138 research outputs found

    A History of Group Theory through the Lives of Group Theorists: Sophus Lie - Part 1

    Get PDF
    We continue here our attempt of a systematic historical account of Group Theory inspected by means of the lives and the works of its main actors. The aim is to bring the interested reader through orig- inal correspondences, published and unpublished works, historical perspectives, diatribes and friendships. This issue contains the translation of a memory of Sophus Lie writ- ten by Ludwig Sylow. It was published in the 1899 issue of Archiv for Mathematik of Naturvidenskab soon after Lie’s death. We are grateful to Gunnar Traustason for his translation from Nor- wegian

    Superparamagnetic cellulose fiber networks via nanocomposite functionalization

    Get PDF
    We present a simple and cost-effective method for rendering networks of cellulose fibers, such as paper, fabrics or membranes, superparamagnetic by impregnating the individual fibers with a reactive acrylic monomer. The cellulose fibers are wetted by a cyanoacrylate monomer solution containing superparamagnetic manganese ferrite colloidal nanoparticles. Upon moisture initiated polymerization of the monomer on the fiber surfaces, a thin nanocomposite shell forms around each fiber. The nanocomposite coating renders the cellulose fibers water repellent and magnetically responsive. Magnetic and microscopy studies prove that the amount of the entrapped nanoparticles in the nanocomposite shell is fully controllable, and that the magnetic response is directly proportional to this amount. A broad range of applications can be envisioned for waterproof magnetic cellulose materials (such as magnetic paper/tissues) obtained by such a simple yet highly efficient method

    Chronic cerebrospinal venous insufficiency in multiple sclerosis: a highly prevalent age-dependent phenomenon

    Get PDF
    BACKGROUND: This study aimed to investigate the prevalence and clinical relevance of chronic cerebrospinal venous insufficiency (CCSVI) in multiple sclerosis (MS) patients and healthy controls using extra- and intracranial colour Doppler sonography. METHODS: We examined 146 MS patients, presenting with a clinically isolated syndrome, relapsing-remitting, secondary progressive, or primary progressive MS, and 38 healthy controls. Sonographic examination was performed according to Zamboni’s protocol and was performed by three independent sonographers. The results of sonographic examination were compared with clinical and demographic characteristics of the patients. RESULTS: CCSVI, defined as the presence of at least two positive Zamboni’s criteria, was found in 76% of MS patients and 16% of control subjects. B-mode anomalies of internal jugular veins, such as stenosis, malformed valves, annuli, and septa were the most common lesions detected in MS patients (80.8%) and controls (47.4%). We observed a positive correlation between sonographic diagnosis of CCSVI and the patients’ age (p = 0.003). However, such a correlation was not found in controls (p = 0.635). Notably, no significant correlations were found between sonographic signs of CCSVI and clinical characteristics of MS, except for absent flow in the jugular veins, which was found more often in primary (p<0.005) and secondary (p<0.05) progressive patients compared with non-progressive patients. Absent flow in jugular veins was significantly correlated with patients’ age (p < 0.0001). CONCLUSIONS: Sonographically defined CCSVI is common in MS patients. However, CCSVI appears to be primarily associated with the patient’s age, and poorly correlated with the clinical course of the disease

    In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals

    Get PDF
    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms

    Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution.

    Get PDF
    Laser ablation technique is employed in order to generate polydimethylsiloxane (PDMS)/Ag NPs in situ, starting from a silver target in a solution of PDMS prepolymer and toluene. The produced surfactant-free nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and scanning TEM-high angle annular dark field (STEM-HAADF) imaging modes, showing the majority of them to be of the order of 4 nm in diameter with a small percentage of larger Ag-AgCl multidomain NPs, embedded into a PDMS matrix. Low concentrations of carbon onion-like nanoparticles or larger fibers are also formed in the toluene-PDMS prepolymer solution. In accordance with this, UV-vis spectra shows no peak from silver NPs; their small size and their coverage by the PDMS matrix suppresses the signal of surface plasmon absorption. Inductively coupled plasma measurements reveal that the concentration of silver in the polymer is characteristically low, ∼0.001% by weight. The electrical properties of the PDMS nanocomposite films are modified, with current versus voltage (I-V) measurements showing a low current of up to a few tenths of a pA at 5 V. The surface resistivity of the films is found to be up to ∼1010 Ω/sq. Under pressure (e.g. stress) applied by a dynamic mechanical analyzer (DMA), the I-V measurements demonstrate the current decreasing during the elastic deformation, and increasing during the plastic deformation

    Therapeutic apheresis in peripheral and retinal circulatory disorders

    Get PDF
    In microcirculation disorders, the therapeutic apheresis seems to have two different effects. The first, achieved after only a few sessions, is acute, consisting of drastic reduction of blood viscosity and obtained with the use of low-density lipoprotein (LDL) apheresis, rheopheresis, or fibrinogen apheresis. The second effect is long term, or chronic, and needs to be evaluated after a long course of treatment. The mechanisms underlying the chronic effect are still objects of debate and take into account the pleiotropic effects of apheresis. However, it is likely that the acute effect of apheresis mainly influences the functional components of the vascular damage, and so the derived rheological benefit might last only for a short period. The chronic effect, on the contrary, by acting on the morphological alterations of the vascular walls, requires the apheresis treatment to be prolonged for a longer period or even cycles of treatment to be programmed
    • …
    corecore