13 research outputs found

    Molecular architecture and function of adenovirus DNA polymerase

    Get PDF
    Central to this thesis is the role of adenovirus DNA polymerase (Ad pol) in adenovirus DNA replication. Ad pol is a member of the family B DNA polymerases but belongs to a distinct subclass of polymerases that use a protein as primer. As Ad pol catalyses both the initiation and elongation phases and needs to accomodate both DNA and protein as a primer, it is not surprising that a large number of protein-protein and protein-DNA interactions are involved in efficient replication. Indeed, Ad pol is known to interact with pTP, NFI and DNA, although our understanding of these interactions is limited. In this thesis, these interactions have been studied in greater detail. After an introductory chapter on DNA dependent DNA polymerases and Ad replication, the jumping back mechanism that characterizes the change from initiation to elongation is extensively reviewed in chapter 2. In chapter 3, the highly conserved (I/Y)XGG motif of Ad pol is studied. In chapter 4, the interaction between Ad pol and DNA is further studied by the use of biotinylated oligo-nucleotides with a bulky streptavidin block. Chapter 5 examines the termination of Ad pol on the native TP-containing viral DNA. Finally, in chapter 6 the recruitment of the pTP-pol complex via a direct interaction between Ad pol and NFI is studied in detail

    SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner

    Get PDF
    The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we identified five acetylated residues in FOXA2. Sirtuin family member SIRT1 was found to interact with and deacetylate FOXA2, the latter process being dependent on the NAD +-binding catalytic site of SIRT1. Deacetylation by SIRT1 reduced protein stability of FOXA2 by targeting it towards proteasomal degradation, and inhibited transcription from the FOXA2-driven G6pase and CPT1a promoters. While mutation of the five identified acetylated residues weakly affected protein acetylation and stability, mutation of at least seven additional lysine residues was required to abolish acetylation and reduce protein levels of FOXA2. The importance of acetylation of FOXA2 became apparent upon changes in nutrient levels. The interaction of FOXA2 and SIRT1 was strongly reduced upon nutrient withdrawal in cell culture, while enhanced Foxa2 acetylation levels were observed in murine liver in vivo after starvation for 36 hours. Collectively, this study demonstrates that SIRT1 controls the acetylation level of FOXA2 in a nutrient-dependent manner and in times of nutrient shortage the interaction between SIRT1 and FOXA2 is reduced. As a result, FOXA2 is protected from degradation by enhanced acetylation, hence enabling the FOXA2 transcriptional program to be executed to maintain metabolic homeostasis

    Принципи управління персоналом сільськогосподарських підприємств (на прикладі Луганської області)

    Get PDF
    У статті проаналізовано сучасний стан сільськогосподарського виробництва в Луганській області та здійснена оцінка перспектив реформування управління персоналом на підприємствах АПК. Регресійним аналізом оцінено ступінь впливу деяких факторів на рентабельність персоналу. Рекомендується використання SWOT-аналізу для дослідження й формування раціонального управління персоналом підприємств АПК.Performed analysis of the current state of agriculture in the Luhansk region, evaluated the prospects for personnel resources reforming for the agricultural enterprises. The degree of factors influencing on profitability of personnel is appraised by the regressive analysis. SWOT-analysis is recommended for research and forming of agrarian enterprises rational management of a personnel

    Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects

    Get PDF
    Contains fulltext : 155161.pdf (publisher's version ) (Open Access)Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes underwent electric pulse stimulation (EPS) to induce contraction. Subsequently the effects of EPS-conditioned media (EPS-CM) on hepatocytes were investigated. Here, we demonstrate that EPS-CM induces Metallothionein 1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat hepatocytes. When testing EPS-CM that was generated in the absence of C2C12 myotubes (non-cell EPS-CM) no decrease in Cyp2a3 expression was detected. However, similar inductions in hepatic Mt1/2 and Slc30a2 expression were observed. Non-cell EPS-CM were also applied to C2C12 myotubes and compared to C2C12 myotubes that underwent EPS: here changes in AMPK phosphorylation and myokine secretion largely depended on EPS-induced contraction. Taken together, these findings indicate that EPS can alter C2C12 myotube function and thereby affect gene expression in cells subjected to EPS-CM (Cyp2a3). However, EPS can also generate non-cell-mediated changes in cell culture media, which can affect gene expression in cells subjected to EPS-CM too. While EPS clearly represents a valuable tool in exercise research, care should be taken in experimental design to control for non-cell-mediated effects

    RNAi-mediated transgenic tospovirus resistance broken by intraspecies NSs complementation

    No full text
    Extension of an inverted repeat transgene cassette, containing partial nucleoprotein (N) gene sequences from four different tomato-infecting Tospovirus spp. with a partial N gene sequence from the tomato strain of Tomato yellow ring virus (TYRV-t), renders transgenic Nicotiana benthamiana plants additionally resistant to this strain but not to the soybean strain of this Tospovirus sp. (TYRV-s), both strains exhibiting 14.4% nucleotide sequence divergence in their N genes. Surprisingly, coinoculation of the TYRV-t-resistant transgenic lines with both TYRV-t and TYRV-s resulted in rescue of the former. Mass-spectrometric analysis of the viral ribonucleocapsids accumulating in the transgenic plants showed the presence of the N proteins of both strains excluding hetero-encapsidation as rescue mechanism and indicating suppression of TYRV-t N gene transcript breakdown by RNA interference. Prior (Potato virus X [PVX]-vector-mediated) expression of the TYRV-s silencing suppressor (NSs) gene also allowed TYRV-t to break the resistance. This phenomenon was also observed when the homologous (TYRV-t) NSs gene was provided from a PVX replicon, demonstrating that TYRV can break RNA-mediated host resistance upon a priori expression of its NSs protein. Remarkably, mixed inoculation of TYRV-t with other Tospovirus spp. or nonrelated viruses did not result in resistance breaking, indicating that the rescuing activity of NSs—though based on suppressing RNA silencing—is species-dependent

    Quantification of in vivo oxidative damage in Caenorhabditis elegans during aging by endogenous F3-isoprostane measurement

    No full text
    Oxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach for accurate, sensitive, and linear in vivo quantification of endogenous oxidative damage in the nematode Caenorhabditis elegans, based on F3-isoprostanes. F3-isoprostanes are prostaglandin-like markers of oxidative damage derived from lipid peroxidation by Reactive Oxygen Species (ROS). Oxidative damage was quantified in whole animals and in multiple cellular compartments, including mitochondria and peroxisomes. Mutants of the mitochondrial electron transport proteins mev-1 and clk-1 showed increased oxidative damage levels. Furthermore, analysis of Superoxide Dismutase (sod) and Catalase (ctl) mutants uncovered that oxidative damage levels cannot be inferred from the phenotype of resistance to pro-oxidants alone and revealed high oxidative damage in a small group of chemosensory neurons. Longitudinal analysis of aging nematodes revealed that oxidative damage increased specifically with postreproductive age. Remarkably, aging of the stress-resistant and long-lived daf-2 insulin/IGF-1 receptor mutant involved distinct daf-16-dependent phases of oxidative damage including a temporal increase at young adulthood. These observations are consistent with a hormetic response to ROS

    The DNA damage repair protein Ku70 interacts with FOXO4 to coordinate a conserved cellular stress response

    No full text
    In this study, we searched for proteins regulating the tumor suppressor and life-span regulator FOXO4. Through an unbiased tandem-affinity purification strategy combined with mass spectrometry, we identified the heterodimer Ku70/Ku80 (Ku), a DNA double-strand break repair component. Using biochemical interaction studies, we found Ku70 to be necessary and sufficient for the interaction. FOXO4 mediates its tumor-suppressive function in part through transcriptional regulation of the cell cycle arrest p27kip1gene. Immunoblotting, luciferase reporter assays, and flow cytometry showed that Ku70 inhibited FOXO4-mediated p27kip1transcription and cell cycle arrest induction by >40%. In contrast, Ku70 RNAi but not control RNAi significantly increased p27kip1transcription. In addition, in contrast to wild-type mouse embryonic stem (ES) cells, Ku70-/-ES cells showed significantly increased FOXO activity, which was rescued by Ku70 reexpression. Immunofluorescence studies demonstrated that Ku70 sequestered FOXO4 in the nucleus. Interestingly, the Ku70-FOXO4 interaction stoichiometry followed a nonlinear dose-response curve by hydrogen peroxide-generated oxidative stress. Low levels of oxidative stress increased interaction stoichiometry up to 75%, peaking at 50 μM, after which dissociation occurred. Because the Ku70 ortholog in the roundworm Caenorhabditis elegans was shown to regulate life span involving C. elegans FOXO, our findings suggest a conserved critical Ku70 role for FOXO function toward coordination of a survival program, regulated by the magnitude of oxidative damage

    Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism

    No full text
    Mutations in the daf-2 gene of the conserved Insulin/Insulin-like Growth Factor (IGF-1) pathway double the lifespan of the nematode Caenorhabditis elegans. This phenotype is completely suppressed by deletion of Forkhead transcription factor daf-16. To uncover regulatory mechanisms coordinating this extension of life, we employed a quantitative proteomics strategy with daf-2 mutants in comparison with N2 and daf-16; daf-2 double mutants. This revealed a remarkable longevity-specific decrease in proteins involved in mRNA processing and transport, the translational machinery, and protein metabolism. Correspondingly, the daf-2 mutants display lower amounts of mRNA and 20S proteasome activity, despite maintaining total protein levels equal to that observed in wild types. Polyribosome profiling in the daf-2 and daf-16;daf-2 double mutants confirmed a daf-16-dependent reduction in overall translation, a phenotype reminiscent of Dietary Restriction-mediated longevity, which was independent of germline activity. RNA interference (RNAi)-mediated knockdown of proteins identified by our approach resulted in modified C. elegans lifespan confirming the importance of these processes in Insulin/IGF-1-mediated longevity. Together, the results demonstrate a role for the metabolism of proteins in the Insulin/IGF-1-mediated extension of life

    Activation of forkhead box O transcription factors by oncogenic BRAF promotes p21cip1-dependent senescence

    No full text
    Oncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear. Here, we show a role for FOXO4 in mediating senescence by the human BRAFV600E oncogene, which arises commonly in melanoma. BRAFV600E signaling through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase resulted in increased reactive oxygen species levels and c-Jun NH 2 terminal kinase-mediated activation of FOXO4 via its phosphorylation on Thr223, Ser226, Thr447, and Thr451. BRAFV600E-induced FOXO4 phosphorylation resulted in p21cip1-mediated cell senescence independent of p16 ink4a or p27kip1. Importantly, melanocyte-specific activation of BRAFV600E in vivo resulted in the formation of skin nevi expressing Thr223/Ser226-phosphorylated FOXO4 and elevated p21cip1. Together, these findings support a model in which FOXOs mediate a trade-off between cancer and aging
    corecore