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Acidosis Potentiates the Host Proinflammatory Interleukin-1�
Response to Pseudomonas aeruginosa Infection

Iviana M. Torres, Yash R. Patankar, Tamer B. Shabaneh, Emily Dolben, Deborah A. Hogan, David A. Leib, Brent L. Berwin

Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA

Infection by Pseudomonas aeruginosa, and bacteria in general, frequently promotes acidification of the local microenvironment,
and this is reinforced by pulmonary exertion and exacerbation. However, the consequence of an acidic environment on the host
inflammatory response to P. aeruginosa infection is poorly understood. Here we report that the pivotal cellular and host proin-
flammatory interleukin-1� (IL-1�) response, which enables host clearance of the infection but can produce collateral inflamma-
tory damage, is increased in response to P. aeruginosa infection within an acidic environment. Synergistic mechanisms that pro-
mote increased IL-1� release in response to P. aeruginosa infection in an acidic environment are increased pro-IL-1� induction
and increased caspase-1 activity, the latter being dependent upon a functional type III secretion system of the bacteria and the
NLRC4 inflammasome of the host. Using an in vivo peritonitis model, we have validated that the IL-1� inflammatory response is
increased in mice in response to P. aeruginosa infection within an acidic microenvironment. These data reveal novel insights
into the regulation and exacerbation of inflammatory responses to P. aeruginosa.

Pseudomonas aeruginosa is a Gram-negative opportunistic bac-
terium that causes a variety of acute and chronic infections.

These infections are highly prevalent in patients with cystic
fibrosis (CF) and in immunocompromised tissues, can be ac-
quired iatrogenically, and are a cause of ocular keratitis (1–4).
Recent evidence supports that a key proinflammatory cytokine
elicited in response to P. aeruginosa infection is interleukin-1�
(IL-1�) (5, 6). IL-1� is produced predominantly by macrophages
and plays a pivotal role in the recruitment of neutrophils and
subsequent bacterial clearance (1, 5, 6). Correspondingly, IL-1�
pathway impairment or neutropenia results in susceptibility to P.
aeruginosa infection and pathogenesis (7). However, excessive
IL-1� levels or chronic IL-1� production, exemplified during CF
disease, can result in organ damage, dysfunction, and even lethal-
ity (8).

The molecular basis for the cellular IL-1� response to P. aerugi-
nosa is beginning to be elucidated. The pro-IL-1� precursor (p31)
is upregulated upon Toll-like receptor (TLR) engagement. A sec-
ond signal is required for the processing and release of the active
form of IL-1� (p17). In the case of P. aeruginosa, the second signal
is the type III secretion system (T3SS)-dependent injection of
stimulatory ligands such as the PscL rod proteins or flagellin into
the host cell cytoplasm, which activates the NLRC4 (NOD-like
receptor, CARD domain-containing protein 4) inflammasome
complex (9–13). This complex contains NLRC4, caspase-1, and
the adaptor molecule ASC (apoptosis associated speck-like pro-
tein containing a CARD domain). Caspase-1, activated through
autoproteolysis, cleaves pro-IL-1� into the active form of IL-1�
and enables its release (14, 15). Infection with P. aeruginosa strains
deficient in the T3SS, including the popB mutant used here, results
in attenuated IL-1�-dependent responses (5, 16). The T3SS is also
required for transport of cytotoxic effector proteins (ExoS, ExoT,
ExoU, and ExoY) into the eukaryotic host cell cytoplasm, and
increased mortality has correlations with P. aeruginosa T3SS func-
tion (17); however, the Exo proteins are not required for inflam-
masome activation (13, 16, 18, 19). Despite these mechanistic in-
sights into IL-1� release in response to P. aeruginosa infection,

how the extracellular microenvironment influences the inflam-
matory response during infection is less understood.

The microenvironments surrounding inflammatory sites fea-
ture acidosis of tissues and fluids to pH levels well below the phys-
iological norm of �7.4 (20, 21). Relevant to our studies, this is
observed during bacterial infection, where anaerobic glycolysis,
lactic acid accumulation, hypoxia, bacterial fatty acids, and hypo-
chlorous acid (HOCl) production by activated neutrophils con-
tribute to local acidosis with measured pH values ranging from 5.9
to 7.0, depending upon the disease process and method of mea-
surement (22–27). In CF, the loss of CF transmembrane conduc-
tance regulator (CFTR)-mediated bicarbonate transport has been
proposed to contribute to pulmonary acidosis, which is supported
by pH measurements of airway surface liquid, submucosal gland
fluid, and mucopurulent airway secretions that range from �6.1
to 6.9 (28–33). While the importance of homeostatic maintenance
of pH has been well studied, reports on how low pH affects inflam-
mation are just now emerging (23, 24). In particular, recent re-
ports have demonstrated that in vitro acidosis can enhance IL-1�
release from lipopolysaccharide (LPS)-primed mouse glial cells
and human monocytes (34–37). In a study by Rajamaki et al., the
IL-1� response was found to be dependent on the activation of the
NLRP3 inflammasome by the acidic environment, and it was pro-
posed that acidosis serves as a novel danger signal (37). Therefore,
based on the clinical observations of acidosis during bacterial in-
fection and the pivotal role of IL-1� in disease pathogenesis, we
investigated how physiologically relevant changes in pH alter the
inflammatory response to P. aeruginosa.
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In this report we demonstrate that a low-pH microenviron-
ment enhances IL-1� production in vitro and in vivo in response
to infection with P. aeruginosa. We demonstrate the specificity of
this response and identify two intracellular mechanisms that gen-
erate the amplified response observed during P. aeruginosa infec-
tion under acidic conditions: there is increased production of pro-
IL-1� and increased caspase-1-dependent cleavage to its active
form. Additionally, in contrast to previous in vitro studies (34–
37), in vivo analyses revealed that bacterial T3SS function is re-
quired to trigger acidosis-enhanced IL-1� responses; acidosis,
even in the presence of bacterial LPS, is not sufficient to enable
robust in vivo IL-1� responses. These studies are the first to show
that extracellular pH governs the host response against P. aerugi-
nosa through modulation of cytokine release, and they provide
new insights into the role of acidic pH in the regulation of the
innate immune response during infections.

MATERIALS AND METHODS
Mice. C57BL/6 wild-type (WT) mice were obtained from the National
Cancer Institute (Bethesda, MD). C57BL/6 NLRC4�/�, NLRP3�/�, and
ASC�/� mice (10, 38) were obtained from V. Dixit (Genentech, CA).
Caspase-1�/� mice were purchased from the Jackson Laboratory (Bar
Harbor, ME); these mice were shown to also be deficient in caspase-11
(15, 39). Studies were compliant with the Guide for the Care and Use of
Laboratory Animals of the National Research Council and were approved
by the Dartmouth Institutional Animal Care and Use Committee.

Reagents. Hanks balanced salt solution (HBSS) was purchased from
Corning Cellgro (Manassas, VA), LPS, o-nitrophenyl-�-D-galactopyra-
noside (ONPG), EGTA, and HEPES from Sigma-Aldrich (St. Louis, MO),
the DuoSet enzyme-linked immunosorbent assay (ELISA) kits for mouse
and human IL-1� and the polyclonal goat anti-mouse IL-1� (AF-401-
NA) from R&D Systems (Minneapolis, MN), pan-caspase inhibitor Z-
VAD-FMK from InvivoGen (San Diego, CA), FAM-YVAD-FMK FLICA
caspase-1 stain from ImmunoChemistry Technologies (Bloomington,
MN), horseradish peroxidase (HRP)-conjugated bovine anti-goat anti-
body (sc-2350) from Santa Cruz Biotechnology (Santa Cruz, CA), anti-
mouse CD45-allophycocyanin (APC) monoclonal antibody (clone 30-
F11) and anti-mouse IL-1� Pro-form phycoerythrin-(PE) monoclonal
antibody (clone NJTEN3) from eBioscience (San Diego, CA), APC-con-
jugated anti-mouse Ly6G antibody (clone 1A8) and fluorescein isothio-
cyanate (FITC)-conjugated anti-mouse F4/80 antibody (clone BM8)
from BioLegend (San Diego, CA), fluorescein sodium salt (46960) from
Fluka (Buchs, Switzerland), and 1 M HEPES at pH 7.3 (BP299-100), used
for infecting mice in vivo, from Fisher BioReagents (Pittsburgh, PA).

Cell culture. Bone marrow-derived dendritic cells (BMDC) were cul-
tured using a modification of the protocol of Inaba et al. (40) as previously
described (41). Briefly, BMDC in culture medium (RPMI 1640 medium,
10% heat-inactivated fetal bovine serum [FBS], 100 units/ml penicillin-
streptomycin, and 50 mM �-mercaptoethanol [�-ME], supplemented
with granulocyte-macrophage colony-stimulating factor [GM-CSF])
were plated in six-well plates. The cells were washed and refed on days 2
and 4, and semiadherent cells were harvested for use at day six or seven.

THP-1 monocytic cells were differentiated into macrophages using 50
ng/ml of phorbol myristate acetate (PMA) for 24 h and then washed with
HBSS before use.

The culture medium pH was adjusted by buffering HBSS with a final
concentration of 25 mM HEPES of various pH values such that, following
equilibration with a preincubation in 12- or 24-well plates for 1 h at 37°C
and 5% CO2, the pH of the culture medium was 6.7, 7.0, or neutral (7.3).

Bacteria. Pseudomonas aeruginosa PA14 strains were obtained from
G. O’Toole and D. Hogan (Geisel School of Medicine at Dartmouth, NH).
All strains have been previously used and published (42–44). Bacteria
were cultured overnight at 37°C in Luria broth (LB), and subsequently
subcultured for 3 h in LB.

�-Galactosidase assay. T3SS gene expression was assessed using the
PexsD-lacZ construct in WT PA14 (44). Subcultured bacteria (optical den-
sity at 600 nm [OD600], �0.5) were resuspended in preequilibrated HBSS
buffered to the indicated pH with 25 mM HEPES, in the presence or
absence of 2 mM EGTA. Subsequently, the cultures were incubated in a
12-well plate for 2.5 h at 37°C and 5% CO2. Following incubation, the
cultures were resuspended in 1 ml of Z buffer, and the Miller assay was
performed as previously described (45). Expression of lacZ was deter-
mined by the Miller unit equation (46).

NanoString. NanoString nCounter (NanoString Technologies) anal-
yses were used to quantify P. aeruginosa gene expression from WT PA14
bacteria incubated in preequilibrated HBSS and 2 mM EGTA at 37°C and
5% CO2 (47). Briefly, each reaction mixture contained 80 ng of bacterial
RNA, hybridization buffer, reporter probes, and capture probes, and 6
positive and 8 negative controls were included. Overnight hybridization
of RNA with reporter and capture probes at 65°C was followed by sample
preparation using the NanoString prep station. Finally, targets were
counted on the nCounter using 255 fields of view per sample. Data were
analyzed using nSolver Analysis software v1.1. Raw counts for T3SS-re-
lated transcripts (popB, exoU, and exoT) were normalized to the arithme-
tic mean for six positive controls and to the geometric mean for three P.
aeruginosa housekeeping genes (fbp, ppiD, and rpoD).

In vitro bacterial infection. A total of 2.5 � 105 cells per well (24-well
plate) were infected with subcultured bacteria at a multiplicity of infection
(MOI) of 1 in preequilibrated HBSS, 1% FBS, and 25 mM HEPES. Fol-
lowing coincubation for 3 h at 37°C and 5% CO2, cell-free supernatants
were collected and analyzed by ELISA. Where indicated, BMDC were
preincubated with 20 �M Z-VAD-FMK for 1 h before infection and
throughout the course of the assay. FAM-YVAD-FMK-FLICA and pro-
pidium iodide (PI) stainings were done as previously described (42).

Intracellular staining for pro-IL-1�. A total of 2.5 � 105 cells per well
in a 24-well plate were coincubated with subcultured bacteria at an MOI
of 0.2 in the presence of preequilibrated HBSS containing 1% FBS with 25
mM HEPES. As a control, BMDC were stimulated with LPS at 50 ng/ml
for 3 h. At 3 h postinfection (hpi), cells were harvested, washed, blocked
with monoclonal antibody 2.4G2, stained with anti-CD45 antibody, fixed,
permeabilized, and stained for intracellular pro-IL-1�.

Immunoblotting. A total of 106 cells per well in a 12-well plate con-
taining preequilibrated HBSS with 25 mM HEPES were infected at an
MOI of 1. BMDC and bacteria were coincubated for 3 h as described
above. Cell-free supernatants and cell lysates were processed for Western
analyses as previously described (42). IL-1� was detected with polyclonal
antibody (R&D Systems AF-401-NA or GeneTex GTX74034).

In vivo bacterial infection. WT mice were injected intraperitoneally
(i.p.) with 1 ml of 4% thioglycolate solution and then 4 to 5 days later with
106 CFU of the indicated genotype of PA14. For infection, 100 �l of
bacteria suspended in phosphate-buffered saline (PBS) was mixed with
400 �l of sterile filtered 1 M HEPES buffer (500 �l total at a final pH of 5.4,
7.6, or 8.7). For IL-1� and cellular recruitment analyses, mice were sacri-
ficed at 2 hpi, and i.p. lavage was performed using 1 ml PBS. Cellularity
was determined by fluorescence-activated cell sorter (FACS) analyses fol-
lowing staining with APC-conjugated anti-mouse Ly6G antibody and
FITC-conjugated anti-mouse F4/80 antibody, with gating to exclude lym-
phocytes, bacteria, and debris. The intraperitoneal pH was measured at
either 30 min postinfection or 2 hpi, using a fluorescein-based fluores-
cence assay with a standard curve obtained using 100 mM phosphate
buffer at pH increments of 0.5 from pH 5 to pH 7.5.

Statistics. Means � standard deviations (SD) obtained from indepen-
dent experiments with technical duplicates are shown. Two-way analysis
of variance (ANOVA) with Dunnett’s post hoc analysis (denoted by hash
symbols) and, as appropriate, the unpaired Student t test with Welch’s
correction or one-way ANOVA with Dunnett’s post hoc analysis (denoted
by asterisks) were performed using Prism 4.0a to analyze statistical signif-
icance.
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RESULTS
Acidosis enhances cellular IL-1� responses to P. aeruginosa.
Low pH is present at sites of inflammation and may contribute to
the inflammatory response. To test the effect that pH has on the
cellular IL-1� response to P. aeruginosa, we infected murine
BMDC with the PA14 strain of P. aeruginosa at neutral and acidic
pHs and subsequently analyzed the media for IL-1� content. An
acidic pH value of 6.7 was chosen since it is within the range of
measured physiological acidosis found at inflammatory sites and
within the CF lung (26, 28, 29, 32, 48). BMDC infected at this
acidic pH exhibited a greater IL-1� response than those infected at
neutral pH (Fig. 1A). The popB mutant of PA14, which lacks a
functional T3SS and is thereby attenuated in inflammasome acti-
vation (5, 42), was used as a control for specificity of the IL-1�
response. BMDC infected with popB bacteria did not elicit a mea-
surable IL-1� response at acidic pH, and the response was com-
parable to that of the uninfected control, which indicates that
acidic pH alone does not drive the release of IL-1� even in the
presence of bacterial LPS (Fig. 1A). Western blotting confirmed
that secretion of the cleaved, active form of IL-1� (17 kDa) was
greater at acidic pH when infection was with WT PA14 (Fig. 1B).
Under acidic conditions, low levels of the 20-kDa IL-1� fragment,
previously described to have biological activity (36), were also
observed (Fig. 1B). To corroborate our findings with human cells,
we utilized cultured human THP-1 macrophages. THP-1 macro-

phages infected with P. aeruginosa at acidic pH also responded
with increased IL-1� production (Fig. 1C), validating the results
observed with murine BMDC. To analyze the kinetics of IL-1�
release in response to P. aeruginosa infection at acidic pH, media
were collected every 30 min and analyzed by ELISA. Significantly
enhanced secretion of IL-1� at low pH was observed as early as 90
min postinfection. Moreover, the kinetic analysis revealed an in-
creasingly differential accumulation of IL-1� at low versus neutral
pH over time (Fig. 1D). These results indicate that the cellular
response to P. aeruginosa is pH dependent, is exacerbated at low
pH, and requires a functional bacterial T3SS even in the presence
of bacterial LPS.

The pH-dependent IL-1� response to P. aeruginosa requires
NLRC4 and is independent of NLRP3. P. aeruginosa activates the
NLRC4 inflammasome at physiological pH (12, 13, 19). However,
extracellular acidosis has been shown to activate the NLRP3 in-
flammasome in LPS-stimulated macrophages, leading to the re-
lease of IL-1� (37). Therefore, we tested whether the enhanced
response observed in Fig. 1 was due to a pH-dependent triggering
of the NLRP3 inflammasome or an enhanced NLRC4-dependent
response. Loss of NLRC4, but not NLRP3, led to a marked de-
crease of mature IL-1� secretion in response to WT PA14 infec-
tion (Fig. 2A and B), demonstrating that the pH-dependent IL-1�
production in response to P. aeruginosa requires NLRC4. Use of
the bacterial popB mutant again resulted in loss of IL-1� secretion
at all pH values tested (Fig. 2A and B).

To assess the specificity of the NLRC4 inflammasome activity,
we next tested whether ASC and caspase-1, components of the
NLRC4 inflammasome (49, 50), were required for IL-1� secretion
at acidic pH. Indeed, the pH-dependent IL-1� response was sig-
nificantly and substantially decreased in ASC�/� BMDC (Fig. 2C
and D). We used two complementary approaches to test the con-
tribution of caspase-1 to the pH-dependent IL-1� response (Fig.
3). First, pharmacological caspase inhibition using Z-VAD-FMK
abrogated the IL-1� response both at neutral and acidic pHs (Fig.
3A and B). Second, the use of caspase-1�/� BMDC subsequently
revealed that the genetic loss of caspase-1 phenocopies the use of
Z-VAD-FMK (Fig. 3C and D), indicating that caspase-1 is the
major enzyme contributing to the IL-1� response. These results
establish that NLRC4, ASC, and caspase-1 are predominantly re-
quired for the enhanced IL-1� secretion in response to P. aerugi-
nosa under acidic conditions, rather than the NLRP3-dependent
inflammasome response to bacterial LPS.

P. aeruginosa T3SS expression is independent of acidosis.
Since some species of bacteria alter their secretory pathways in
response to pH changes (51, 52), we tested the hypothesis that
acidic pH may increase the expression of components of the P.
aeruginosa T3SS and thereby contribute to the observed increase
in IL-1� response. To test this hypothesis, we employed bacteria
that express a reporter construct of the lacZ gene under the control
of the exsD promoter (PexsD-lacZ) (44). exsD is a T3SS-regulatory
gene that, akin to many of the bacterial T3SS genes, is induced
under calcium-limited conditions or through contact with the
host cell (16, 53). WT PA14 carrying the PexsD-lacZ reporter incu-
bated at acidic and neutral pHs under T3SS-inducing (with
EGTA) or noninducing (lacking EGTA) conditions was analyzed
for �-galactosidase activity. Consistent with previous reports,
T3SS expression was enhanced under inducing conditions (44, 54,
55). Importantly, induction was similar at both acidic and neutral
pHs (Fig. 4A). To confirm and extend this analysis, we quantita-

FIG 1 Acidic pH enhances IL-1� production by murine BMDC and human
THP-1 macrophages infected with P. aeruginosa. BMDC from C57BL/6 mice
(A, B, and D) or differentiated THP-1 cells (C) were uninfected (negative) or
infected with P. aeruginosa strain PA14 (WT) or the PA14 popB isogenic mu-
tant (deficient in T3SS) at an MOI of 1 at the indicated pH values. (A and C)
Culture media were analyzed by ELISA for IL-1� production at 3 hpi. (B)
Relative pro-IL-1� and cleaved IL-1� protein present in the supernatants at 3
hpi were analyzed by Western blotting. (D) The kinetics of IL-1� release were
analyzed by ELISA at the indicated time points (open squares, pH 6.7; open
triangles, pH 7.3). The data in panels A, B, and D are derived from at least two
independent experiments (n � 4). ***, P � 0.0005; **, P � 0.005; *, P � 0.01.
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tively assayed the expression of T3SS effector genes of WT PA14
cultured at acidic or neutral pH under T3SS-inducing conditions.
Gene expression analyses revealed no difference in the effector
genes exoU and exoT or the T3SS translocon gene popB at neutral
versus acidic pH (Fig. 4B). Thus, the enhanced IL-1� production
observed under acidic conditions is likely not due to a differential
upregulation of the bacterial T3SS or its effectors, suggesting that
the observed increased response is due to a host-dependent mech-
anism in response to P. aeruginosa infection at low pH.

Cellular mechanisms responsible for enhanced IL-1� re-
sponses to P. aeruginosa in an acidic microenvironment. We
next endeavored to determine the host mechanisms that underlie

the increased production of IL-1� in response to P. aeruginosa at
acidic pH. Previous data support that pro-IL-1� is regulated by
NF-�B (56) and that low environmental pH can increase NF-�B
activation (57). To test whether acidic pH elicits increased pro-
IL-1� synthesis upon infection with P. aeruginosa, we analyzed
pro-IL-1� protein levels in cell lysates by Western blotting (Fig.
5A) and in intact cells by flow cytometry (Fig. 5B and C). Infection
with WT PA14 at acidic pH elicited higher expression of pro-
IL-1� than that at neutral pH as assessed by Western (Fig. 5A) and
FACS (Fig. 5B and C) analyses. Consistent with pro-IL-1� induc-
tion at neutral pH via TLR-dependent signaling and independent
of the core inflammasome components, the pro-IL-1� levels ex-

FIG 2 IL-1� production enhanced by acidosis is dependent on the NLRC4 inflammasome. BMDC from C57BL/6 mice and, where indicated, NLRP3�/�,
NLRC4�/�, and ASC�/� mice were infected with WT or popB PA14 at the indicated pH values (MOI 	 1). (A and C) Culture supernatants analyzed by ELISA
for IL-1� production at 3 hpi. (B and D) Western blot analyses of relative pro-IL-1� and cleaved IL-1� protein in the media at 3 hpi. Data are representative of
at least two independent experiments (n � 4). *, P � 0.05, compared with neutral control within the same mouse genotype; ns, not significant; #, P � 0.0001,
compared with C57BL/6 group.

FIG 3 Caspase-1 is required for the pH-dependent IL-1� response. (A and B)
BMDC from C57BL/6 mice were pretreated with pan-caspase inhibitor Z-
VAD-FMK before infection with WT PA14 at the indicated pH values. (C and
D) BMDC from C57BL/6 mice and, where indicated, caspase-1�/� mice were
infected with WT PA14 at the indicated pH values. Media were analyzed by
ELISA (A and C) and by Western blotting analyses (B and D) for IL-1� pro-
duction at 3 hpi (n 	 4). All experiments utilized an MOI of 1. **, P � 0.005;
*, P � 0.05 (compared with control). #, P � 0.0001 (compared with C57BL/6
group).

FIG 4 P. aeruginosa T3SS expression is not increased under acidic conditions.
(A) WT PA14 harboring the PexsD-lacZ construct was incubated in the presence
or absence of 2 mM EGTA in HBSS medium at the indicated pH values for 2.5
h, and �-galactosidase activity (Miller units) was subsequently measured (n �
6). (B) Normalized transcript counts of T3SS-related genes, analyzed by Nano-
String nCounter, from WT PA14 cultured at the indicated pH values in the
presence of EGTA (n 	 2). ns, not significant.
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hibited similar levels of pH-mediated enhancement when stimu-
lated with the popB mutant and when ASC�/� cells were used (Fig.
5A to C). The pH-dependent pro-IL-1� responses could be reca-
pitulated with purified LPS, which obviated the requirement for
live bacteria (Fig. 5A to C). These results demonstrate that there is
a pH-dependent increase of pro-IL-1� that contributes to the en-
hanced IL-1� response during P. aeruginosa infection in an acidic
environment. Additionally, pro-IL-1� induction by purified LPS
demonstrates that pH-induced bacterial responses, such as mod-
ifications to LPS or other TLR ligands, are not required for the
enhanced IL-1� response.

Although the pH-dependent pro-IL-1� induction provides
one explanation for the enhanced response, we noted that pro-
IL-1� induction at pH 6.7 was 2-fold greater than that at neutral
pH (Fig. 5), while at the same pH values the secreted IL-1� re-
sponse was 
3-fold (Fig. 1D). These observations led us to hy-
pothesize that an additional basis for enhanced IL-1� production
under acidic conditions is an increase in the rate of pro-IL-1�
cleavage. This hypothesis was also supported by studies of apop-
tosis showing increased catalytic efficiency of some mammalian
and yeast caspases at lower pH (58, 59). To test whether caspase-1
activity was higher when BMDC were infected at an acidic pH
compared to neutral pH, we used a caspase-1-specific fluorescent
probe, FAM-YVAD-FLICA, to measure caspase-1 activity. Acidic
pH induced higher caspase-1 activation in BMDC upon infection
with WT PA14. However, infection with the popB mutant led to
similar caspase-1 activity regardless of pH (Fig. 6A and B). As a
complementary assay, we measured P. aeruginosa-induced cyto-
toxicity. Cell death, as assessed by propidium iodide (PI)-positive
cells (Fig. 6C), was consistent with the IL-1� results observed in

Fig. 1A and D. Notably, cell death trends began to be observable at
approximately 1 h and were robustly observable by 3 h (Fig. 6C).
Bacteria deficient in T3SS (popB) induced less cytotoxicity in host
cells (Fig. 6C), and, consistent with previous reports (16, 19, 42),
analyses of the cytotoxicity revealed contributions of both
NLRC4-dependent (pyroptotic) and -independent mechanisms
(data not shown). Thus, acidic pH increases caspase-1 activity,
which leads to higher IL-1� release and cell death.

Acidosis exacerbates the in vivo IL-1� response to P. aerugi-
nosa. In order to test whether acidic pH within a microenviron-
ment leads to higher IL-1� production in vivo, we used a modifi-
cation of an established P. aeruginosa peritonitis model that
mimics iatrogenic infections such as those acquired during con-
tinuous ambulatory peritoneal dialysis (13, 60). Thioglycolate-
stimulated C57BL/6 mice were injected intraperitoneally with
PA14 in the presence of buffered medium in order to temporarily
shift the peritoneal microenvironment to a desired pH. To induce
acidic conditions, we used medium that was initially buffered to a
pH of 5.4, which, due to in vivo pH equilibration, was empirically
determined to maintain a pH of �6.3 throughout the experiment.
At 2 hours postinfection, peritoneal lavage samples were collected
for IL-1� analysis and for determining cellularity by flow cytom-
etry. Mice infected with WT PA14 under acidic conditions elicited
robust and significantly higher IL-1� responses than mice infected
with WT PA14 under neutral or basic conditions (Fig. 7A). As a
control both for specificity of the response to P. aeruginosa and for
the acidic conditions, we employed the PA14 popB mutant. Mice
infected with popB bacteria under acidic conditions failed to elicit
an IL-1� response (Fig. 7A), demonstrating the requirement of a
functional T3SS and that acidic conditions are not singularly suf-

FIG 5 Acidic pH induces enhanced pro-IL-1� expression. BMDC from C57BL/6 and, where indicated, ASC�/� mice were either treated with LPS (50 ng/ml)
or infected with WT or popB PA14 at an MOI of 1 (A) or 0.2 (B and C) for 3 h. (A) Cell lysates were analyzed by Western blotting for pro-IL-1� protein expression.
(B and C) Gating was used to exclude the bacteria, and the gated BMDC were analyzed for expression of CD45 and intracellular pro-IL-1� by flow cytometry.
Representative contour plots (B) and cumulative quantitative analyses (C) of the percentage of pro-IL-1�� cells from the CD45� population are shown (n 	 4).
**, P � 0.005; *, P � 0.05.
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ficient to elicit IL-1�, even in the presence of bacterial LPS. FACS
analyses revealed comparable number of F4/80� macrophages
and Ly6G� neutrophils in the peritoneal lavage fluid under all
conditions at 2 hpi (Fig. 7B). Hence, the increase in IL-1� is not
due to an increase in the recruitment of IL-1�-producing cells but
instead is due to an amplification of the response to P. aeruginosa
infection within an acidic environment.

DISCUSSION

The effect of acidic microenvironments on inflammatory re-
sponses during infection is underappreciated. This is directly rel-
evant to bacterial infections in which acidosis is frequently ob-
served during acute septic shock with increased lactate levels and
during chronic infections (28–30, 61–66). However, how acidosis
directly alters the host inflammatory response to P. aeruginosa
infection has not previously been defined.

Based on low pH acting as a danger signal for inflammasome
activation and the development of local acidic microenviron-
ments postinfection, we hypothesized that infection with P.
aeruginosa in an acidic environment will lead to enhanced IL-1�

release. Here we provide the first report of pH-dependent changes
of IL-1� release in the context of a P. aeruginosa infection. The
IL-1� response significantly increased, dose dependently, as the
pH of the microenvironment dropped from neutral (7.3) to 6.7.
The enhanced release of IL-1� in response to P. aeruginosa at low
pH was dependent on NLRC4, ASC, and caspase-1; this is the first
report of pH modulation of responses by the NLRC4 inflam-
masome. This led to several important mechanistic insights. First,
it revealed that the canonical NLRC4-dependent inflammasome is
the predominant mechanism responsible for the observed in-
crease in IL-1� responses to P. aeruginosa under acidic conditions.
Second, the enhanced IL-1� response was surprisingly indepen-
dent of NLRP3. Since acidosis is reported to act as a trigger for
NLRP3-dependent inflammasome responses to purified LPS (37),
we initially hypothesized that NLRP3 would contribute to the re-
lease of IL-1�. However, our data indicate that during an active
infection by P. aeruginosa, the NLRC4 inflammasome contribu-
tions are dominant to those of the NLRP3 inflammasome. Con-
comitantly, a requisite for IL-1� release was a functional bacterial
T3SS rather than solely the presence of LPS. However, under con-

FIG 6 Decreased pH during P. aeruginosa infection results in enhanced caspase-1 activity. (A and B) BMDC from C57BL/6 mice were infected with WT or popB
PA14 (MOI 	 1), followed by incubation with FAM-YVAD-FLICA. Bacteria were excluded, and the BMDC were analyzed for caspase-1 activity as assessed by
FLICA fluorescence with flow cytometry. Representative contour plots (A) and cumulative quantitative analyses of the percentage of FLICA� cells (B) are shown
(n 	 4). (C) Percentage of propidium iodide (PI)-positive cells due to infection with WT or popB PA14 (MOI 	 1) at the indicated pH (n 	 4). ns, not significant;
**, P � 0.005; *, P � 0.05 (compared with neutral control). #, P � 0.0001 (compared with WT PA14).
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ditions in which the P. aeruginosa T3SS was induced by low extra-
cellular Ca2� concentrations (44, 55), the T3SS expression was not
dependent on pH as assessed by two complementary assays. From
this we infer that the pH dependency of the IL-1� release was
regulated predominantly by the host cell and was not due to an
upregulation of the bacterial T3SS at low pH.

Importantly, we have identified two complementary mecha-
nisms that underlie the enhanced cellular IL-1� response to P.
aeruginosa under acidic conditions. Pro-IL-1� priming increased
under acidic conditions following infection with either WT PA14
or the T3SS-deficient popB mutant or in the presence of purified
LPS. This supports that TLR ligands are sufficient to prime in-
creased pro-IL-1� induction in response to acidic microenviron-
ments and is consistent with previous observations based on LPS
treatment in the context of acidic conditions (34, 37). However,
the kinetics and magnitude of IL-1� release under acidic condi-
tions were not entirely accounted for by pro-IL-1� induction, and
in the search for a complementary mechanism we were guided by
previous studies of apoptosis that had identified that many
caspases display greater activity upon acidification of the cytosol
(58, 59). This corollary between the apoptosome and the inflam-
masome was upheld, as we showed that caspase-1 activity in-
creased at lower pH and contributed to more rapid processing of
IL-1� to its active form; unlike pro-IL-1� induction, this activity
was absolutely dependent upon stimulation derived from the bac-
terial T3SS. Pseudomonas-induced cytotoxicity followed a parallel

outcome, as assessed both by kinetics and by pH and T3SS depen-
dence. These mechanisms likely have broad physiological rele-
vance, since P. aeruginosa infections frequently happen in, or in-
duce, acidic extracellular microenvironments that can directly
influence the intracellular pH (37). As a formal test of potential in
vivo relevance, we infected mice with P. aeruginosa in buffered
solutions with various pHs. Mice infected with bacteria at acidic
pH triggered the release of significantly larger amounts of IL-1�
than mice infected with bacteria at relatively neutral or alkaline
pH. This experiment demonstrated the necessity for bacterial
T3SS activity rather than the mere presence of LPS to elicit IL-1�
release and demonstrated for the first time that in vivo shifts in pH
can dramatically alter the inflammatory response to P. aeruginosa.
Additionally, we observed a drop in the peritoneal pH of mice
originally infected with bacteria at neutral pH (data not shown),
which may indicate a temporary drop in pH at the site of infection
due to increased metabolic activity and inflammation. Such drops
in the pH in the microenvironment of infection could have broad
effects on the amplification of the IL-1� response, as demon-
strated by the release of significantly larger amounts of IL-1� in
vivo under acidic conditions in our study. Based on the broad
underlying requirements identified, i.e., a TLR agonist in combi-
nation with an inflammasome stimulus in the presence of physi-
ologically low pH, we speculate that our findings would apply to
host inflammatory responses to many genera of bacteria.

In a broader context, our data support that pH neutralization
may provide therapeutic benefit in situations where deleterious
IL-1� responses contribute to the pathology. Notably, excessive
IL-1� production during chronic infection in CF patients is pro-
posed to lead to increased pulmonary damage in the host and to
subsequent mortality. This is supported by murine studies in
which IL-1 receptor (IL-1R) signaling contributes to bacterial
clearance (5, 7, 67) but excessive IL-1R signaling in response to P.
aeruginosa is deleterious to the host (6, 8). Intriguingly, the pul-
monary airway surface liquid pH is acidified both in clinical CF
patients (30, 62) and in the porcine CF model (29). Data from the
latter demonstrated that the low pH reduced bacterial killing in
the CFTR-deficient porcine lung and, in combination with our
data, suggest that even incremental increases of the pulmonary
fluid pH within localized regions of infection may provide a ther-
apeutic effect by reducing both bacterial burden and IL-1�-medi-
ated lung pathology.

In conclusion, our principal finding is that the proinflamma-
tory IL-1� response is activated at higher levels within physiolog-
ically acidic environments in response to P. aeruginosa infection.
We have described the molecular underpinnings for this exacer-
bated response and have validated our conclusion with the use of
an in vivo peritonitis model. These data provide novel insights into
the regulation of inflammasome responses in acidic microenvi-
ronments and how neutralization of the acidic microenvironment
may provide a therapeutic benefit to the host.
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