21 research outputs found

    Mast Cell–Derived Particles Deliver Peripheral Signals to Remote Lymph Nodes

    Get PDF
    During infection, signals from the periphery are known to reach draining lymph nodes (DLNs), but how these molecules, such as inflammatory cytokines, traverse the significant distances involved without dilution or degradation remains unclear. We show that peripheral mast cells, upon activation, release stable submicrometer heparin-based particles containing tumor necrosis factor and other proteins. These complexes enter lymphatic vessels and rapidly traffic to the DLNs. This physiological drug delivery system facilitates communication between peripheral sites of inflammation and remote secondary lymphoid tissues

    Acidosis Potentiates the Host Proinflammatory Interleukin-1β Response to Pseudomonas Aeruginosa Infection

    Get PDF
    Infection by Pseudomonas aeruginosa, and bacteria in general, frequently promotes acidification of the local microenvironment, and this is reinforced by pulmonary exertion and exacerbation. However, the consequence of an acidic environment on the host inflammatory response to P. aeruginosa infection is poorly understood. Here we report that the pivotal cellular and host proinflammatory interleukin-1β (IL-1β) response, which enables host clearance of the infection but can produce collateral inflammatory damage, is increased in response to P. aeruginosa infection within an acidic environment. Synergistic mechanisms that promote increased IL-1β release in response to P. aeruginosa infection in an acidic environment are increased pro-IL-1β induction and increased caspase-1 activity, the latter being dependent upon a functional type III secretion system of the bacteria and the NLRC4 inflammasome of the host. Using an in vivo peritonitis model, we have validated that the IL-1β inflammatory response is increased in mice in response to P. aeruginosa infection within an acidic microenvironment. These data reveal novel insights into the regulation and exacerbation of inflammatory responses to P. aeruginosa

    Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    Get PDF
    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria

    Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas Aeruginosa

    Get PDF
    Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. population. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa

    Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    Get PDF
    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1−/− and IFNαßγR−/− mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1−/− mice and in IFNαßγR−/− mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1−/− (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγR−/− mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1−/− and IFNαßγR−/− mice, we infected an additional Stat1−/− strain deleted in the DNA-binding domain (129Stat1−/− (DBD)). These 129Stat1−/− (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγR−/− mice. This lethal pattern was also observed when 129Stat1−/− (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1−/− (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1−/− mouse strains. The data are consistent with the hypothesis that Stat1−/− (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons between knockout mouse strains in viral pathogenesis, and may also be relevant to the causation of HSV hepatitis in humans, a rare but frequently fatal infection

    Uncoupling Scavenger Receptor A-Mediated Phagocytosis of Bacteria from Endotoxic Shock Resistance ▿

    Get PDF
    Unresolved infection by gram-negative bacteria can result in the potentially lethal condition known as endotoxic shock, whereby uncontrolled inflammation can lead to multiple organ failure and death of the infected host. Previous results have demonstrated that animals deficient in class A scavenger receptor (SRA), a trafficking receptor for bacteria and bacterium-derived molecules, are more susceptible to endotoxic shock. This has been proposed to be a result of impaired SRA-dependent phagocytic clearance of bacteria resulting in stronger proinflammatory stimuli. In this report, we test the hypothesis that there is an obligate reciprocal relationship between SRA-mediated phagocytosis of bacteria and susceptibility to endotoxic shock. Here, we demonstrate that both SRA-dependent and -independent gram-negative bacterial strains elicit SRA-dependent increased cytokine production in vitro and in vivo and increased susceptibility to endotoxic shock in SRA-deficient mice. This is the first evidence showing that SRA-mediated clearance of LPS is functionally distinct from the role of SRA in bacterial phagocytosis and is a formal demonstration that the SRA-dependent cytokine responses and the resultant endotoxic shock are not coupled to SRA-mediated clearance of bacteria

    A Syngeneic Mouse Model of Epithelial Ovarian Cancer Port Site Metastases

    No full text
    Epithelial ovarian cancer (EOC) is a deadly gynecologic malignancy, but animal models for the study of EOC pathophysiology and drug efficacy are limited. Based on the finding that women with EOC are at risk for metastasis at a trocar site after laparoscopy, we developed a syngeneic murine model of port-site metastasis of EOC. We leveraged the ID8 murine EOC cell line to induce intra-peritoneal tumors in mice. Once durable intraperitoneal tumor was confirmed with bioluminescence imaging, intra-abdominal wall tumors were induced by abdominal wall puncture with a hollow bore needle. This resulted in a robust system in which C57BL/6 mice developed metastatic deposits at a rate of 66.7% ± 10.77; no intra-abdominal wall metastases were seen in control samples (P = .0003, CI 41.16–90.84). Immunodeficient NOD SCID gamma mice developed puncture site metastases in 70% ± 10.0 of mice and also had no metastases documented in control sites (P = .002, CI 42.24–97.76). In addition we were able to demonstrate the presence of immune infiltrates within the metastatic deposits of C57BL/6 mice via IHC. Therefore, in this study we demonstrate the predictable development of invasive abdominal wall metastases in a syngeneic mouse model of EOC. This model enables studies of the metastatic process and provides a novel system in which to test the effect of therapies on a clinically-relevant model in an immune competent mouse

    CX 3

    No full text
    corecore