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RESEARCH ARTICLE Open Access

Skeletal muscle metabolic gene response to
carbohydrate feeding during exercise in the heat
Charles L Dumke1*, Dustin R Slivka2, John S Cuddy1, Walter S Hailes1 and Brent C Ruby1

Abstract

Background: Heat stress down-regulates mitochondrial function, while carbohydrate supplementation attenuates
the exercise induced stimulation of mitochondrial biogenesis in humans. The effects of exogenous carbohydrate
during exercise in the heat on metabolic mRNA have not been investigated in humans. The purpose of this study
was to determine the impact of exercise with and without carbohydrate supplementation on skeletal muscle
metabolic response in the heat.

Methods: Eight recreationally active males (4.05 ± 0.2 L.min-1) completed 2 trials which included 1 hr of cycling at
70% workload max and 3 hr recovery in a hot environment. Both trials were conducted in a climate controlled
environmental chamber (38°C and 40% RH). The trials differed by the consumption of either a 6% carbohydrate
(CHO) containing beverage (8 ml.kg-1.hr-1) or placebo (P) during exercise in random order. Muscle biopsies were
obtained from the vastus lateralis before exercise, immediately post-exercise and at the end of the 3 hr recovery
period. Muscle was analyzed for muscle glycogen and mRNA related to metabolic and mitochondrial development
(MFN2, PGC-1α, GLUT4, UCP3). Expired gases were measured to determine whole body substrate use during
exercise.

Results: Carbohydrate oxidation and muscle glycogen utilization did not differ between trials, whereas fat oxidation
was elevated during exercise in P. Exercise caused an increase in PGC-1α, and GLUT4 (P < 0.05) independent of
exogenous carbohydrate provision. Carbohydrate consumption attenuated the mRNA response in UCP3 (P < 0.05).

Conclusions: This study indicates that the provision of exogenous carbohydrate attenuates the stimulation of
mRNA expression of UCP3 following exercise in the heat.

Keywords: Mitochondrial biogenesis, PGC-1α, UCP3, Carbohydrate supplementation, Substrate utilization

Background
Mitochondrial adaptation is recognized as important in
both health and disease. For some time it has been known
that exercise induces critical adaptations in mitochondrial
function within skeletal muscle [1]. More recently other
factors have been considered key modifiers of mitochon-
drial and metabolic adaptation such as fat feeding [2], se-
lect bioflavonoids [3,4], intensity, duration and frequency
of exercise [5-8], environmental temperature [9-13], and
carbohydrate availability during exercise [14-16]. Acute
markers for mitochondrial and metabolic alterations in fuel
oxidation used in these investigations include mRNA for

many different proteins involved in metabolism. These
genes include the transcription regulator mitochondrial de-
velopment peroxisome-proliferator- activated receptor-
gamma co-activator 1 alpha (PGC-1α) [17,18], uncoupling
protein 3 (UCP3) [12,19,20], the mitochondrial fusion pro-
tein mitofusin 2 [12,21], and other metabolic genes import-
ant for carbohydrate oxidation such as glucose transporter
4 (GLUT4) [22].
Carbohydrate consumption during exercise is capable

of altering the stimuli for metabolic adaptation [14-16].
Cluberton et al. [14] have shown that carbohydrate con-
sumption during exercise can attenuate the metabolic
gene expression when completed in ambient tempera-
tures. They showed that consumption of a 6% carbohy-
drate beverage during 1 hr of cycling at ~74% VO2max

lowered the exercise induced increase in mRNA of
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PDK4 and UCP3 3 hr post-exercise, but not PGC-1α or
GLUT4. As the authors suggest, this attenuation may be
due to the increase in carbohydrate oxidation, suppres-
sion of circulating free fatty acids, and the elevation of
insulin by exogenous carbohydrate consumption. Similar
to carbohydrate consumption during exercise, exposure
to heat in exercising humans has been shown to result
in an upregulation of carbohydrate oxidation [23,24].
How carbohydrate delivery in the heat affects the meta-
bolic adaptation to exercise remains poorly understood.
Previously we have shown in humans that PGC-1α

gene expression is elevated in the cold, and attenuated
following exercise in hot environments [12]. We demon-
strated a ~20% reduction in PGC-1α mRNA following
exercise in the heat (33°C). This attenuation in the heat
is supported in other models as heat stress down-
regulates mitochondrial function in yeast and broiler
chickens [9-11]. In yeast, microarray genes associated
with mitochondrial respiration were depressed following
exposure to mild heat stress (37°C), and conversely
genes associated with glycolysis were upregulated [10].
However this is not a universal finding across different
experimental models [13,25]. In the absence of exercise,
heat is capable of elevating expression of UCP3 in por-
cine muscle [25].
Since both environmental temperature and substrate

availability can alter the metabolic gene response to ex-
ercise [12,14], it remains to be seen if carbohydrate in-
gestion in the heat attenuates the metabolic gene response
following exercise and recovery in humans. Our purpose
was to determine the impact of carbohydrate supplementa-
tion on select markers of exercise induced metabolic
mRNA (PGC-1α, MFN2, UCP3, and GLUT4) in a hot
environment (38°C).

Methods
Subjects
Eight male participants (23.5 ± 1.4 yrs, 76.6 ± 1.7 kg, 52.9 ±
2.2 ml•kg-1•min-1, 12.4 ± 1.6% body fat) volunteered for par-
ticipation in the study. Prior to testing, participants read and
signed an informed consent form approved by the Univer-
sity of Montana Institutional Review Board for the ethical
use of human subject research and meet the standards of
the Declaration of Helsinki.

Experimental design
Subjects (N = 8) completed 2 trials of 1 hr cycling at a
constant load of 70% workload max (195.6 ± 11.3 watts)
and 3 hr of recovery in a hot environment. Subjects ar-
rived in the morning following an 8 hr fast. Both trials
were in a controlled climate chamber at 38°C and 40%
relative humidity, and separated by at least one week.
Subjects were not heat acclimatized since the study was
conducted in April at ~46°N latitude at the end of the

northern hemisphere winter. The two counterbalanced
trials for each participant differed by the provision of ei-
ther a 6% carbohydrate (CHO) or placebo (P) beverage
in random order. To achieve a 6% CHO solution, malto-
dextrin was mixed with an artificially flavored and sweet-
ened commercially available powder (Crystal Light, Kraft
Foods, Glenview, IL). Placebo contained the commer-
cially available powder with no maltodextrin or other
macronutrient energy, both P and CHO included 140 mg
sodium per liter. Subjects were instructed to abstain from
strenuous exercise for 48 hr, and no exercise for 24 hr be-
fore each trial. Subjects recorded diet intake for 24 hr
prior to the day of the first trial and were instructed to
replicate this exact diet prior to the second trial day.
Muscle biopsies were collected pre ride, post ride and at
the end of the 3 hr of recovery. On the morning of the
trials, immediately prior to the exercise bout (< 5 min)
subjects ingested 8 ml•kg-1 of the prescribed beverage,
during exercise each beverage was consumed at a rate
of 4 ml•kg-1•30 min-1 (~37 g•hr-1 for CHO trial) and
4 ml•kg-1•hr-1 (~18.4 g•hr-1 for CHO trial) during re-
covery. Body weights were recorded prior to entering
the climate chamber, post ride, and at the end of the
3 hr recovery. Core temperatures were not measured
since the chamber temperature was the same for both
trials. Previously published reports from our lab indi-
cate that a similar exercise protocol in the heat results
in rectal temperatures exceeding 39°C [26]. Expired
gases and rating of perceived exertion (RPE) were
measured at 4, 24, and 54 min during the 1 hr exer-
cise. VO2 and VCO2 were used determine whole-body
fuel oxidation using the equation of Péronnet and
Massicotte [27].

Body composition
Body density was determined using hydrodensitometry and
corrected for estimated residual lung volume. Net under-
water weights were recorded using load cells (Exertech,
Dresbach, MN). Body density was then converted to body
composition using the Siri equation [28].

Maximal exercise capacity
Maximum oxygen consumption (VO2max) and power
associated with VO2max was measured for each fasted
subject using a graded exercise protocol (starting at
95 W and increasing 35 W every three minutes) on an
electronically braked cycle ergometer trainer (Velotron,
RacerMate Inc., Seattle, WA). Maximum power was cal-
culated as the highest completed stage (in W) plus the
proportion of time in the last stage multiplied by the
35 W stage increment. Expired gases were measured
and averaged in 15-second intervals during the test
using a calibrated metabolic cart (Parvomedics, Inc., Salt
Lake City, UT).
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Biopsies
Biopsies were obtained pre and post exercise and follow-
ing 3 h of recovery for the analysis of muscle glycogen,
and metabolic gene expression (see below). Biopsies were
taken from the vastus lateralis muscle using a 4–5 mm
Bergstrom percutaneous muscle biopsy needle with the
aid of suction. Biopsies were obtained from the same leg
for a given trial using a separate incision 2 cm proximal to
the previous biopsy. After excess blood, connective tissue,
and fat were quickly removed, tissue samples (50–100 mg)
were immersed in liquid nitrogen and stored at −80°C for
subsequent analysis.

Glycogen
Muscle glycogen was analyzed using an enzymatic spec-
trophotometric method. Muscle samples were weighed
(5–15 mg) upon removal from a −80°C freezer and
placed in 0.5 ml, 2 N HCl solution. The sample solutions
were weighed, incubated for two hours at 100°C in an
oven, then re-weighed and re-constituted to their ori-
ginal weight using distilled water. To normalize pH,
1.5 ml of 0.67 M NaOH was added. An aliquot of this
muscle extract (100 μl) was added to 1 ml of Infinity
glucose (HK) liquid stable reagent (Thermo Fisher
Scientific, Waltham, MA) and the absorbance read on
a spectrophotometer at 340 nm. Glycogen concentra-
tion was calculated using the extinction co-efficient of
NADH. Muscle glycogen concentrations are expressed in
mmol ⋅ kg-1 wet weight of muscle tissue.

mRNA isolation
An 8–20 mg piece of skeletal muscle from the pre-
exercise and 3 h recovery biopsies was homogenized in
800 μl of trizol (Invitrogen, Carlsbad CA, Cat# 15596–
018) using an electric homogenizer (Tissue Tearor,
Biosped Products Inc, Bartlesville OK). Samples were
then incubated at room temperature for 5 minutes after
which 200 μl of chloroform per 1000 μl of trizol was
added and shaken vigorously. After an additional incuba-
tion at room temperature for 2–3 minutes the samples
were centrifuged at 12,000 g for 15 minutes and the
aqueous phase was transferred to a fresh tube. mRNA
was precipitated by adding 400 μl of isopropyl alcohol

and incubated overnight at −20°C. The next morning
samples were centrifuged at 12,000 g for 10 minutes at
4°C and the mRNA was washed by removing the super-
natant and adding 800 μl of 75% ethanol. Samples were
vortexed and centrifuged at 7,500 g for 5 minutes at 4°C.
mRNA was re-dissolved in 100 μl RNase-free water after
the supernatant was removed and the mRNA pellet was
dried. The RNA was cleaned using the RNeasy mini kit
(Qiagen, Valencia CA, Cat#74104) according to the man-
ufacturer’s protocol using the additional DNase digestion
step (RNase-free DNase set, Qiagen, Valencia CA, Cat#
79254). RNA purity was analyzed by the A260:A280 ra-
tio and quantified on a nano-spectrophotometer (nano-
drop ND-1000, Wilmington DE).
cDNA synthesis. First-strand cDNA synthesis was

achieved using Superscript-first-strand synthesis system
for RT-PCR kit (Invitrogen, Carlsbad CA, Cat #11904-
0818) according to the manufacturer’s protocol. Each
sample within a given subject was normalized to the
same amount of RNA. The resulting cDNA was then
diluted two fold using RNase free water in order to have
adequate volume for RT-PCR and frozen for later
analysis.

Real time RT-PCR
Primer and Probe sequences are presented in Table 1.
Each 25 μl reaction volume contained 500 nM primers,
250 nM probe (PrimeTime qPCR assay, Integrated DNA
technologies), 1× FastStart TaqMan Probe master (Roche
Applied Science, Indianapolis IN), and 2.5 μl of sample
cDNA. PCR was then run using the Bio-Rad I Cycler iQ5
Real-Time PCR Detection system (Bio-Rad, Hercules CA)
using a 2-step Roche protocol (1 cycle at 50°C for 10 mi-
nutes, 1 cycle at 95°C for 10 minutes, followed by 40 cycles
of 95°C for 15 seconds followed by 60°C for 1 minute).
Quantification of mRNA from the pre and 3 h post exer-
cise samples was calculated using the 2-ΔΔCT as described
earlier [29,30]. GAPDH was used as the reference house-
keeping gene as it has been demonstrated to be the most
stable among other common housekeeping genes follow-
ing aerobic exercise and environmental temperature
[12,31,32]. The stability of GAPDH was analyzed by the
ΔCT method [29,30].

Table 1 Primers and probes used for real-time PCR

Gene Primer 1 Primer 2 Probe

GAPDH TGTAGTTGAGGTCAATGAAGGG ACATCGCTCAGACACCATG AAGGTCGGAGTCAACGGATTTGGTC

MFN2 ATGCATCCCACTTAAGCAC CCAGAGGGCAGAACTTTCTC AGAGGCATCAGTGAGGTGCT

PGC-1α ATAAATCACACGGCGCTCTT TGAGAGGGCCAAGCAAAG AGAGGCAGAGGCAGAAGG

UCP3 CAAAATCCGGGTAGTGAGGCT TGACTCCGTCAAGCAGGTGTAC CCCCCAAAGGCGCGGACAAC

GLUT4 TCTTCACCTTGGTCTCGGTGTTGT CACGAAGCCAAAGATGGCCACAAT ATGTGTGGCTGTGCCATCCTGATGA

GAPDH Glyceraldehyde 3-phosphate dehydrogenase, MFN2 mitofusin 2, PGC-1α peroxisome-proliferator- activated receptor-gamma co-activator 1 alpha, UCP3
uncoupling protein 3, GLUT4 glucose transporter 4.
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Statistics
Dependent variables were compared using two-way repeated-
measures ANOVA’s (time x trial or exercise-recovery ×
CHO). In the event of a significant f-ratio, post hoc Fish-
ers protected least significant difference procedure was
used to determine where differences occurred. All statis-
tics were performed using SPSS for windows Version 13
(Chicago, IL). A probability of type I error less than 5%
was considered significant (p < 0.05). All data are reported
as mean ± SE.

Results
Exercise trials
Prescribed fluid intakes were 2.16 ± 0.05 L over the
course of the one hour of exercise and 3 h of recovery.
Subjects lost an average of 0.63 ± 0.07 and 0.73 ± 0.13 kg
body weight during the CHO and P trials respectively
(p < 0.05), regardless of trial. This <1% of body weight
loss suggests fluid intakes were sufficient to adequately
meet sweat rates during the hot trials. The prescribed
carbohydrate intake amounted to 129.6 ± 3.0 g of carbohy-
drate, or 518.4 ± 12.0 kcals over the 4 hr in the climate
chamber during the CHO trial. Heart rate, RPE, oxygen
consumption and carbon dioxide production increased
during the exercise period (p < 0.05), but did not differ
between trials (Table 2).
Subjects finished the exercise trial at a mean RPE

of >17 (Table 2), suggesting that the combination of the
heat and exercise was perceptually difficult. RER was
lower by the end of the 1 hr exercise bout during P com-
pared to CHO trial (significant trial × time interaction,
p = 0.017), demonstrating a greater reliance on fat by the
end of the P trial (Table 2). There was not a significant
effect of exercise (p = 0.5) or trial (p = 0.18) on absolute
carbohydrate oxidation (Figure 1A). Absolute fat oxida-
tion was not different between trials (p = 0.10), but did
show a significant increase (p = 0.02) in fat use by the
end of their 1 hr bout of cycling (Figure 1B).
Muscle Glycogen Muscle glycogen did not differ

between trials (p = 0.57), but decreased as a result of the
exercise bout (p < 0.001) (Figure 2). This represents a
35% and 44% reduction pre and post exercise for the
CHO and P trial respectively. Muscle glycogen did not

significantly increase from post exercise to 3 hr of recov-
ery in either trial.
Gene Expression There was not a significant effect of

exercise in the heat on our housekeeping gene, GAPDH
(p = 0.3). Metabolic and mitochondrial gene expression
from the pre and 3 hr post exercise muscle samples
using the 2-ΔΔCT method is presented in Figure 3. There
was a significant effect for exercise on GLUT4 mRNA
(P = 0.04), increasing 20% and 27% in the CHO and P
trial respectively. GLUT4 expression was not altered by
CHO treatment. Exercise increased PGC-1α (P < 0.001)
8 and 9.5 fold in the CHO and P trial respectively, but
did not show a significant effect of treatment (P = 0.15).
MFN2 did not change with exercise in the heat or
carbohydrate supplementation. There was a significant
effect of exercise (P < 0.001) and interaction (CHO × ex-
ercise) for UCP3 (P = 0.001), where UCP3 mRNA in the
placebo trial increased over 2 fold but did not increase
during the CHO trial.

Discussion
These data support previous research demonstrating the
carbohydrate attenuation of metabolic adaptations to ex-
ercise. Specifically, this investigation showed the attenu-
ation of the exercise stimulation of skeletal muscle
UCP3 mRNA with carbohydrate consumption in the
heat. We also confirmed exercise induced increases in
GLUT4 and PGC-1α in the heat. A previous investiga-
tion demonstrated that carbohydrate consumption dur-
ing exercise attenuated the mRNA expression for both
UCP3 and PDK4, and only a trend towards GLUT4 in
ambient conditions [14]. Similarly, we did not show a sig-
nificant effect of carbohydrate consumption on GLUT4
(p = 0.7), but did observe an attenuation in UCP3 mRNA
in the current investigation. A direct comparison between
environmental temperatures would need to be performed
to determine if environmental conditions alter these CHO
attenuating effects.
In the current investigation carbohydrate oxidation did

not differ between trials despite exercising for 1 hr at
70% workload max at 38°C and 40% RH with and with-
out oral carbohydrate consumption. Perhaps the similar
rates of carbohydrate oxidation are due to an increase in

Table 2 VO2, VCO2, RER, HR, and RPE during 1 h exercise trials in the heat, with and without CHO

Placebo CHO

4 min 24 min 54 min 4 min 24 min 54 min

VO2 (L · min-1) 2.91 ± 0.10 3.21 ± 0.15 3.63 ± 0.19* 3.01 ± 0.16 3.25 ± 0.16 3.52 ± 0.22*

VCO2 (L · min-1) 2.64 ± 0.07 2.79 ± 0.12 3.11 ± 0.17* 2.72 ± 0.13 2.87 ± 0.15 3.10 ± 0.19*

RER 0.91 ± 0.01 0.87 ± 0.01 0.86 ± 0.01† 0.90 ± 0.01 0.88 ± 0.01 0.88 ± 0.01†

HR (beats · min-1) 138.5 ± 6.7 158.9 ± 5.4 172.6 ± 4.9* 151.4 ± 5.9 162.0 ± 5.4 173.1 ± 4.4*

RPE 12.6 ± 0.3 15.0 ± 0.5 17.8 ± 0.6* 12.4 ± 0.5 15.1 ± 0.5 17.9 ± 0.4*

*p < 0.05 main effect of time; † p < 0.05 main effect of trial X time.

Dumke et al. Journal of the International Society of Sports Nutrition 2013, 10:40 Page 4 of 8
http://www.jissn.com/content/10/1/40



the oxidation of endogenous carbohydrate in the heat
during the P trial. Our selection of study design does
not allow us to make this direct comparison, however
the increase in carbohydrate oxidation in the heat is well
established [23,24]. This may explain why only UCP3
was attenuated in the CHO trial in our investigation and
not GLUT4. The glucose transporter GLUT4 is a gene
linked to carbohydrate oxidation [33,34]. Cluberton
et al. [14] showed a trend (p = 0.09) for carbohydrate
consumption to attenuate the exercise induced increase
in gene expression for GLUT4 under ambient condi-
tions. Although they demonstrated a 2 fold increase with
exercise on GLUT4 expression, it is not apparent that
this reached statistical significance. In the current study,
although there was a significant effect of exercise, we
saw no evidence of carbohydrate ingestion on GLUT4
mRNA expression (p = 0.7). It is compelling to believe
that this may be due to the lack of difference between
CHO and P trials in absolute carbohydrate oxidation in
the heat, which may mask the effects of carbohydrate in-
gestion on this gene. It is a limitation of the current
study that there were not ambient temperature trials
(with and without carbohydrate) by which to compare
the effects of the heat, however this was eliminated due
to the stress on the subjects (amounting to 4 trials and
12 biopsies). The purpose of this study was to provide
initial insight on this topic, while relying on the previ-
ously reported effect of CHO consumption under ambi-
ent conditions on these genes [14].
Depletion of glycogen is thought to be a potential as-

pect of the stimulation of mitochondrial biogenesis [35].
Exercise in the current study was sufficient to lower
muscle glycogen levels ~40%, which is believed to be
capable of stimulating AMPK, an upstream covalent
modifier of PGC-1α [5,36,37]. In the current study
glycogen depletion and carbohydrate oxidation did not
differ between trials during the 1 h of exercise, indirectly
suggesting that AMPK activity was similar between tri-
als. This is supported by others, as carbohydrate inges-
tion during cycling is not thought to alter glycogen
utilization [14,38]. As well, carbohydrate ingestion dur-
ing cycling does not appear to alter AMPK signaling in
humans [39]. This may explain why GLUT4 was not dif-
ferent between trials, since AMPK is thought to be a po-
tent simulator of GLUT4 transcription [40]. Despite this
lack of effect of carbohydrate ingestion on GLUT4,
UCP3 mRNA expression was attenuated by carbohy-
drate ingestion. This suggests that the UCP3 gene may
be more sensitive to fat oxidation. We showed a signifi-
cant effect of carbohydrate ingestion on RER, with the P
trial demonstrating greater fat reliance by the end of the
exercise bout. We unfortunately do not have substrate
oxidation data for the 3 h of recovery prior to the last bi-
opsy, when mRNA expression was sampled. However
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since the P trial received no carbohydrate into the recov-
ery period, it is quite possible that the greater fat oxida-
tion during the later stages of exercise continued into
recovery in the P trial and subsequently attenuated the
UCP3 mRNA expression. This is supported by evidence
that elevated circulating fatty acids are associated with
the upregulation of skeletal muscle expression of UCP3
[14,41-43]. We do not have evidence of circulating free
fatty acids (FFA) in the current study, but it is well
established that fasted exercise in the absence of carbo-
hydrate delivery elevates FFA compared to carbohydrate
trials [44]. Although fat oxidation appears to coincide
with UCP3 expression, the metabolic role of this protein
in skeletal muscle remains unclear as it suggests a loss
of exercise efficiency by uncoupling the proton gradient
created in the electron transport chain from ATP syn-
thesis. However, besides fat oxidation, UCP3 has been
implicated as being important in the control of thermo-
genesis and the regulation of oxidative stress [45]. The
long term implications of the attenuation of UCP3 ex-
pression following exercise with carbohydrate supple-
mentation in this study and others has yet to be
determined [14,43]. It is intriguing to think that lower
UCP3 mRNA may play a role in previous evidence of
the carbohydrate attenuating effect on fat oxidation with
exercise training [44,46]. These studies demonstrated
that low carbohydrate availability (fat adapted) resulted
in greater rates of fat oxidation even when glycogen
levels were restored with a day on a high carbohydrate
diet. Our study and others have shown that UCP3 is the
gene most consistently attenuated with the consumption
of exogenous carbohydrate. How UCP3 expression is af-
fected during longer periods of low carbohydrate

availability remain to be seen. Acute changes in mRNA
expression must be interpreted with caution, since pro-
tein amounts as the result of chronic adaptation were
not the focus of this study.
For the other genes investigated, this study is consist-

ent with previous literature which shows that the expres-
sion of GLUT4 [22] and PGC-1α mRNA is elevated
following exercise [6,17,18]. More surprisingly, exercise
stimulated increases in mRNA were not seen in MFN2,
as these have previously been shown to be sensitive to
exercise [8,12,14,21,47]. We confirmed in this study that
our housekeeping gene was insensitive to both heat and
exercise, and this is supported in the literature [12,31,32].
Therefore, it remains unknown why an exercise induced
increase in MFN2 was not observed in the current study.
MFN2 is a mitochondrial membrane protein involved in
the fusion events of the mitochondrial architecture [21].
Increased expression of this gene is thought to lead to
greater mitochondrial function through matrix protein
mixing [48]. One of our previous investigations showed
robust (~50%) increases in MFN2 following 5 hr of cyc-
ling, suggesting that greater exercise intensity or duration
may be needed for up regulation of this gene [8]. However,
in another investigation from our lab, 1 hr of cycling at
60% of maximum workload increased MFN2 expression
(~20%) [12]. In the current study the exercise protocol
(1 hr at 70% maximum workload) should have been suffi-
cient to increase MFN2 gene expression. Due to the de-
sign of this study it is not apparent whether this is due to
the modest stress of the exercise bout, modest changes in
individual variability in a somewhat small sample size, or
an attenuating effect of the hot environment. We previ-
ously showed that MFN2 is not significantly affected by
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exercise in varying environmental temperatures, with simi-
lar exercise responses in the heat (33°C), cold (7°C), and
neutral (20°C) environments [12]. This suggests that small
increases in variability with a sample size of eight may have
affected the statistical outcome of this particular gene. Des-
pite this, carbohydrate supplementation had no apparent
attenuating effects on this mitochondrial fusion gene. To
our knowledge this is the first time MFN2 has been investi-
gated following carbohydrate supplementation in humans.

Conclusions
These data contribute to the general understanding of
stimuli regulating metabolic adaptation following exer-
cise. We found that exercise and recovery in the heat
stimulates genes for PGC-1α, UCP3 and GLUT4. Carbo-
hydrate ingestion during exercise and recovery in a hot
environment attenuated mRNA expression of UCP3, but
had no effect on the expression of MFN2, GLUT4 and
PGC-1α. It remains to be seen through a direct compari-
son of environmental temperatures if this is due to simi-
lar carbohydrate oxidation rates when carbohydrate is
ingested in the heat during exercise.
Regardless of environmental temperature, these data

should not be interpreted as reason to avoid ingesting
carbohydrate during exercise. Carbohydrate delivery dur-
ing exercise bouts of >1 hr is well known to increase
performance [49-51]. However, a growing body of evi-
dence may also suggest that carbohydrate availability
during training bouts can alter the metabolic response
and perhaps result in increased reliance on fat stores
when carbohydrate availability is low [2,7,8,52]. The con-
cept of a ‘periodized diet’ to control and maximize fuel
oxidation and the adaptations to specific blocks of train-
ing for both endurance and resistance exercise is an ex-
citing new area of applied sport nutrition research.
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