagons.

The second order correction to the Rayleigh number R2 for hexagons in the passive
case is calculated versus far-field temperature in the domain [0.3, 5]. Over this domain
R2 < 0, and this tendency towards subcritical hexagons being unstable and increases
with θ∞. However, the result for the reactive much (figure 16) is different. As suggested
by the trend of increasing θ∞ in the non-hexagonal case, in the hexagonal case, which
has larger angle γ (γ = 60◦), there is a region where R2 is positive. In contrast to the
non-hexagonal case, R2 > 0 in the range θ∞ = 1.7946 to 3.2754, which indicates the
possibility of realizable subcritical hexagons since according to our earlier discussion of
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Figure 13. Variation of R2 with the parameter θ∞ for non-hexagonal patterns while C = 1
and S = 1 in a reactive mushy layer with outflow at the top boundary.
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Figure 14. Variation of R1 with the parameter θ∞ for non-hexagonal patterns while C = 1
and S = 1 in a passive mushy layer with outflow at the top boundary.

(4.1), it could correspond to the smallest value of Rm and contains a regime where |ε|
increases with Rm.
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Figure 15. Variation of R1 with the parameter θ∞ for non-hexagonal patterns while C = 1
and S = 1 in a reactive mushy layer with outflow at the top boundary.
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Figure 16. Variation of R2 with the parameter θ∞ for non-hexagonal patterns while C = 1
and S = 1 in a reactive mushy layer with outflow at the top boundary.

5.2. System Variation with Concentration Ratio

We studied the effect of varying C by setting the θ∞ and S to one. First, we generated
data for R0 and α versus C for the non-reactive case. A range of C = 0.5 to 13 is
considered. The critical Rayleigh number does not vary dramatically over this range. At
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C = 0.5, R0 = 30.6758, whereas at C = 13, R0 = 40.0419. This increase in stability differs
from the result of Worster (1992) for a reactive mushy layer with a superposed liquid.
One explanation may be due to the following effect. In the passive case, permeability is
constant and decoupled from porosity. As we consider larger and larger concentration
ratios, pemeability as well as Stefan number are fixed. During a phase change in the
vicinity of a dendrite latent heat represented in the Stefan number is quickly diffused
over the larger mushy layer. Without the competing effect of increased permeability, this
effect is mildly stabilizing.

In contrast, the reactive mushy layer critical Rayleigh number becomes less stable over
the same range of C . Here R0 drops from R0 = 174.83 for C = 0.5 to R0 = 44.491
for C = 13. This trend agrees with the result reported in Worster (1992) for a reactive
mushy layer with J = 3. In the reactive case, the increase in porosity results in a strong
increase in permeability, allowing greater fluid mobility with less dissipation for a given
perturbation.

In both the J = 0 and J = 3 cases, critical wavenumber decreases with C The
wavenumber is 4.3061 in the inert case and 5.7619 in the reactive case at C = 0.5. At
the other end of the considered range, C = 13, the wavenumber is 3.4757 in the inert
case verses 3.5348 in the reactive case. This decrease is small compared with the amount
of variation with the other parameters.

Next we consider the trends for the formation of non-hexagonal patterns when C is
varied. In the passive mushy layer, the Rayleigh number correction R2 is less than zero
over the entire range of C considered for two-dimensional rolls and three-dimensional
rectangles and squares. This tendency toward possible subcritical patterns is increasing
from C = 0.5 to C = 2.8551 for rolls, 2.6739 for rectangles and 1.4058 for squares. As C

is increased further for each pattern, the tendency toward subcriticality decreases. If we
extrapolate the results to values of C smaller than those shown in the figures, the results
show a possible tendency toward supercriticality for C < 0.5.

In the reactive mush (figure 17), R2 for squares is positive for C = 0.5, while the
other two patterns are subcritical, as in the inert case. As shown in figure 17, all three
patterns have a similar trend of decreasing R2 from C = 0.5 to C = 1.2246 for rectangles
and squares and 1.4058 for rolls. For larger concentration ratios, R2, while negative
throughout the remaining range of C , increases.

We calculated the values of R1 for hexagons in the interval [0.5, 13] for C for both
passive and reactive mush cases. For the passive and reactive (figure 18) cases, R1 < 0
over entire and most of the domain of C considered. In the reactive case, as shown
in the figure 18, R1 becomes positive for very small C indicating possible subcritical
downhexagons or supercritical up-hexagons for such small values of C . Comparing these
results to the corresponding ones in the impermeable interface case, we find qualitatively
similar behavior.

The generated data for the second order Rayleigh number correction for hexagons
and in the case of passive mush indicate that supercritical hexagons may be possible for
C > 1.6027. As in the linear stability results, the tendency for R2 in the reactive case is
reversed from the passive case. In the reactive case, the results indicate that supercritical
hexagons are not possible for C > 0.6429. R2 decreases from C = 0.5 to 1.5870 in the
reactive case but then tends to increase as concentration ratio is increased further.

5.3. System Variation with Stefan Number

We now hold the far-field temperature and concentration ratio fixed at one and vary the
Stefan number. Increasing Stefan number under these conditions decreases the size of the
mushy layer. A Stefan number range of 0.1 to 10 is considered. The critical wavenumber
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Figure 18. Variation of R1 with the parameter C for hexagons while θ∞ = 1 and S = 1 in a
reactive mushy layer with outflow at the top boundary.

increases from α = 3.4615 to 8.8461 over the the range of S considered in the non-
reactive mush case. Variation of wavenumber in the reactive case is slightly larger in
the non-reactive case but otherwise the variation is similar between the two cases. For
S = 0.1, α = 4.0769 and at S = 10, α = 10.326.

For the passive mushy layer, the critical Rayleigh number decreases from 40.5453 for
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S = 0.1 to 17.0932 at S = 10. When far-field temperature was increased, it was found
that the size of the mushy layer decreased and there was stabilization of the system.
In contrast, increasing the Stefan number also decreases the size of the mushy layer
but the system is less stable. For the reactive mush case, R0 has the same basic trend.
R0 = 119.478 at S = 0.1 and R0 decreases to 43.807 at S = 10. The change is larger
than for the inert case, but the reactive case remains a generally more stable system.

Our generated R2data for the non-hexagonal patterns lead to the results, which are

briefly as follows. For the passive mush case, R2 decreases with increasing S and R
(ra)
2 <

R
(s)
2 < R

(r)
2 < 0 throughout the range of values considered for S . Hence, tendency toward

subcriticality is stronger for rectangles followed by squares and rolls. In contrast, non-
hexagonal patterns in J = 3 case may be subcritical or supercritical, depending on the
value of S . Rolls would be subcritical when S < 9.0687, rectangles when S < 7.8707,
and squares when S < 5.8165. For large S values, R2 > 0, and the tendency toward
supercriticality is increased for all these patterns.

For hexagonal convection, the first-order Rayleigh number correction R1 for both pas-
sive and reactive mush cases is negative and monotonically decreases with increasing S .
Comparing these results to the corresponding ones for the impermeable interface case,
we find qualitatively similar behavior, but R1 is consistently smaller in the impermeable
case. The variation of the second-order Rayleigh number correction R2 with respect to
S for hexagons is different. For the passive mushy layer, R2 decreases with S , it is
positive for S < 0.7309 and negative for S > 0.7309. If J = 3, the trend is reversed. R2

is positive for S > 5.9672 and negative otherwise.

6. Conclusions and some remarks

We investigated the problem of nonlinear buoyant convection in mushy layers during
alloy solidification for both cases of impermeable and permeable mush-liquid interfece.
We analyzed the effects of several parameters on two- and three-dimensional steady con-
vection patterns in the mushy layers for both constant and variable permeability. Using
both analytical and computational methods, we determined the steady solutions admit-
ted by the weakly nonlinear problem in different ranges of the values of the parameters.

The most important result of the present study was the prediction of subcritical down-
hexagonal pattern for the variable permeability case that corresponds to the smallest
value of the Rayleigh number. Such pattern was detected to exist more often in the cases
of reactive mushy layers, even though other types of convection pattern such as rolls,
squares, rectangles and up-hexagons in both subcritical and supercritical regimes, as
well as supercritical down-hexagons, were also predicted in particular range of values of
the parameters for either passive or reactive mushy layers with impermeable or permeable
interfaces.

In regard to different types of flow patterns predicted in this paper, it should be
noted that there are a number of natural and engineering systems where each of such
patterns may be observed under certain conditions (Hoyle 1998). In the present system,
certain conditions or effects that may be responsible for the prediction of particular
flow patterns are provided as follows. Prediction of the supercritical rolls depended on
the imposed isothermal boundary conditions. Prediction of subcritical or supercritical
hexagons depended on the nonlinear basic states, which impose certain asymmetry on
the fluid layer, and the variability of the permeability with respect to the liquid fraction.
Prediction of supercritical rectangular and square patterns depended on the nonlinear
permeability variations associated with perturbations to the basic state liquid fraction.
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Prediction of subcritical non-hexagonal patterns depended on the large rate of increase
of the permeability with respect to the porosity.

About the significance of the hexagonal or non-hexagonal patterns, let us assume
that the magnitude of the amplitude of the observed convection pattern increases with
the Rayleigh number and the preferred convection pattern corresponds to the smallest
value of the Rayleigh number. Then within the present weakly nonlinear analyses and
calculations, we may expect preference of subcritical hexagons for sufficiently small |ε|
and preference of supercritical non-hexagons at higher values of |ε|, but we may not
expect preference of either subcritical non-hexagonal patterns or supercritical hexagons.

Finally, in regard to the stability of the finite-amplitude flow solutions predicted in
the present study, it should be noted that present perturbation approach is generally
incapable to carry out a standard stability analysis (Busse 1967) due to the fact that the
asymmetries in the present problem, which cause non-zero values for R1, are, in general,
not small. A stability investigation, which requires extensive work and remains a topic for
future study, will require full numerical computation of both finite-amplitude solutions
and their stability analysis without any use of the perturbation approach.

Appendix

The expressions for the 3 × 3 matrix operators L and L̂ and the vector operator N

are given below

L = (L1,L2,L3)
T, (A 1a)

where Li (i = 1, 2, 3) is the i-th row of the matrix L and given by

L1 ≡
{(

∂
∂t − ∂

∂z −4
)
,
[
S
(

∂
∂t − ∂

∂z

)]
,
[(
−dθb

dz

)
42

]}
, (A 1b)

L2 ≡
{[
χb

(
∂
∂t − ∂

∂z

)
− dχb

dz

]
,
(
C − dθb

dz

) (
∂
∂t − ∂

∂z − dθb

dz

)
,
(

dθb

dz 42

)}
, (A 1c)

L3 ≡
{
0, 0,

[(
4 +K−1

b
dKb

dz
∂
∂z

)
42

]}
, (A 1d)

and

L̂ = (L̂1, L̂2, L̂3)
T42, (A 2a)

where L̂i (i = 1, 2, 3) is the i-th row of the matrix L̂ and given by

L̂1 ≡ (0, 0, 0), L̂2 ≡ (0, 0, 0), L̂3 ≡ (K−1
b , 0, 0), (A 2b)

and

N (q, q) ≡ −
{
[(ΩP ) · ∇θ] ,

[
(ΩP ) · ∇θ + χ

(
∂
∂t − ∂

∂z

)
θ + θ

(
∂
∂t − ∂

∂z

)
χ
]}T

. (A 3)

The expression for the 3 × 3 differential operator L(a) is given below

L(a) = (L
(a)
1 ,L

(a)
2 ,L

(a)
3 )T, (A 4a)

L
(a)
1 ≡

[(
D2 − D − α2

)
,−χbD,−α2R0K

−1
b

]
, (A 4b)

L
(a)
2 ≡ [S D, (θb − C )D, 0] , (A 4c)

L
(a)
3 ≡

{
−dθb

dz
,−dθb

dz
,

[
D2 −K−1

b

dKb

dz
D −K−2

b

(
d2Kb

dz2
Kb −

dKb

dz

dKb

dz
− α2

)]}

(A 4d)
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and the boundary conditions B(a) mean

q̃
(a)
0 = 0 at z = 0, q̃

(a)
0 = 0 or θ̃(a) = χ̃(a) =

(
D − dKb

dz
K−1

b

)
P̃

(a)
0 = 0 at z = δ (A 4e)

The vector function N 10(Φkp; z) is given by

Ñ10(Φlp; z) = Ñ1(q̃0, q̃0), (A 5)

Ñ1(q̃j , q̃k) = (1 − 1
2δjk)

[
N̂1(q̃j , q̃k) + N̂1(q̃k, q̃j)

]
, (A 6)

N̂1(q̃j , q̃k) =




α2(Φlpθ̃kDP̃j − P̃jDθ̃k)

−(α2ΦlpDP̃j + Dχ̃j)θ̃k − χ̃jDθ̃k + α2P̃jDθ̃k

− 1
2K

−1
b

[
DK̃jDP̃k + K̃j(D

2P̃k − 2α2P̃k)
]


 , (A 7)

The systems for the z-dependent coefficients q̃10 and q̃11 are given below
(
L10 − R0L̂

)
q̃10 = R1L̂q̃0 (A 8a)

(
L11 − R0L̂

)
q̃11 = Ñ11(Φkp; z) (A 8b)

where the matrices L10,L11 and L̂ have the same form as L and L̂, provided 42 and 4
are replaced by −α2 and (D2 −α2) for (a) −a2

kp and (D2 − a2
kp) for (b) and ∂/∂t,∂/∂z,R

are replaced respectively by 0,D,R0 in both. The vector Ñ11 is given by

Ñ11 ≡




α2(Φlpθ̃0DP̃0 − P̃0Dθ̃0)

−(α2ΦlpDP̃0 + Dχ̃0)θ̃0 − χ̃0Dθ̃0 + α2P̃0Dθ̃0

− 1
2K

−1
b

[
DK̃0DP̃0 + K̃0(D

2P̃0 − 2α2P̃0)
]


 (A 9)

where the expression for K̃0 can be found from (3.23a) for K0 when χ0 is replaced by
χ̃0.
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