215 research outputs found

    Site-Specific Immunomodulator: A Novel Treatment for Crohn\u27s Disease

    Get PDF
    We investigated the mechanism of action, safety, and efficacy of the Site-Specific Immunomodulator (SSI) QBECO, a novel immunotherapy for Crohn’s disease (CD). Using human monocytic THP-1 cells, we demonstrate that SSI QBECO (derived from the common colon bacteria E. coli) activates macrophages to an M1 phenotype (associated with enhanced capacity to eliminate bacteria and activate innate immune responses). We assessed SSI QBECO in a compassionate use protocol of ten adult patients with active CD. Patients with moderate to severe clinical symptoms receiving conventional CD treatments and/or complementary therapies were included, except patients receiving anti-TNF medications. SSI QBECO was self-administered subcutaneously every second day, for a minimum of 2.5 months and a maximum of 11 months. All 10 patients reported improvement of symptoms while on the SSI QBECO treatment. Seven patients reported full resolution of clinical symptoms during a course of SSI QBECO of at least three months. Three patients have experienced ongoing sustained clinical remission after discontinuing all medications, including SSI treatment. The longest case of clinical remission is still ongoing (\u3e4 years). No serious severe adverse clinical events were reported. Collectively, we conclude that treatment with the immunoactive SSI QBECO was well tolerated and effective for treatment of Crohn’s disease in this case series

    Interview with Howard Lesnick

    Get PDF
    For transcript, click the Download button above. Howard Lesnick was Jefferson B. Fordham Professor of Law at the University of Pennsylvania Carey Law School, where he began teaching in 1960. From 1982 to 1988 he taught at the newly founded CUNY Law School at Queens College, where he was responsible for curriculum and faculty development. Thereafter, he returned to Penn, retiring in 2016. He made important contributions to scholarship in fields ranging from labor law to legal education to law and religion. He died in 2020

    Beyond the call of duty: Why customers contribute to firm-hosted commercial online communities

    Get PDF
    Firm-hosted commercial online communities, in which customers interact to solve each other's service problems, represent a fascinating context to study the motivations of collective action in the form of knowledge contribution to the community. We extend a model of social capital based on Wasko and Faraj (2005) to incorporate and contrast the direct impact of commitment to both the online community and the host firm, as well as reciprocity, on quality and quantity of knowledge contribution. In addition, we examine the moderating influence of three individual attributes that are particularly relevant to the firm-hosted community context: perceived informational value, sportsmanship, and online interaction propensity. We empirically test our framework using self-reported and objective data from 203 members of a firm-hosted technical support community. In addition to several interesting moderating effects, we find that a customer's online interaction propensity, commitment to the community, and the informational value s/he perceives in the community are the strongest drivers of knowledge contribution

    Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach

    Get PDF
    Background The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain. Methods and Findings We conducted an association study of body mass index (BMI) and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1]), demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83) of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination. Conclusions We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases

    DNA Methylation Signatures of Chronic Low-Grade Inflammation Are Associated with Complex Diseases

    Get PDF
    Background: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation. Results: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P \u3c 1.15 × 10–7) in the discovery panel of European ancestry and replicated (P \u3c 2.29 × 10–4) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P \u3c 8.47 × 10–5), ten (17%) CpG sites were associated with a nearby genetic variant (P \u3c 2.50 × 10–3), and 51 (88%) were also associated with at least one related cardiometabolic entity (P \u3c 9.58 × 10–5). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants. Conclusion: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation

    Blood DNA methylation sites predict death risk in a longitudinal study of 12,300 individuals

    Get PDF
    This is the final version. Available on open access from Impact Journals via the DOI in this recordDNA methylation has fundamental roles in gene programming and aging that may help predict mortality. However, no large-scale study has investigated whether site-specific DNA methylation predicts all-cause mortality. We used the Illumina-HumanMethylation450-BeadChip to identify blood DNA methylation sites associated with all-cause mortality for 12, 300 participants in 12 Cohorts of the Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium. Over an average 10-year follow-up, there were 2,561 deaths across the cohorts. Nine sites mapping to three intergenic and six gene-specific regions were associated with mortality (P < 9.3x10-7) independently of age and other mortality predictors. Six sites (cg14866069, cg23666362, cg20045320, cg07839457, cg07677157, cg09615688)-mapping respectively to BMPR1B, MIR1973, IFITM3, NLRC5, and two intergenic regions-were associated with reduced mortality risk. The remaining three sites (cg17086398, cg12619262, cg18424841)-mapping respectively to SERINC2, CHST12, and an intergenic region-were associated with increased mortality risk. DNA methylation at each site predicted 5%-15% of all deaths. We also assessed the causal association of those sites to age-related chronic diseases by using Mendelian randomization, identifying weak causal relationship between cg18424841 and cg09615688 with coronary heart disease. Of the nine sites, three (cg20045320, cg07839457, cg07677157) were associated with lower incidence of heart disease risk and two (cg20045320, cg07839457) with smoking and inflammation in prior CHARGE analyses. Methylation of cg20045320, cg07839457, and cg17086398 was associated with decreased expression of nearby genes (IFITM3, IRF, NLRC5, MT1, MT2, MARCKSL1) linked to immune responses and cardiometabolic diseases. These sites may serve as useful clinical tools for mortality risk assessment and preventative care
    corecore