String theories in principle address the origin and values of the quark and
lepton masses. Perhaps the small values of neutrino masses could be explained
generically in string theory even if it is more difficult to calculate
individual values, or perhaps some string constructions could be favored by
generating small neutrino masses. We examine this issue in the context of the
well-known three-family standard-like Z_3 heterotic orbifolds, where the theory
is well enough known to construct the corresponding operators allowed by string
selection rules, and analyze the D- and F-flatness conditions. Surprisingly, we
find that a simple see-saw mechanism does not arise. It is not clear whether
this is a property of this construction, or of orbifolds more generally, or of
string theory itself. Extended see-saw mechanisms may be allowed; more analysis
will be needed to settle that issue. We briefly speculate on their form if
allowed and on the possibility of alternatives, such as small Dirac masses and
triplet see-saws. The smallness of neutrino masses may be a powerful probe of
string constructions in general. We also find further evidence that there are
only 20 inequivalent models in this class, which affects the counting of string
vacua.Comment: 18 pages in RevTeX format. Single-column postscript version available
at http://sage.hep.upenn.edu/~bnelson/singpre.p