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RESEARCH ARTICLE

Monomethylarsonous Acid (MMAIII) Has an
Adverse Effect on the Innate Immune
Response of Human Bronchial Epithelial Cells
to Pseudomonas aeruginosa
Emily G. Notch1,2*, Britton C. Goodale1, Roxanna Barnaby1, Bonita Coutermarsh1,
Brent Berwin1, Vivien F. Taylor3, Brian P. Jackson3, Bruce A. Stanton1

1 Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of
Medicine at Dartmouth, Hanover, New Hampshire, United States of America, 2 Department of Physical and
Biological Sciences, Western New England University, Springfield, Massachusetts, United States of
America, 3 Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, United States of
America

* emily.notch@wne.edu

Abstract
Arsenic is the number one contaminant of concern with regard to human health according

to the World Health Organization. Epidemiological studies on Asian and South American

populations have linked arsenic exposure with an increased incidence of lung disease,

including pneumonia, and chronic obstructive pulmonary disease, both of which are associ-

ated with bacterial infection. However, little is known about the effects of low dose arsenic

exposure, or the contributions of organic arsenic to the innate immune response to bacterial

infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa)
induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium

arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and

dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. population. Neither

iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII

increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII,

MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demon-

strate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and

DMAV at levels relevant to the U.S. may have negative effects on the innate immune

response of human bronchial epithelial cells to P. aeruginosa.

Introduction
According to the World Health Organization (WHO) and the Agency for Toxic Substances
and Disease Registry (ATSDR) arsenic is the number one contaminant of concern for human
health worldwide [1]. Hundreds of millions of people worldwide are exposed to arsenic via
their drinking water, many at doses higher than the WHOmaximum contaminant level of
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10 ppb [2]. The United States Geological Survey has reported that more than 25 million people
in the U.S. are exposed to well water with arsenic concentrations exceeding 10 ppb, the current
EPA standard for public water supplies [3,4]. Although the level of arsenic in water in the U.S.
is generally lower than in Asia and South America, levels of arsenic in well water in Maine have
been measured as high as 3,100 ppb and blood levels of total arsenic ranging from 0.23 to
8.58 ppb have been measured in a rural North Carolina population indicating exposure via
food and drinking water [3,5].

Recently, rice, and rice-based products including toddler formulas and energy bars have
been identified as major contributors to arsenic exposure [6–9]. For people with low levels of
arsenic exposure via drinking water, food constitutes 54–80% of the exposure risk [10]. Many
rice and rice based food products contain significant amounts of organic species of arsenic
[9,11]. This is cause for concern as little is currently known about the impact of organic forms
of arsenic exposure on human health. Some studies have indicated that trivalent DMA and
MMA are more toxic than inorganic arsenic, however these studies were done at high concen-
trations in animal models, and toxicity varies by species and oxidation state [12]. For example,
MMAIII (180 ppb) has been shown to inhibit cholesterol biosynthesis and inhibit steroid recep-
tor binding to DNA response elements in mammalian cells [13,14]. However, to our knowledge
there are no studies that have examined the effects of low levels of organic arsenic exposure on
the innate immune response. Although animal studies examining immune response have been
conducted using low levels of arsenite in the drinking water, because arsenite is metabolized in
the liver it is not possible to determine if the reported effects are the result of arsenite, MMA or
DMA [15].

Arsenic exposure in Asia and South America has been linked with a variety of lung diseases
including pneumonia, chronic obstructive pulmonary disease (COPD), bronchiectasis, chronic
bronchitis and lung cancer [16–18]. Pneumonia, bronchiectasis and COPD are frequently asso-
ciated with the opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), one of the
leading causes of nosocomial infections throughout the world [19,20]. While it has been shown
that low-level exposure to arsenic in zebrafish and mice alters the immune response to viral
and bacterial pathogens, little is known about the mechanisms by which this alteration occurs
[15,21]. In addition, nothing is known about effects of low levels of arsenic on the innate
immune function of human lung. Accordingly, the goal of this study was to examine the impact
of low levels of arsenic and methylated metabolites on P. aeruginosa induced cytokine secretion
in primary human bronchial epithelial cells (HBEC).

P. aeruginosa lung infections stimulate the secretion of several cytokines by HBEC including
IL-8, IL-6, CXCL1 and CXCL2 [22–24]. These cytokines are chemotactic, and recruit neutro-
phils and macrophages to the lungs, which are the primary phagocytic cells in the lung respon-
sible for bacterial clearance and killing [20,25]. In addition, these phagocytes produce
inflammatory cytokines in response to P. aeruginosa that elicit many of the key responses that
are critical to normal clearance of P. aeruginosa infection [22,26]. However, during chronic
and excessive pulmonary infection and inflammation, the prolonged cellular stimulation and
presence of inflammatory cytokines leads to lung damage [19,27]. By contrast, an inappropri-
ately low immune response to P. aeruginosa reduces the recruitment and activation of neutro-
phils and macrophages, which reduces the ability to clear P. aeruginosa from the lungs and
causes irreversible pulmonary damage [27]. Thus, an appropriate cytokine response to bacterial
infection is required to resolve infections with minimal damage to the lungs.

Since little is known about the effects of low dose arsenic exposure, or the contributions of
organic forms of arsenic exposure to the innate immune response to P. aeruginosa infection,
the goal of this study was to examine the effects on P. aeruginosa induced cytokine secretion by
HBEC by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous
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acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to blood levels
measured in the U.S. population. Exposure of bronchial epithelial cells to ingested arsenic
occurs via the blood in vivo. Primary HBEC from several individuals were exposed to arsenic
concentrations relevant to blood levels in cell culture media.

Methods

Chemicals and Bacterial Strains
DMAV and iAsIII were purchased from Sigma (St. Louis, MO). MMAIII was synthesized at the
Synthetic Chemistry Facility Core at University of Arizona according to previously published
methods [28,29]. Fresh concentrated stocks of iAsIII, DMAV and MMAIII (10 ppm) were made
in distilled, ultrapure water. Concentrated stocks were diluted to working stock solutions
(1 ppm) in cell culture media with fresh dilution stock for each experiment. To minimize deg-
radation of MMAIII, stocks were maintained at -20°C and fresh dilutions were used for each
experiment per standard protocols from the synthetic chemistry facility core at University of
Arizona [29]. Purified CXCL2 was purchased from R&D Systems (Minneapolis, MN) and
diluted in distilled, ultrapure water. P. aeruginosa (PAO1) was grown in rich medium (Luria
broth, LB, Invitrogen Grand Island, NY) at 37°C. Overnight cultures were washed three times
and then added to the HBEC cells at a multiplicity of infection (MOI) of 25 as previously
described [30].

Cells
Primary cultures of human bronchial epithelial cells (HBEC) were purchased from Lonza
(Hopkinton, MD). Cells from four individual donors were used for these studies. All donors
were Caucasian males between the ages of 32–40 years old. HBEC cells were passaged a maxi-
mum of two times. All experiments were repeated with each individual donor a minimum of
twice, each with a different passage. Control and P. aeruginosa exposure were repeated with
each cell passages along with arsenic exposure. HBEC were maintained at 37°C with 5% CO2 in
bronchial epithelial growth media (BEGM) supplemented with bovine pituitary extract, insu-
lin, hydrocortisone, human epithelial growth factor, epinephrine, transferrin, retinoic acid,
triiodothryonine and gentamycin from Lonza, according to the manufacturers instructions.
Cells were plated in coated 6 well tissue culture plates at 5x105 cells per well. HBEC were
exposed to either iAsIII, MMAIII or DMAV in cell culture media at concentrations from 0.5–
10 ppb for 6 days, with media renewal every 2 days. Media contained either iAsIII, MMAIII or
DMAV as appropriate at each change. Dose ranges were chosen based on blood levels mea-
sured in those with drinking water containing 90 ppb in Bangladesh and US blood levels
[3,31]. In some experiments HBEC were exposed to a combination of iAsIII (1.25 ppb), MMAIII

(1.25 ppb) and DMAV (2.5 ppb) or iAsIII, (2.5 ppb), MMAIII (2.5 ppb) and DMAV (5 ppb), to
mimic blood levels of 5 ppb and 10 ppb total arsenic. These ratios reflect levels measured in
blood [31]. After 6 days, cells were exposed to vehicle or P. aeruginosa at a MOI of 25 for 1
hour. After PAO1 exposure, HBEC were washed to remove P. aeruginosa using cell culture
media containing 75 μg/mL gentamycin to kill any adherent P. aeruginosa as P. aeruginosa
exposure for longer than 1h caused significant cell death [30]. After washing, HBEC were incu-
bated without P. aeruginosa for 5 hours to allow cells to elaborate an immune response. Super-
natant was collected to measure cytokine release and cells were lysed to isolate total RNA. All
experiments were repeated a minimum of two times with each individual donor. In all donors
examined the responses were similar in direction (i.e., increase, decrease or no change), but
varied in the absolute changes in cytokine secretion.

MMA Alters Cytokine Secretion in HBEC
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To determine if the arsenic induced changes in cytokine secretion by HBEC were biologi-
cally relevant, THP-1 cells, a monocyte cell line, purchased from ATCC (Manassas, VA), were
exposed to purified CXCL2 at concentrations secreted by HBEC or conditioned media from
HBEC experiments. After exposure to CXCL2 or HBEC conditioned media, IL-1β production
was measured by ELISA. THP-1 cells were grown in RPMI-1640 with 10% FBS and penicillin
and streptomycin. Cells were plated at 1x106 cells per well in 6 well plates and differentiated to
macrophages with PMA (20 ng/mL for 48h, Sigma St. Louis, MO) [32]. Cells were then
exposed to 150, 500 or 1000 pg/mL purified CXCL2 (R&D Systems, Minneapolis, MN) in stan-
dard cell culture media for 24h. In conditioned media experiments, THP-1 cells were plated at
5x105 cells per well in 12 well plates and differentiated to macrophages with PMA as described
above. THP-1 cells were then exposed to conditioned media from HBEC experiments diluted
1:3 in standard cell culture media for 24h to ensure that THP-1 cells remained healthy and
cytokine response levels were in the linear range. Conditioned media from a minimum of 3 dif-
ferent HBEC donors exposed to 10 ppb MMAIII, 10 ppb iAsIII or 10 ppb total arsenic with and
without P. aeruginosa were used in two replicate THP-1 wells per treatment.

Cytotoxicity
Lactate dehydrogenase (LDH) release by HBEC was used to assess cytotoxicity of all treatments
and was measured using the Promega CytoTox 96 Non-Radioactive Cytotoxicity assay per
manufacturers instructions (Madison, WI).

Measurement of intracellular arsenic
To determine if HBEC metabolize arsenic and to measure the intracellular concentration of
iAs, MMA or DMA, HBEC were exposed to 10 ppb or 50 ppb of iAsIII, MMAIII or DMAV for
either 2 hours (50 pbb) or 7 days (10 ppb), times that are adequate to metabolize arsenic [33].
Thereafter, HBEC were washed on ice with PBS five times. Cells were lysed with 0.1% Triton-
X, and spun at 14,000xg for 20 minutes to pellet cells debris. Speciation analysis of arsenic was
done by anion exchange chromatography coupled to ICP-MS and detected iAsIII, iAsV, but
only oxidized organic species MMAV and DMAV [34].

Cytokines
IL-8, IL-6, CXCL1, CXCL2 and IL-1β secretion was measured by ELISA (PromoKine Heidel-
berg, Germany).

RNA Isolation
Total RNA was isolated from HBEC after exposure to MMA or a combination to all three spe-
cies with and without exposure to P. aeruginosa as described above. Total RNA was isolated
with the miReasy kit (Qiagen, Valencia, CA) according to manufacturers instructions. Briefly,
cells were lysed in phenol and then chloroform was added for phase extraction. The aqueous
phase was mixed with ethanol to precipitate RNA. RNA was cleaned up on a glass fiber filter,
and washed three times prior to elution. RNA was eluted in nuclease free water and stored at
-80°C until time of use. RNA integrity and concentration was assessed using micro-capillary
electrophoresis on an Agilent 2100 Bioanalyzer. RNA was compared to a RNA ladder with 6
RNA transcripts of varying sizes and known concentration of 150 ng/mL. RNA quality was
verified by observation of corresponding 18 S and 28 S peaks on the electropherogram. Only
intact RNA was used for further analysis.

MMA Alters Cytokine Secretion in HBEC
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qPCR
For quantitative PCR (qPCR) cDNA was synthesized from1 μg of total RNA using Retroscript
Reverse Transcriptase (Ambion, Austin, TX) with random decamers. TaqMan Gene Expres-
sion Assays for human IL8 (TaqMan Gene Expression Assays, Inventoried assay ID
Hs00174103), human IL-6 (TaqMan Gene Expression Assays, Inventoried assay ID
Hs00985639), human CXCL1 (TaqMan Gene Expression Assays, Inventoried assay ID
Hs00605382) and human CXCL2 (TaqMan Gene Expression Assays, Inventoried assay ID
Hs00601975) were purchased from Applied Biosystems (ABI, Foster City, CA). Amplicons
were sequenced to verify products. Triplicate reactions containing 100ng cDNA from each
sample were amplified with an initial denaturing at 95°C for 10 min, followed by 40 cycles of
15 s at 95°C and 1 min at 60°C. Transcript abundance was calculated based on serial dilution of
a standard curve. The standard curves showed a correlation coefficient close to 1 (R2 > 0.95)
and were linear over a 4-log range.

Statistics
Statistical significance was assessed by one-way ANOVA followed by Tukey’s HSD post hoc
test. All statistical analysis was done with Prism v5.0 (Graph Pad Software, San Diego, CA). All
experiments were repeated a minimum of two times with different passages of each individual
donor. Data are presented as the mean ± SEM.

Results

HBECMinimally Metabolize iAsIII, MMAIII or DMAV

In order to use HBEC to examine effects of individual species of arsenic, we first conducted
studies to examine whether these cells metabolize arsenic. Measurements of intracellular arse-
nic by ICP-MS in HBEC exposed to 50 ppb iAsIII, MMAIII, or DMAV for two hours revealed
that HBEC do not metabolize arsenic in this time frame (Table 1). Intracellular concentrations
of arsenic varied slightly by donor, thus data in Table 1 are presented as the range of concentra-
tions measured. Unexposed control cells showed very low levels of iAsV, which was present in
all treatments except DMAV. In cells exposed to iAsIII, both iAsIII and iAsV were detected, as
expected since these species readily interconvert in a pH dependent manner both extra- and
intracellularly [13,35]. However, in cells exposed to MMAIII only MMAV could be detected,
and in cells exposed to DMAV, only DMAV could be detected (Table 1). These results agree
with previous studies demonstrating that undifferentiated human bronchial epithelial cells
minimally metabolize arsenic [36]. Additionally, HBEC were exposed to 10 ppb iAsIII for seven
days to more fully examine metabolism in longer exposure conditions. Unexposed HBEC and

Table 1. Range of intracellular arsenic concentrationsmeasured in HBEC exposed to 50 ppb iAsIII,
DMAV or MMAIII.

Intracellular Concentration (ng/g)

Treatment iAsIII iAsV MMAV DMAV

Control (n = 3) bdl 0.06–0.1 bdl bdl

iAsIII (n = 3) bdl—3.7 bdl—0.5 bdl bdl

MMAIII (n = 3) bdl bdl- 0.4 bdl—0.4 bdl

DMAV (n = 3) bdl bdl bdl bdl– 0.2

Control indicates unexposed cells. bdl = below detection limit of 0.05ng/g.

doi:10.1371/journal.pone.0142392.t001

MMA Alters Cytokine Secretion in HBEC
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cells exposed to 10 ppb iAsIII had iAsIII and MMAV levels that were below detection limits
(n = 7). Unexposed control HBEC had iAsV levels of 0.146 ± 0.08 ppb and DMAV levels of
0.034 ± 0.02 ppb (n = 7). HBEC exposed to iAsIII had iAsV levels of 0.173 ± 0.09 ppb and
DMAV levels of 0.054 ± 0.06 ppb (n = 7). Measured iAsV and DMAV were not significantly dif-
ferent between iAsIII exposed and unexposed control cells. These longer exposures agree with
the minimal metabolism of HBEC previously reported, and reveal that our model system is
suitable for examining individual arsenic species [36].

iAsIII, MMAIII and DMAV are not cytotoxic
Arsenic exposure at high levels can be cytotoxic but less is understood about low doses, in par-
ticular when combined with an additional stressor [35,37]. Although HBEC were exposed to
very low levels (0.5 to 10 ppb) of iAsIII, MMAIII or DMAV, studies measuring LDH were con-
ducted to determine if these arsenic species had cytotoxic effects alone or in combination with
P. aeruginosa. As shown in Fig 1, neither iAsIII, MMAIII nor DMAV alone or in combination
with P. aeruginosa were cytotoxic. P. aeruginosa alone had no effect on LDH release. This
experiment eliminates cytotoxicity as a possible mechanism of action of arsenic and P. aerugi-
nosa on cytokine secretion by HBEC.

Fig 1. Arsenic exposure does not cause cytotoxicity. LDH release by HBEC was used to assess arsenic cytotoxicity and was measured using the
Promega CytoTox 96 Non-Radioactive Cytotoxicity assay per manufacturers instructions. Data reported as optical density (OD, at 490 nm) of the cell culture
medium bathing 500K cells. The first two bars represent LDH released by cells lysed by Triton-X (Lysed Cells). Data presented as mean ± SEM. LDH release
was not significantly different from 0 in vehicle and arsenic treated cells, with and without P. aeruginosa exposure. n = 4 donors per treatment group.

doi:10.1371/journal.pone.0142392.g001

MMA Alters Cytokine Secretion in HBEC
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iAsIII and DMAV have no effect on cytokine secretion by HBEC
iAsIII alone (0.5 to 10 ppb) had no effect on IL-6, IL-8, CXCL1 or CXCL2 secretion by HBEC,
nor did iAsIII alone affect P. aeruginosa stimulated cytokine secretion (Fig 2). Similarly, DMAV

alone (0.5 to 10 ppb) did not significantly affect IL-6, IL-8, CXCL1 or CXCL2 secretion by
HBEC (Fig 3).

MMAIII increased P. aeruginosa stimulated cytokine secretion by HBEC
MMAIII alone (0.5 to 10 ppb) had no effect on IL-6, IL-8, CXCL1 or CXCL2 secretion (Fig 4).
However, 5 ppb MMAIII significantly increased P. aeruginosa stimulated IL-8 and IL-6 secre-
tion in comparison to P. aeruginosa alone (Fig 4A and 4B). By contrast, 10 ppb MMAIII had no
effect on P. aeruginosa stimulated IL-8 and IL-6 secretion (Fig 4A and 4B). MMAIII also had
no effect on P. aeruginosa induced CXCL1 secretion at any concentration tested (Fig 4C).
Although 0.5 and 5 ppb of MMAIII had no effect on P. aeruginosa stimulated CXCL2 secretion,
10 ppb MMAIII increased CXCL2 secretion (Fig 4D). Thus, taken together these data demon-
strate that MMAIII (5 ppb) enhances P. aeruginosa induced secretion of IL-8 and IL-6 and that
MMAIII (10 ppb) enhances P. aeruginosa induced secretion of CXCL2.

Fig 2. Inorganic arsenic does not alter P. aeruginosa induced immune response.Cytokine secretion by HBEC exposed to iAsIII ± P. aeruginosa. n = 4
donors for each treatment. Different letters indicate statistically significant treatment means. Data labeled a are not statistically different from each other but
are statistically different from data labeled b (p<0.05 as measured by one-way ANOVA). Data with the same letter are not significantly different. (A) IL-8
secretion (B) IL-6 secretion (C) CXCL1 secretion (D) CXCL2 secretion.

doi:10.1371/journal.pone.0142392.g002

MMA Alters Cytokine Secretion in HBEC
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A combination of iAsIII, MMAIII and DMAV reduced P. aeruginosa
stimulated cytokine secretion
Since blood of individuals who drink water contaminated with iAsIII and iAsV typically con-
tains mixtures of iAs, MMA and DMA, because inorganic arsenic is metabolized in the liver,
we conducted studies to examine the effect of a combination of organic and inorganic arsenic
at levels measured in blood samples obtained in the U.S. [3,31]. HBEC were exposed to 5 ppb
or 10 ppb total arsenic, composed of 50% DMAV, 25%MMAIII and 25% iAsIII. Neither 5 ppb
nor 10 ppb total arsenic alone had a significant effect on basal cytokine secretion compared to
control (Fig 5). Both 5 ppb and 10 ppb total arsenic significantly reduced P. aeruginosa stimu-
lated IL-8 cytokine secretion (Fig 5A). 5 ppb total arsenic had no effect on P. aeruginosa stimu-
lated IL-6, CXCL1 or CXL2 secretion (Fig 5B, 5C and 5D), but 10 ppb total arsenic
significantly reduced P. aeruginosa stimulated CXCL1 secretion (Fig 5C).

IL-1β secretion by THP-1 cells is regulated by cytokines released by
HBEC
Studies were conducted to determine if the MMAIII induced changes in CXCL2 secretion by
HBEC had a significant effect on IL-1β production by differentiated THP-1 cells, a model

Fig 3. DMA does not alter P. aeruginosa induced immune response.Cytokine secretion by HBEC exposed to DMAV ± P. aeruginosa. n = 4 donors for
each treatment. Different letters indicate statistically significant treatment means. Data labeled a are not statistically different from each other but are
statistically different from data labeled b (p<0.05 as measured by one-way ANOVA). Data with the same letter are not significantly different. (A) IL-8 secretion
(B) IL-6 secretion (C) CXCL1 secretion (D) CXCL2 secretion.

doi:10.1371/journal.pone.0142392.g003

MMA Alters Cytokine Secretion in HBEC
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macrophage cell line (Fig 6A). IL-1β secretion by macrophages recruits additional macro-
phages and neutrophils into the lungs, and is an essential component of the innate immune
response to bacterial infection [20]. Thus, studies were conducted to determine if the MMAIII

induced increase in CXCL2 secretion by P. aeruginosa exposed HBEC had a significant effect
on IL-1β secretion by THP-1 cells. An increase in CXCL2 concentration from 500 to 1000 pg/
mL, the concentrations produced by HBEC exposed to P. aeruginosa and P. aeruginosa plus
10 ppb MMAIII, respectively, significantly increased IL-1β secretion (Fig 6B). THP-1 IL-1β
release was modest when stimulated with CXCL2 in comparison to stimulation with condi-
tioned media from HBEC.

To further examine the impact of altered HBEC cytokine secretion on macrophage IL-1β
secretion, THP-1 cells were exposed to conditioned media from HBEC exposed to 10 ppb
MMAIII, 10 ppb iAsIII or 10 ppb total arsenic with and without P. aeruginosa. Conditioned
media from HBEC exposed to 10 ppb MMAIII, 10 ppb iAsIII or 10 ppb total arsenic in the
absence of P. aeruginosa did not significantly alter THP-1 IL-1β production compared to con-
ditioned media from control HBEC (Fig 6C). Conditioned media from HBEC exposed to P.
aeruginosa significantly increased IL-1β secretion by THP-1 cells compared to control condi-
tioned media. Conditioned media from HBEC exposed to P. aeruginosa plus 10 ppb MMAIII

Fig 4. MMA enhances P. aeruginosa induced immune response.Cytokine secretion by HBEC exposed to MMAIII ± P. aeruginosa. n = 4 donors for each
treatment. Different letters indicate statistically significant treatment means. Data labeled a are not statistically different from each other but are statistically
different from data labeled b or c (p<0.05 as measured by one-way ANOVA). Data with the same letter are not significantly different. (A) IL-8 secretion (B) IL-6
secretion (C) CXCL1 secretion (D) CXCL2 secretion.

doi:10.1371/journal.pone.0142392.g004

MMA Alters Cytokine Secretion in HBEC
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significantly increased THP-1 production of IL-1β compared P. aeruginosa alone. It is impor-
tant to note that in the studies presented in Fig 6C 10 ppb MMAIII increased cytokine (IL-6
and IL-8) secretion by HBEC cells. 10 ppb iAsIII did not alter cytokine secretion by HBEC in
the presence of P. aeruginosa. While 10 pbb total arsenic reduced IL-8 and CXCL1 secretions
by HBEC, these reductions were not sufficient to significantly alter IL-1β in macrophages.
Taken together, these data suggest that the alteration of IL-6 and IL-8 secretion in P. aeruginosa
stimulated HBEC by 10 ppb MMAIII will significantly alter IL-1β production by macrophages.

Neither MMAIII nor a combination of iAsIII, MMAIII and DMAV altered
cytokine mRNA
To examine whether changes in HBEC cytokine secretion were the result of transcriptional reg-
ulation or post-translational modification, cytokine mRNA levels were measured. As shown in
Figs 7 and 5 ppb MMAIII alone had no effect on IL-8 or on IL-6 mRNA levels (Fig 7A and 7B).
In addition, 10 ppb MMAIII alone had no effect on CXCL2 mRNA levels (Fig 7C). P. aeruginosa
significantly increased IL-8, IL-6 and CXCL2 transcript levels, but the presence of MMAIII did
not alter P. aeruginosa induced mRNA. Thus, the observed increases in IL-8, IL-6 and CXCL2

Fig 5. A combination of iAsIII, MMAIII and DMAV reduced P. aeruginosa stimulated cytokine secretion.Cytokine secretion by HBEC exposed to 5 ppb
total arsenic (combination of 1.25 ppb iAsIII + 1.25 ppb MMAIII + 2.5 ppb DMAV) ± P. aeruginosa or 10 ppb total arsenic (combination of 2.5 ppb iAsIII + 2.5 ppb
MMAIII + 5 ppb DMAV) ± P. aeruginosa. n = 4 donors for each treatment. *p = <0.05 for the indicated comparisons. (A) IL-8 secretion (B) IL-6 secretion (C)
CXCL1 secretion (D) CXCL2 secretion.

doi:10.1371/journal.pone.0142392.g005
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cytokine levels induced by MMAIII were not related to an increase in cytokine mRNA. In addi-
tion, studies were conducted to determine if the inhibitory effect of a combination of iAsIII,
MMAIII and DMAV (10 ppb) on IL-8 and CXCL1 secretion was mediated by a decrease in
mRNA. However, as shown in Fig 8, the combination of iAsIII, MMAIII and DMAV alone had
no effect on IL-8 or on CXCL1 mRNA levels (Fig 8A and 8B). P. aeruginosa stimulated IL-8 and
CXCL1 mRNA, but 10 ppb total arsenic did not alter the P. aeruginosa induced mRNA. Thus,
the observed decreased in IL-8 and CXCL1 cytokine levels induced by a combination of iAsIII,
MMAIII and DMAV (10 ppb) were not related to decreased mRNA levels of these cytokines.

Discussion
Arsenic exposure is a global health concern with a variety of deleterious health effects. The
immunotoxicity of arsenic is poorly understood and represents an important area of study
[17]. Alteration of inflammatory processes, in particular in TNFα and NFκB signaling, has
been observed in infants exposed to arsenic in utero [38–40]. However nothing is known about
the relative contributions of inorganic versus organic species of arsenic to immunotoxicity. To
our knowledge this is the first study to examine the impacts of MMAIII and DMAV, at

Fig 6. Changes in HBEC cytokine production impactedmacrophage IL-1β production. (A) Model of how arsenic exposure alters HBEC production of
cytokines, which impacts cytokine secretion by macrophages. (B). IL-1β secretion by THP-1 cells stimulated with purified CXCL2 using the range of
concentrations released by HBEC in the present experiments. n = 4 donors. (C) IL-1β secretion by THP-1 cells stimulated with conditioned media from HBEC
treated with vehicle (control), 10 ppb MMA, 10 ppb iAs or 10 ppb total arsenic ± P. aeruginosa. n = 3 donors. *p = <0.05 for the indicated comparisons.

doi:10.1371/journal.pone.0142392.g006
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concentrations that are relevant to the US population, on the innate immune response of
HBEC to a bacterial pathogen. The major novel finding is that a combination of 10 ppb total
iAsIII, MMAIII and DMAV, reflecting blood levels relevant to drinking water exposures, sup-
pressed IL-8 and CXCL1 secretion by HBEC. In addition, MMAIII alone exacerbated the
immune response of HBEC to P. aeruginosa. Taken together, these data demonstrate that low
levels of arsenic disrupt cytokine secretion by P. aeruginosa stimulated HBEC.

Results from this HBEC study are similar to research using a co-culture model of Caco-2
cells (a human colon epithelial cell line) and peripheral blood monocyte cells (PBMC) that
showed 9 ppb MMAIII enhanced LPS induced IL-6 and TNFα release [41]. The same study
using Caco-2/PBMC in co-culture also showed that 105 ppb DMAIII plus LPS reduced IL-8
and IL-6 release into the apical media in comparison to LPS alone [41]. Interestingly, in con-
trast to our findings, Caco-2 cells and the Caco-2/PBMC co-culture showed significant release
of pro-inflammatory cytokines with exposure to iAsIII, MMAIII or DMAIII alone [41,42]. By
contrast, HBEC in this study showed low basal levels of pro-inflammatory cytokines regardless
of arsenic exposure. These differences are potentially due to higher concentrations of iAs,
MMA and DMA used in the Caco-2 study, or may simply represent tissue differences in
response to arsenic species [42].

Fig 7. MMAIII had no effect on cytokinemRNA levels.MMAIII (5 ppb) had no effect on (A) IL-8 or on (B) IL-6 mRNA levels. In addition, MMAIII (10 ppb) had
no effect on (C) CXCL2mRNA levels. Thus, the observed increases in IL-8, IL-6 and CXCL2 cytokine levels induced by MMAIII were not related to increased
mRNA levels. n = 4 donors.

doi:10.1371/journal.pone.0142392.g007
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Pro-inflammatory cytokine secretion by bronchial epithelial cells is the first response to bac-
terial infection [23]. The initial increase in cytokine secretion by HBEC recruits professional
immune cells, including macrophages and neutrophils, into the lungs, which secrete copious
amounts of cytokines that mobilize additional immune cells to eliminate the bacterial infection
[20]. Here we show that MMAIII enhances the innate immune response of HBEC, which may
increase the production of cytokines by macrophages, and potentially lead to excessive inflam-
mation, which has been shown to produce lung damage [20]. We found that the change in
cytokine secretion by HBEC induced by MMAIII in this study had significant effects on IL-1β
secretion by differentiated THP-1 cells, a model macrophage cell line. While in vivo prolonged
production of cytokines can result in lung damage, initially this increased cytokine secretion
may be a beneficial augmentation, resulting in enhanced recruitment of macrophages and
more rapid clearance of pathogens [20]. Further study is required to determine which of these
responses are seen with low level MMAIII exposure.

Interestingly, 10 ppb total arsenic, a combination of iAsIII, MMAIII and DMAV reflecting
relative blood levels after exposure via drinking water, reduced cytokine secretion by HBEC.
Reduced cytokine secretion by HBEC would be expected to reduce macrophage recruitment
and pathogen clearance. However, the reduced cytokines produced by HBEC after exposure to
10 ppb total arsenic did not significantly reduce IL-1β in THP-1 cells, suggesting that the
reduction in IL-8 and CXCL1 will not alter macrophage response. The differences between
MMAIII alone and the combinations of arsenic species will require further study to understand
the specific mechanisms for each type of exposure.

Low dose inorganic arsenic has previously been shown to reduce clearance of pathogens in
zebrafish and mouse lung, however similar results have not previously been reported in human
cells [15,21]. The published animal studies used a variety of viral and bacterial pathogens
including Influenza A (H1N1), snakehead rhabdovirus, and Edwardsiella tarda indicating that
altered immune response with arsenic can happen with a variety of pathogens [15,21]. Studies
related to arsenic in the human lung have shown that arsenic exposure compromises respira-
tory immune response through several mechanisms including decreased airway epithelial chlo-
ride secretion, altered activation of pulmonary alveolar macrophages and impaired wound

Fig 8. Exposure to mixtures of arsenic species does not alter cytokinemRNA. Amixture of arsenic (10 ppb: 2.5 ppb AsIII, 2.5 ppb MMAIII and 5 ppb
DMAV) had no effect on (A) IL-8 or (B) CXCL1mRNA. Thus, the observed reductions in IL-8 and CXCL1 cytokine levels induced by the mixture of arsenic
species were not related to decreased mRNA levels. n = 4.

doi:10.1371/journal.pone.0142392.g008

MMA Alters Cytokine Secretion in HBEC

PLOSONE | DOI:10.1371/journal.pone.0142392 November 10, 2015 13 / 16



response resulting in airway remodeling [43–45]. Thus, arsenic has many effects on the innate
immune response to bacterial infection.

IL-8 and CXCL2 are transcriptionally regulated by NFκB, and other transcription factors
[46,47]. Previous studies have indicated that one mechanism for immunotoxicity of arsenic is
through interaction with NFκB; including enhanced NFκB activation by MMAIII in uroepithe-
lial cells, and activation of NFκB signaling in cord blood of newborns with in utero arsenic
exposure [29,39]. However, we did not observe an effect of MMAIII or the combination of
iAsIII, MMAIII and DMAV on mRNA levels of IL-6, IL-8, CXCL1 or CXCL2, thus, the arsenic
induced changes in cytokine production observed in the present study are likely to occur by
post-transcriptional mechanisms.

One possible post-transcriptional mechanism is that MMAIII may enhance secretion of
these cytokines through a change in membrane fluidity. Studies have indicated that low levels
of MMAIII perturb cholesterol biosynthesis [14]. Additional studies are necessary to examine
the distinct molecular mechanisms whereby MMAIII and the combination of iAsIII, MMAIII

and DMAV at levels found in blood alter P. aeruginosa induced cytokine secretion in HBEC.
Data from this study show dysregulation of proinflammatory cytokines in HBEC after

organic arsenic exposure and that these altered cytokines have downstream effects, altering IL-
1β secretion in THP-1 cells. Our data provide insight into the possible mechanisms whereby
arsenic exposure increases the relative risk of respiratory infection and COPD, which is associ-
ated with chronic bacterial infections, and other non-malignant lung infections [16,48]. More-
over, this study provides important data demonstrating that organic forms of arsenic, at low
doses, have negative effects on the innate immune response of human bronchial epithelial cells
to P. aeruginosa infection in vitro.
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