5,561 research outputs found

    The long-term evolution of the X-ray pulsar XTE J1814-338: a receding jet contribution to the quiescent optical emission?

    Full text link
    We present a study of the quiescent optical counterpart of the Accreting Millisecond X-ray Pulsar XTE J1814-338, carrying out multiband (BVR) orbital phase-resolved photometry using the ESO VLT/FORS2. The optical light curves are consistent with a sinusoidal variability modulated with the orbital period, showing evidence for a strongly irradiated companion star, in agreement with previous findings. The observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system is fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curves we derive constraints on the companion star and disc fluxes, on the system distance and on the companion star mass. The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. The flux decrease and spectral evolution of the quiescent optical emission observed comparing our data with previous observations, collected over 5 years, cannot be well explained with the contribution of an irradiated companion star and an accretion disc alone. The progressive flux decrease as the system gets bluer could be due to a continuum component evolving towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence we hypothesize that an additional component, such as synchrotron emission from a jet was contributing significantly in the earlier data obtained during quiescence and then progressively fading or moving its break frequency toward longer wavelengths.Comment: 7 pages, 8 figures, accepted for publication in Section 7. Stellar structure and evolution of Astronomy and Astrophysic

    Observations of Doppler Boosting in Kepler Lightcurves

    Get PDF
    Among the initial results from Kepler were two striking lightcurves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That result became particularly intriguing because a substellar mass had been derived for the secondary in KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large that we can use it to infer a radial velocity amplitude accurate to 1 km/s. As far as we are aware, this is the first time a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22+/-0.03 Msun. We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.Comment: 8 pages, 4 figures, ApJ 715, 51 (v4 is updated to match the published version, including a note added in proof with measured projected rotational velocities)

    Properties of the redback millisecond pulsar binary 3FGL J0212.1+5320

    Get PDF
    Linares et al. (2016) obtained quasi-simultaneous g', r' and i-band light curves and an absorption line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to the secondary star's ellipsoidal modulation, but with unequal maxima and minima. We fit these light curves and radial velocities with our X-ray binary model including either a dark solar-type star spot or a hot spot due to off-centre heating from an intrabinary shock, to account for the unequal maxima. Both models give a radial velocity semi-amplitude and rotational broadening that agree with the observations. The observed secondary star's effective temperature is best matched with the value obtained using the hot spot model, which gives a neutron star and secondary star mass of M1M_{\rm 1}=1.85−0.26+0.32^{+0.32}_{-0.26} M⊙M_{\odot}and M2M_{\rm 2}=0.50−0.19+0.22^{+0.22}_{-0.19} M⊙M_{\odot}, respectively.Comment: 10 pages, 8 figues, accepted by MNRA

    Radio Pulsars in Binary Systems

    Full text link
    This thesis focuses on the study of binary radio pulsars, their evolution and some specific use of their properties to investigate fundamental physics such as general relativity and other gravitational theories. The work that we present here is organized in three main parts. First, we report on the study of PSR J1744-3922, a binary pulsar presenting a peculiar `flickering' flux behavior as well as spin and orbital properties that do not correspond to the expectations of standard evolution scenarios. Second, we conducted an in-depth analysis of the eclipses in the relativistic double pulsar system PSR J0737-3039A/B. From our modeling of the eclipses, we precisely determined the geometry of pulsar B in space and used this information to study the temporal behavior of the eclipses, which revealed that pulsar B precesses around the angular momentum of the system in a way that is consistent with the prediction of general relativity. Third, we searched for the signature of latitudinal aberration in the pulse profile of pulsar A in the double pulsar system. The non-detection of this effect allows us to put an upper limit on its amplitude, which constrains the geometry of pulsar A with respect to our line of sight as well as its emission geometry. (Abridged)Comment: Ph.D. Thesis, 236 pages, 76 figures, 7 table

    Discovery of the Optical Counterparts to Four Energetic Fermi Millisecond Pulsars

    Get PDF
    In the last few years, over 43 millisecond radio pulsars have been discovered by targeted searches of unidentified gamma-ray sources found by the Fermi Gamma-Ray Space Telescope. A large fraction of these millisecond pulsars are in compact binaries with low-mass companions. These systems often show eclipses of the pulsar signal and are commonly known as black widows and redbacks because the pulsar is gradually destroying its companion. In this paper, we report on the optical discovery of four strongly irradiated millisecond pulsar companions. All four sources show modulations of their color and luminosity at the known orbital periods from radio timing. Light curve modelling of our exploratory data shows that the equilibrium temperature reached on the companion's dayside with respect to their nightside is consistent with about 10-30% of the available spin-down energy from the pulsar being reprocessed to increase the companion's dayside temperature. This value compares well with the range observed in other irradiated pulsar binaries and offers insights about the energetics of the pulsar wind and the production of gamma-ray emission. In addition, this provides a simple way of estimating the brightness of irradiated pulsar companions given the pulsar spin-down luminosity. Our analysis also suggests that two of the four new irradiated pulsar companions are only partially filling their Roche lobe. Some of these sources are relatively bright and represent good targets for spectroscopic follow-up. These measurements could enable, among other things, mass determination of the neutron stars in these systems.Comment: 11 pages, 5 tables, 1 figure, 4 online tables. ApJ submitted and referee

    Stress response function of a two-dimensional ordered packing of frictional beads

    Full text link
    We study the stress profile of an ordered two-dimensional packing of beads in response to the application of a vertical overload localized at its top surface. Disorder is introduced through the Coulombic friction between the grains which gives some indeterminacy and allows the choice of one constrained random number per grain in the calculation of the contact forces. The so-called `multi-agent' technique we use, lets us deal with systems as large as 1000×10001000\times1000 grains. We show that the average response profile has a double peaked structure. At large depth zz, the position of these peaks grows with czcz, while their widths scales like Dz\sqrt{Dz}. cc and DD are analogous to `propagation' and `diffusion' coefficients. Their values depend on that of the friction coefficient ÎŒ\mu. At small ÎŒ\mu, we get c0−c∝Όc_0-c \propto \mu and D∝ΌÎČD \propto \mu^\beta, with ÎČ∌2.5\beta \sim 2.5, which means that the peaks get closer and wider as the disorder gets larger. This behavior is qualitatively what was predicted in a model where a stochastic relation between the stress components is assumed.Comment: 7 pages, 7 figures, accepted version to Europhys. Let

    Generating Gowdy cosmological models

    Full text link
    Using the analogy with stationary axisymmetric solutions, we present a method to generate new analytic cosmological solutions of Einstein's equation belonging to the class of T3T^3 Gowdy cosmological models. We show that the solutions can be generated from their data at the initial singularity and present the formal general solution for arbitrary initial data. We exemplify the method by constructing the Kantowski-Sachs cosmological model and a generalization of it that corresponds to an unpolarized T3T^3 Gowdy model.Comment: Latex, 15 pages, no figure
    • 

    corecore