2,467 research outputs found

    The Hunting of the SNaRC: A Snarky Solution to the Species Problem

    Get PDF
    We argue that the logical outcome of the cladistics revolution in biological systematics, and the move towards rankless phylogenetic classification of nested monophyletic groups as formalized in the PhyloCode, is to eliminate the species rank along with all the others and simply name clades. We propose that the lowest level of formally named clade be the SNaRC, the Smallest Named and Registered Clade. The SNaRC is an epistemic level in the classification, not an ontic one. Naming stops at that level because there is no currently acceptable evidence for clades within it, not because no smaller clades exist. Later, included clades may be named. They would then become the SNaRCs, while the original SNaRC would keep its original name. We argue that all theoretical tasks of biology, in evolution and ecology, as well as practical tasks such as conservation assessment, are better approached using this rankless phylogenetic approach

    Matchmaker, Matchmaker, Make me a Match: Does Cognitive Style Make a Difference?

    Get PDF
    The question of how to better match students’ individual learning capabilities with instructional modalities, with a view to improving student performance, has increasingly attracted researcher and educator attention. Consistent with this trend, a team of faculty from the College of Arts, Sciences and Technology at Franklin University conducted a study that investigated whether differences between instructor and student learning styles may account for performance disparities as well as how students might perform differently as a result of their individual learning preferences. The research sample consisted of 161 college students attending a basic statistics course. Instructor and student learning styles, using the Learning Style Inventory (LSI), as well as students’ course grades, were collected and analyzed over the course of a year. Study results indicated that there was insufficient evidence to support the hypothesis that students’ performance differs significantly as to whether (or to what degree) their learning styles matches that of their instructors. However, the data did suggest that two different learning style groups do appear to perform differently and that the LSI may be sensitive on select learning dimensions. Information in this poster should support educators who give attention to the feeling and doing dimensions of learning when planning instructional activities.https://fuse.franklin.edu/ss2014/1014/thumbnail.jp

    Incorporating temperature and precipitation extremes into process-based models of African Lepidoptera changes the predicted distribution under climate change

    Get PDF
    Terrestrial insects are responding to ongoing climate change. While these responses have been primarily linked to rising temperatures, insects are sensitive to desiccation, and the impacts of altered precipitation regimes remain relatively unexplored. Here, we develop a mechanistic model of survival and performance responses to both temperature and desiccation stress, focussing on Lepidoptera in Africa, where a general understanding of such responses to climate change is urgently required. We run the model with climate data from general circulation models at daily time intervals under current (2011–2015) and projected future (2046–2050) climate scenarios. We first simulate four hypothetical, but typical, Lepidoptera that vary in thermal tolerance and developmental physiology, and then add a constraint on survival due to desiccation. Including desiccation stress leads to a 68% decline in the species range, in comparison to simulations where only species mortality due to temperature is considered. Furthermore, in response to predicted changes in both temperature and rainfall, species performances and survival are expected to change in a non-uniform manner across the landscape: species’ ranges shift towards coastal regions and into higher latitudes in the southern, but not northern, hemisphere. We validate the model predictions with data from two endemic African Lepidoptera, and find that the model agrees well with their empirical distribution, but note that our model fails to account for range expansion due to water availability unrelated to rainfall (e.g. irrigation). Nonetheless, these final simulations show how the model can be readily applied to insects for which baseline physiological data already exist (or for which appropriate data can be gathered), thereby providing a useful framework with which to explore species responses to future changes in temperature and precipitation

    Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus?

    Get PDF
    Ontogenetic variation in plasticity is important to understanding mechanisms and patterns of thermal tolerance variation. The Bogert effect postulates that, to compensate for their inability to behaviourally thermoregulate, less-mobile life stages of ectotherms are expected to show greater plasticity of thermal tolerance than more-mobile life stages. We test this general prediction by comparing plasticity of thermal tolerance (rapid cold-hardening, RCH) between mobile adults and less-mobile larvae of 16 Drosophila species. We find an RCH response in adults of 13 species but only in larvae of four species. Thus, the Bogert effect is not as widespread as expected

    Recent advances in the application of carbohydrates as renewable feedstocks for the synthesis of nitrogen-containing compounds

    Get PDF
    Carbohydrates, in the form of chitin, chitosan and cellulose, are one of the most available, renewable, and sustainable chemical feedstocks. Their conversion to biofuels, fine chemicals, and industrially-relevant monomers is becoming increasingly viable and promising as innovation decreases the price of this technology, and climate change and the price of fossil fuels increases the social and economic costs of using traditional feedstocks. In recent years, carbohydrates have been increasingly used as sources for nitrogen-containing fine chemicals. This chapter, with 86 references, provides a brief overview of the conversion of carbohydrate biomass to the standard hydrocarbon and oxygen-containing derivatives, and then provides a survey of recent progress in converting the biopolymers, and the derived mono and di-saccharides, into nitrogen-containing molecules with a special focus on N-heterocycle synthesis for medicinal applications

    Skeletal Muscle Metabolic Gene Response to Carbohydrate Feeding During Exercise in the Heat

    Get PDF
    Background: Heat stress down-regulates mitochondrial function, while carbohydrate supplementation attenuates the exercise induced stimulation of mitochondrial biogenesis in humans. The effects of exogenous carbohydrate during exercise in the heat on metabolic mRNA have not been investigated in humans. The purpose of this study was to determine the impact of exercise with and without carbohydrate supplementation on skeletal muscle metabolic response in the heat. Methods: Eight recreationally active males (4.05 ± 0.2 L.min-1) completed 2 trials which included 1 hr of cycling at 70% workload max and 3 hr recovery in a hot environment. Both trials were conducted in a climate controlled environmental chamber (38°C and 40% RH). The trials differed by the consumption of either a 6% carbohydrate (CHO) containing beverage (8 ml.kg-1.hr-1) or placebo (P) during exercise in random order. Muscle biopsies were obtained from the vastus lateralis before exercise, immediately post-exercise and at the end of the 3 hr recovery period. Muscle was analyzed for muscle glycogen and mRNA related to metabolic and mitochondrial development (MFN2, PGC-1α, GLUT4, UCP3). Expired gases were measured to determine whole body substrate use during exercise. Results: Carbohydrate oxidation and muscle glycogen utilization did not differ between trials, whereas fat oxidation was elevated during exercise in P. Exercise caused an increase in PGC-1α, and GLUT4 (P \u3c 0.05) independent of exogenous carbohydrate provision. Carbohydrate consumption attenuated the mRNA response in UCP3 (P \u3c 0.05). Conclusions: This study indicates that the provision of exogenous carbohydrate attenuates the stimulation of mRNA expression of UCP3 following exercise in the heat

    Substrate Use and Biochemical Response to a 3,211-km Bicycle Tour in Trained Cyclists

    Get PDF
    The purpose of this study was to assess the physiological adaptations in physically fit individuals to a period of intensified training. Ten trained males cycled outdoors ~170 km day−1 on 19 out of 21 days. Expired gas was collected on days 1 and 21 during maximal graded exercise and used for the determination of gross efficiency and whole body substrate use. Muscle biopsies were obtained before and after exercise on days 2 and 22 for the determination of mtDNA/gDNA ratio, gene expression, metabolic enzyme activity and glycogen use. Muscle glycogen before and after exercise, fat oxidation, and gross efficiency increased, carbohydrate oxidation decreased (p \u3c 0.05), and VO2max did not change over the 21 days of training. Citrate synthase (CS), β-hydroxyacyl CoA dehydrogenase (β-HAD) and cytochrome c oxidase (COX) enzyme activity did not change with training. CS and β-HAD mRNA did not change with acute exercise or training. COX (subunit IV) mRNA increased with acute exercise (p \u3c 0.05) but did not change over the 21 days. PGC-1α mRNA increased with acute exercise, but did not increase to the same degree on day 22 as it did on day 2 (p \u3c 0.05). UCP3 mRNA decreased with training (p \u3c 0.05). Acute exercise caused an increase in mitofusin2 (MFN2) mRNA (p \u3c 0.05) and a trend for an increase in mtDNA/gDNA ratio (p = 0.057). However, training did not affect MFN2 mRNA or mtDNA/gDNA ratio. In response to 3,211 km of cycling, changes in substrate use and gross efficiency appear to be more profound than mitochondrial adaptations in trained individuals

    Metabolic Profile of the Ironman World Championships: A Case Study

    Get PDF
    Purpose: The purpose of this study was to determine the metabolic profile during the 2006 Ironman World Championship in Kailua-Kona, Hawaii. Methods: One recreational male triathlete completed the race in 10:40:16. Before the race, linear regression models were established from both laboratory and field measures to estimate energy expenditure and substrate utilization. The subject was provided with an oral dose of (2)H(2)(18)O approximately 64 h before the race to calculate total energy expenditure (TEE) and water turnover with the doubly labeled water (DLW) technique. Body weight, blood sodium and hematocrit, and muscle glycogen (via muscle biopsy) were analyzed pre- and postrace. Results: The TEE from DLW and indirect calorimetry was similar: 37.3 MJ (8,926 kcal) and 37.8 MJ (9,029 kcal), respectively. Total body water turnover was 16.6 L. and body weight decreased 5.9 kg. Hematocrit increased from 46 to 51% PCV. Muscle glycogen decreased from 152 to 48 mmoL/kg wet weight pre- to postrace. Conclusion: These data demonstrate the unique physiological demands of the Ironman World Championship and should be considered by athletes and coaches to prepare sufficient nutritional and hydration plans

    Loss of ion homeostasis is not the cause of chill coma or impaired dispersal in false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae)

    Get PDF
    Dispersal is a central requirement of a successful sterile insect release programme, but field-released false codling moth (FCM) typically suffer from poor dispersal ability, especially at low ambient temperatures. Here we test the hypothesis that poor activity and dispersal in FCM is caused by delayed or perturbed recovery of ion and/or water homeostasis after chilling for handling and transport prior to field release. Hemolymph and flight muscle were collected from two treatment groups at three time points that targeted thermal conditions above and below the chill coma induction threshold of ~ 6 °C: 1) control moths kept at 25 °C, 2) moths exposed to 3 °C or 9 °C for 4 h, and 3) moths allowed to recover at 25 °C for 24 h after exposure to either 3 °C or 9 °C. We measured concentrations of Na+, K+ and Mg2+ in the hemolymph and muscle collected at each time point. Exposure to a chill-coma inducing temperature had little effect overall on ion balance in the hemolymph and flight muscle of false codling moth, but hemolymph [Na+] decreased from 10.4 ± 0.4 mM to 6.9 ± 0.7 mM as moths were chilled to 3 °C and then increased to 10.4 ± 0.9 mM after the 24 h recovery period. In the 9 °C cooling treatment, [K+] increased from 8.2 ± 0.5 mM during chilling to 14.1 ± 1.9 mM after the 24 h recovery period. No changes were seen in equilibrium potentials in either of the ions measured. Thus, we did not find evidence that water and ion homeostasis are lost by the moths in chill coma and conclude that reduced dispersal in field-released moths is not direct a consequence of the costs of re-establishment of homeostasis
    • …
    corecore