3,441 research outputs found

    Properties of the redback millisecond pulsar binary 3FGL J0212.1+5320

    Get PDF
    Linares et al. (2016) obtained quasi-simultaneous g', r' and i-band light curves and an absorption line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to the secondary star's ellipsoidal modulation, but with unequal maxima and minima. We fit these light curves and radial velocities with our X-ray binary model including either a dark solar-type star spot or a hot spot due to off-centre heating from an intrabinary shock, to account for the unequal maxima. Both models give a radial velocity semi-amplitude and rotational broadening that agree with the observations. The observed secondary star's effective temperature is best matched with the value obtained using the hot spot model, which gives a neutron star and secondary star mass of M1M_{\rm 1}=1.850.26+0.32^{+0.32}_{-0.26} MM_{\odot}and M2M_{\rm 2}=0.500.19+0.22^{+0.22}_{-0.19} MM_{\odot}, respectively.Comment: 10 pages, 8 figues, accepted by MNRA

    The long-term evolution of the X-ray pulsar XTE J1814-338: a receding jet contribution to the quiescent optical emission?

    Full text link
    We present a study of the quiescent optical counterpart of the Accreting Millisecond X-ray Pulsar XTE J1814-338, carrying out multiband (BVR) orbital phase-resolved photometry using the ESO VLT/FORS2. The optical light curves are consistent with a sinusoidal variability modulated with the orbital period, showing evidence for a strongly irradiated companion star, in agreement with previous findings. The observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system is fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curves we derive constraints on the companion star and disc fluxes, on the system distance and on the companion star mass. The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. The flux decrease and spectral evolution of the quiescent optical emission observed comparing our data with previous observations, collected over 5 years, cannot be well explained with the contribution of an irradiated companion star and an accretion disc alone. The progressive flux decrease as the system gets bluer could be due to a continuum component evolving towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence we hypothesize that an additional component, such as synchrotron emission from a jet was contributing significantly in the earlier data obtained during quiescence and then progressively fading or moving its break frequency toward longer wavelengths.Comment: 7 pages, 8 figures, accepted for publication in Section 7. Stellar structure and evolution of Astronomy and Astrophysic

    Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    Get PDF
    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified gamma-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modelling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of gamma-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.Comment: 11 pages, 5 tables, 1 figure, 4 online tables. ApJ submitted and referee

    Pulsar Wind Nebulae in the SKA era

    Get PDF
    Neutron stars lose the bulk of their rotational energy in the form of a pulsar wind: an ultra-relativistic outflow of predominantly electrons and positrons. This pulsar wind significantly impacts the environment and possible binary companion of the neutron star, and studying the resultant pulsar wind nebulae is critical for understanding the formation of neutron stars and millisecond pulsars, the physics of the neutron star magnetosphere, the acceleration of leptons up to PeV energies, and how these particles impact the interstellar medium. With the SKA1 and the SKA2, it could be possible to study literally hundreds of PWNe in detail, critical for understanding the many open questions in the topics listed above.Comment: Comments: 10 pages, 3 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14

    Economic efficiency of public secondary education expenditure: how different are developed and developing countries?

    Get PDF
    Este estudio mide la eficiencia del gasto público en educación secundaria en 35 países desarrollados y en desarrollo mediante el uso de una metodología semiparamétrica DEA (análisis envolvente de datos) en dos pasos. En primer lugar, implementamos dos modelos de frontera transfronteriza para el período 2009-2012: uno que utiliza un aporte físico (es decir, relación maestro-alumno) y otro que utiliza un aporte monetario (es decir, gasto gubernamental por estudiante secundario). Estos resultados se corrigen por los efectos del PIB per cápita y el logro educativo de los adultos como insumos no discrecionales. Obtenemos cuatro resultados importantes: (i) los países desarrollados y en desarrollo tienen los mismos procesos de producción educativa cuando se comparan utilizando insumos físicos, pero no cuando se los compara con insumos monetarios; (ii) los países en desarrollo podrían aumentar sus tasas de matrícula y puntajes PISA en aproximadamente un 9% y un 5%, respectivamente, al mantener las mismas proporciones maestro-alumno y los niveles de gasto público que los países desarrollados; (iii) Irlanda, Japón y Corea son países eficientes en los dos modelos de frontera (Colombia también se incluye en esta categoría cuando se utiliza la relación maestro-alumno como insumo); y (iv) la sólida evidencia empírica indica que tanto el ingreso como el logro educativo de los padres afectan positivamente la eficiencia de la educación pública en ambos modelos.This study measures the efficiency of public secondary education expenditure in 35 developing and developed countries using a two-step semi-parametric DEA (data envelopment analysis) methodology. First, we implement two cross-country frontier models for the 2009-2012 period: one using a physical input (i.e., teacher-pupil ratio) and one using a monetary input (i.e., government expenditure per secondary student). These results are corrected by the effects of GDP per capita and adult educational attainment as non-discretionary inputs. We obtain four important results: (i) developed and developing countries have the same education production processes when they are compared using physical inputs but not when compared using monetary inputs; (ii) developing countries could increase their enrollment rates and PISA scores by approximately 9% and 5%, respectively, by maintaining the same teacher-pupil ratios and public spending levels as developed countries; (iii) Ireland, Japan and Korea are efficient countries in the two frontier models (Colombia is also included in this category when the teacher-pupil ratio is used as input); and (iv) robust empirical evidence indicates that both income and parental educational attainment positively affect the efficiency of public education in both models

    Evolution of sex-dependent mtDNA transmission in freshwater mussels (Bivalvia: Unionida)

    Get PDF
    Doubly uniparental inheritance (DUI) describes a mode of mtDNA transmission widespread in gonochoric freshwater mussels (Bivalvia: Palaeoheterodonta: Unionida). In this system, both female- and male-transmitted mtDNAs, named F and M respectively, coexist in the same species. In unionids, DUI is strictly correlated to gonochorism and to the presence of the atypical open reading frames (ORFans) F-orf and M-orf, respectively inside F and M mtDNAs, which are hypothesized to participate in sex determination. However, DUI is not found in all three Unionida superfamilies (confirmed in Hyrioidea and Unionoidea but not in Etherioidea), raising the question of its origin in these bivalves. To reconstruct the co-evolution of DUI and of ORFans, we sequenced the mtDNAs of four unionids (two gonochoric with DUI, one gonochoric and one hermaphroditic without DUI) and of the related gonochoric species Neotrigonia margaritacea (Palaeoheterodonta: Trigoniida). Our analyses suggest that rearranged mtDNAs appeared early during unionid radiation, and that a duplicated and diverged atp8 gene evolved into the M-orf associated with the paternal transmission route in Hyrioidea and Unionoidea, but not in Etherioidea. We propose that novel mtDNA-encoded genes can deeply influence bivalve sex determining systems and the evolution of the mitogenomes in which they occur

    Thermodynamics of Born-Infeld Black Holes

    Full text link
    We discuss the horizon structure for Born-Infeld black holes, in the context of Einstein-Born-Infeld gravity. We show that the entropy function formalism agrees with a direct calculation of the entropy. With the entropy function formalism we also obtain the entropy when an axion-dilaton system as well as gravitational derivative corrections are included.Comment: Latex, 13 pages, 1 figure, added reference

    LOFAR discovery of the fastest-spinning millisecond pulsar in the Galactic field

    Get PDF
    We report the discovery of PSR J0952-0607, a 707-Hz binary millisecond pulsar which is now the fastest-spinning neutron star known in the Galactic field (i.e., outside of a globular cluster). PSR J0952-0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi Large Area Telescope γ\gamma-ray sources. PSR J0952-0607 is in a 6.42-hr orbit around a very low-mass companion (Mc0.02M_\mathrm{c}\gtrsim0.02 M_\odot) and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from r=22.2r^\prime=22.2 at maximum to r>23.8r^\prime>23.8, indicating that it is irradiated by the pulsar wind. Swift observations place a 3-σ\sigma upper limit on the 0.3100.3-10 keV X-ray luminosity of LX<1.1×1031L_X < 1.1 \times 10^{31} erg s1^{-1} (using the 0.97 kpc distance inferred from the dispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952-0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with α3\alpha\sim-3 (where SναS \propto \nu^{\alpha}). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952-0607.Comment: 9 pages, 3 figures, 1 table, published in ApJ letter
    corecore