55 research outputs found

    MISR Global Aerosol Product Assessment by Comparison with AERONET

    Get PDF
    A statistical approach is used to assess the quality of the MISR Version 22 (V22) aerosol products. Aerosol Optical Depth (AOD) retrieval results are improved relative to the early post- launch values reported by Kahn et al. [2005a], varying with particle type category. Overall, about 70% to 75% of MISR AOD retrievals fall within 0.05 or 20% AOD of the paired validation data, and about 50% to 55% are within 0.03 or 10% AOD, except at sites where dust, or mixed dust and smoke, are commonly found. Retrieved particle microphysical properties amount to categorical values, such as three groupings in size: "small," "medium," and "large." For particle size, ground-based AERONET sun photometer Angstrom Exponents are used to assess statistically the corresponding MISR values, which are interpreted in terms of retrieved size categories. Coincident Single-Scattering Albedo (SSA) and fraction AOD spherical data are too limited for statistical validation. V22 distinguishes two or three size bins, depending on aerosol type, and about two bins in SSA (absorbing vs. non-absorbing), as well as spherical vs. non-spherical particles, under good retrieval conditions. Particle type sensitivity varies considerably with conditions, and is diminished for mid-visible AOD below about 0.15 or 0.2. Based on these results, specific algorithm upgrades are proposed, and are being investigated by the MISR team for possible implementation in future versions of the product

    An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    Get PDF
    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation

    GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    Get PDF
    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD -0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.open1

    Characteristics of Classified Aerosol Types in South Korea during the MAPS-Seoul Campaign

    Get PDF
    During the Megacity Air Pollution Studies-Seoul (MAPS-Seoul) campaign from May to June 2015, aerosol optical properties in Korea were obtained based on the AERONET sunphotometer measurement at five sites (Anmyon, Gangneung_WNU, Gosan_SNU, Hankuk_UFS, and Yonsei_University). Using this dataset, we examine regional aerosol types by applying a number of known aerosol classification methods. We thoroughly utilize five different methods to categorize the regional aerosol types and evaluate the results from each method by inter-comparison. The differences and similarities among the results are also discussed, contingent upon the usage of AERONET inversion products, such as the single scattering albedo. Despite several small differences, all five methods suggest the same general features in terms of the regionally dominant aerosol type: Fine-mode aerosols with highly absorbing radiative properties dominate at HankukUFS and Yonsei_University; non-absorbing fine-mode particles form a large portion of the aerosol at Gosan_SNU; and coarse-mode particles cause some effects at Anmyon. The analysis of 3-day back-trajectories is also performed to determine the relationship between classified types at each site and the regional transport pattern. In particular, the spatiotemporally short-scale transport appears to have a large influence on the local aerosol properties. As a result, we find that the domestic emission in Korea significantly contributes to the high dominance of radiation-absorbing aerosols in the Seoul metropolitan area and the air-mass transport from China largely affects the western coastal sites, such as Anmyon and Gosan_SNU

    Long-term variation of aerosol optical properties associated with aerosol types over East Asia using AERONET and satellite (VIIRS, OMI) data (2012-2019)

    Get PDF
    We analyzed annual and seasonal frequency in aerosol type over an 8-year period (2012-2019) to identify aerosol parameter trends over four ground sites and country regions in Korea, China, and Japan by using the Aerosol Robotic Network (AERONET), and the satellite-based Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Monitoring Instrument (OMI). Decreasing trends are shown for aerosol optical depth (AOD), angstrom ng-stro center dot m exponent (AE), and fine mode fraction (FMF) in all countries. The decreasing trend in these data is considered to be due to a decrease in anthropogenic emissions. For the aerosol type frequency, decreases in the proportions of carbonaceous aerosols (CA) and non-absorbing aerosols (NA) were shown in the ground and satellite data, respectively. At most sites, the fractions of low AOD case (LOW) increased, whereas those of the Black and Brown Carbon (BC + BrC) category decreased. In Seoul, the fraction of LOW increased from 48.9% to 70.0%, and that of BC + BrC decreased continuously from 20.4% to 11.1% during 2012-2019. Beijing, on the other hand, showed decreasing LOW from 83.3% (2012) to 52.0% (2019), and that of BC + BrC increased significantly, from 2.4% to 26.2%. The satellite data showed that the percentage of LOW increased continuously, while that of NA aerosols decreased continuously in East Asia. A noticeable decrease in the fraction of CA was detected in China [21.5% (2013) to 11.2% (2019)]. In all countries, CA and NA aerosols had the greatest effect in winter and summer, respectively. We also detected significant differences between the fractions of NA and BC between the ground and satellite data. Changes in aerosol type and properties were observed concurrently in all ground and satellite data, and changes in aerosol type may explain the increasing and decreasing trends that we recorded for most parameters. Consistent results from both ground and satellite data suggest a steady decreasing in fine aerosol pollution in East Asia

    Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy

    Get PDF
    Biomass burning activities emit high concentrations of aerosol particles to the atmosphere. Such particles can interact with solar radiation, decreasing the amount of light reaching the surface and increasing the fraction of diffuse radiation through scattering processes, and thus has implications for photosynthesis within plant canopies. This work reports results from photosynthetically active radiation (PAR) and aerosol optical depth (AOD) measurements conducted simultaneously at Reserva Biológica do Jaru (Rondonia State, Brazil) during LBA/SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia/ Smoke, Aerosols, Clouds, Rainfall, and Climate) and RaCCI (Radiation, Cloud, and Climate Interactions in the Amazon during the Dry-to-Wet Transition Season) field experiments from 15 September to 15 November 2002. AOD values were retrieved from an AERONET (Aerosol Robotic Network) radiometer, MODIS (Moderate Resolution Spectroradiometer) and a portable sunphotometer from the United States Department of Agriculture - Forest Service. Significant reduction of PAR irradiance at the top of the canopy was observed due to the smoke aerosol particles layer. This radiation reduction affected turbulent fluxes of sensible and latent heats. The increase of AOD also enhanced the transmission of PAR inside the canopy. As a consequence, the availability of diffuse radiation was enhanced due to light scattering by the aerosol particles. A complex relationship was identified between light availability inside the canopy and net ecosystem exchange (NEE). The results showed that the increase of aerosol optical depth corresponded to an increase of CO2 uptake by the vegetation. However, for even higher AOD values, the corresponding NEE was lower than for intermediate values. As expected, water vapor pressure deficit (VPD), retrieved at 28 m height inside the canopy, can also affect photosynthesis. A decrease in NEE was observed as VPD increased. Further studies are needed to better understand these findings, which were reported for the first time for the Amazon region under smoky conditions

    New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    Get PDF
    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched

    Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    Get PDF
    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, ~99.53%. Only ~0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
    corecore