1,002 research outputs found

    Cost effectiveness of community leg ulcer clinics: randomised controlled trial

    Get PDF
    Objectives: To establish the relative cost effectiveness of community leg ulcer clinics that use four layer compression bandaging versus usual care provided by district nurses. Design: Randomised controlled trial with 1 year of follow up. Setting: Eight community based research clinics in four trusts in Trent. Subjects: 233 patients with venous leg ulcers allocated at random to intervention (120) or control (113) group. Interventions: Weekly treatment with four layer bandaging in a leg ulcer clinic (clinic group) or usual care at home by the district nursing service (control group). Main outcome measures: Time to complete ulcer healing, patient health status, and recurrence of ulcers. Satisfaction with care, use of services, and personal costs were also monitored. Results: The ulcers of patients in the clinic group tended to heal sooner than those in the control group over the whole 12 month follow up (log rank P=0.03). At 12 weeks, 34% of patients in the clinic group were healed compared with 24% in the control. The crude initial healing rate of ulcers in intervention compared with control patients was 1.45 (95% confidence interval 1.04 to 2.03). No significant differences were found between the groups in health status. Mean total NHS costs were £878.06 per year for the clinic group and £859.34 for the control (P=0.89). Conclusions: Community based leg ulcer clinics with trained nurses using four layer bandaging is more effective than traditional home based treatment. This benefit is achieved at a small additional cost and could be delivered at reduced cost if certain service configurations were used

    Topological Entanglement of Polymers and Chern-Simons Field Theory

    Get PDF
    In recent times some interesting field theoretical descriptions of the statistical mechanics of entangling polymers have been proposed by various authors. In these approaches, a single test polymer fluctuating in a background of static polymers or in a lattice of obstacles is considered. The extension to the case in which the configurations of two or more polymers become non-static is not straightforward unless their trajectories are severely constrained. In this paper we present another approach, based on Chern--Simons field theory, which is able to describe the topological entanglements of two fluctuating polymers in terms of gauge fields and second quantized replica fields.Comment: 16 pages, corrected some typos, added two new reference

    Topological interactions in systems of mutually interlinked polymer rings

    Full text link
    The topological interaction arising in interlinked polymeric rings such as DNA catenanes is considered. More specifically, the free energy for a pair of linked random walk rings is derived where the distance RR between two segments each of which is part of a different ring is kept constant. The topology conservation is imposed by the Gauss invariant. A previous approach (M.Otto, T.A. Vilgis, Phys.Rev.Lett. {\bf 80}, 881 (1998)) to the problem is refined in several ways. It is confirmed, that asymptotically, i.e. for large RRGR\gg R_G where RGR_G is average size of single random walk ring, the effective topological interaction (free energy) scales R4\propto R^4.Comment: 16 pages, 3 figur

    Entangled Polymer Rings in 2D and Confinement

    Full text link
    The statistical mechanics of polymer loops entangled in the two-dimensional array of randomly distributed obstacles of infinite length is discussed. The area of the loop projected to the plane perpendicular to the obstacles is used as a collective variable in order to re-express a (mean field) effective theory for the polymer conformation. It is explicitly shown that the loop undergoes a collapse transition to a randomly branched polymer with RlN14R\propto lN^\frac{1}{4}.Comment: 17 pages of Latex, 1 ps figure now available upon request, accepted for J.Phys.A:Math.Ge

    Singing in Space(s): Singing performance in real and virtual acoustic environments - Singers' evaluation, performance analysis and listeners' perception

    Get PDF
    The Virtual Singing Studio (VSS), a loudspeaker-based room acoustic simulation, was developed in order to facilitate investigations into the correlations and interactions between room acoustic characteristics and vocal performance parameters. To this end, the VSS provides a virtual performance space with interactivity in real-time for an active sound source - meaning that singers can hear themselves sing as if in a real performance space. An objective evaluation of the simulation was carried out through measurement and comparison of room acoustic parameters of the simulation and the real performance space. Furthermore a subjective evaluation involved a number of professional singers who sang in the virtual and real performance spaces and reported their impressions of the experience. Singing performances recorded in the real and virtual spaces were compared via the analysis of tempo, vibrato rate, vibrato extent and measures of intonation accuracy and precision. A stimuli sorting task evaluated listeners' perception of the similarity between singing performances recorded in the real and simulated spaces. A multi-dimensional scaling analysis was undertaken on the data obtained and dimensions of the common perceptual space were identified using property fitting techniques in order to assess the relationship between performance attributes and the perceived similarities. In general significant proportions of the perceived similarity between recordings could be explained by differences in global tempo, vibrato extent and intonation precision. Although there were few statistically significant effects of room acoustic condition all singers self-reported changes to their singing according to the different room acoustic configurations, and listeners perceived these differences, especially in vibrato extent and global tempo. The present VSS has been shown to be not fully ``realistic'' enough to elicit variations in singing performance according to room acoustic conditions. Therefore, further improvements are suggested including the incorporation of visual aspect to the simulation. Nonetheless, the VSS is already able to provide a ``plausible'' interactive room acoustic simulation for singers to hear themselves in real-time as if in a real performance venue

    Fast preparation of single hole spin in InAs/GaAs quantum dot in Voigt geometry magnetic field

    Full text link
    The preparation of a coherent heavy-hole spin via ionization of a spin-polarized electron-hole pair in an InAs/GaAs quantum dot in a Voigt geometry magnetic field is investigated. For a dot with a 17 ueV bright-exciton fine-structure splitting, the fidelity of the spin preparation is limited to 0.75, with optimum preparation occurring when the effective fine-structure of the bright-exciton matches the in-plane hole Zeeman energy. In principle, higher fidelities can be achieved by minimizing the bright-exciton fine-structure splitting.Comment: 8 pages, 10 figs, published PRB 85 155310 (2012

    Three-Dimensional Adaptive Grid Computation with Conservative, Marker-Based Tracking for Interfacial Fluid Dynamics

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76614/1/AIAA-2006-1523-676.pd

    On Abelian Multi-Chern-Simons Field Theories

    Get PDF
    In this paper a class of multi-Chern-Simons field theories which is relevant to the statistical mechanics of polymer systems is investigated. Motivated by the problems which one encounters in the treatment of these theories, a general procedure is presented to eliminate the Chern-Simons fields from their action. In this way it has been possible to derive an expression of the partition function of topologically linked polymers which depends explicitly on the topological numbers and does not have intractable nonlocal terms as it happened in previous approaches. The new formulation of multi-Chern-Simons field theories is then used to remove and clarify some inconsistencies and ambiguities which apparently affect field theoretical models of topologically linked polymers. Finally, the limit of disentangled polymers is discussed.Comment: 18 pages, plain LaTe
    corecore