897 research outputs found

    Massive Neutrinos and (Heterotic) String Theory

    Full text link
    String theories in principle address the origin and values of the quark and lepton masses. Perhaps the small values of neutrino masses could be explained generically in string theory even if it is more difficult to calculate individual values, or perhaps some string constructions could be favored by generating small neutrino masses. We examine this issue in the context of the well-known three-family standard-like Z_3 heterotic orbifolds, where the theory is well enough known to construct the corresponding operators allowed by string selection rules, and analyze the D- and F-flatness conditions. Surprisingly, we find that a simple see-saw mechanism does not arise. It is not clear whether this is a property of this construction, or of orbifolds more generally, or of string theory itself. Extended see-saw mechanisms may be allowed; more analysis will be needed to settle that issue. We briefly speculate on their form if allowed and on the possibility of alternatives, such as small Dirac masses and triplet see-saws. The smallness of neutrino masses may be a powerful probe of string constructions in general. We also find further evidence that there are only 20 inequivalent models in this class, which affects the counting of string vacua.Comment: 18 pages in RevTeX format. Single-column postscript version available at http://sage.hep.upenn.edu/~bnelson/singpre.p

    AtomSim: web-deployed atomistic dynamics simulator

    Get PDF
    AtomSim, a collection of interfaces for computational crystallography simulations, has been developed. It uses forcefield-based dynamics through physics engines such as the General Utility Lattice Program, and can be integrated into larger computational frameworks such as the Virtual Neutron Facility for processing its dynamics into scattering functions, dynamical functions etc. It is also available as a Google App Engine-hosted web-deployed interface. Examples of a quartz molecular dynamics run and a hafnium dioxide phonon calculation are presented

    Kahler Stabilized, Modular Invariant Heterotic String Models

    Full text link
    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binetruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.Comment: Invited review article for International Journal of Modern Physic

    Status of the LUX Dark Matter Search

    Full text link
    The Large Underground Xenon (LUX) dark matter search experiment is currently being deployed at the Homestake Laboratory in South Dakota. We will highlight the main elements of design which make the experiment a very strong competitor in the field of direct detection, as well as an easily scalable concept. We will also present its potential reach for supersymmetric dark matter detection, within various timeframes ranging from 1 year to 5 years or more.Comment: 4 pages, in proceedings of the SUSY09 conferenc

    Testing R-parity with geometry

    Get PDF
    We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields. We find that the traditional R-parity assignments of the MSSM more readily accommodate the neutrino see-saw mechanism with non-trivial geometry than those superpotentials that violate R-parity. However there appears to be no geometrical preference for a fundamental Higgs bilinear in the superpotential, with operators that violate lepton number, such as νHH¯, generating vacuum moduli spaces equivalent to those with a fundamental bilinear

    Relic Neutralino Densities and Detection Rates with Nonuniversal Gaugino Masses

    Full text link
    We extend previous analyses on the interplay between nonuniversalities in the gaugino mass sector and the thermal relic densities of LSP neutralinos, in particular to the case of moderate to large tan beta. We introduce a set of parameters that generalizes the standard unified scenario to cover the complete allowed parameter space in the gaugino mass sector. We discuss the physical significance of the cosmologically preferred degree of degeneracy between charginos and the LSP and study the effect this degree of degeneracy has on the prospects for direct detection of relic neutralinos in the next round of dark matter detection experiments. Lastly, we compare the fine tuning required to achieve a satisfactory relic density with the case of universal gaugino masses, as in minimal supergravity, and find it to be of a similar magnitude. The sensitivity of quantifiable measures of fine-tuning on such factors as the gluino mass and top and bottom masses is also examined.Comment: Uses RevTeX; 14 pages, 16 figure

    Theory-Motivated Benchmark Models and Superpartners at the Tevatron

    Get PDF
    Recently published benchmark models have contained rather heavy superpartners. To test the robustness of this result, several benchmark models have been constructed based on theoretically well-motivated approaches, particularly string-based ones. These include variations on anomaly and gauge-mediated models, as well as gravity mediation. The resulting spectra often have light gauginos that are produced in significant quantities at the Tevatron collider, or will be at a 500 GeV linear collider. The signatures also provide interesting challenges for the LHC. In addition, these models usually account for electroweak symmetry breaking with relatively less fine-tuning than previous benchmark models.Comment: 44 pages, 4 figures; some typos corrected. Revisions reflect published versio

    Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence

    Get PDF
    BACKGROUND: The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions. RESULTS: Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp. CONCLUSIONS: The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis

    Studying Gaugino Mass Unification at the LHC

    Full text link
    We begin a systematic study of how gaugino mass unification can be probed at the CERN Large Hadron Collider (LHC) in a quasi-model independent manner. As a first step in that direction we focus our attention on the theoretically well-motivated mirage pattern of gaugino masses, a one-parameter family of models of which universal (high scale) gaugino masses are a limiting case. We improve on previous methods to define an analytic expression for the metric on signature space and use it to study one-parameter deviations from universality in the gaugino sector, randomizing over other soft supersymmetry-breaking parameters. We put forward three ensembles of observables targeted at the physics of the gaugino sector, allowing for a determination of this non-universality parameter without reconstructing individual mass eigenvalues or the soft supersymmetry-breaking gaugino masses themselves. In this controlled environment we find that approximately 80% of the supersymmetric parameter space would give rise to a model for which our method will detect non-universality in the gaugino mass sector at the 10% level with an integrated luminosity of order 10 inverse femptobarns. We discuss strategies for improving the method and for adding more realism in dealing with the actual experimental circumstances of the LHC
    • …
    corecore