88 research outputs found

    Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise.

    Get PDF
    International audienceWe analyze 3 years of continuous seismic records from broadband stations of the Caltech Regional Seismic Network (CI) in vicinity of the Los Angeles basin. Using correlations of ambient seismic noise, relative velocity variations in the order of 0.1 % can be measured between all inter-station pairs. It is the first time that such an extensive study between 861 inter-station pairs over such a large area has been carried out. We perform these measurements using the 'stretching' technique, assuming that one of the two waveforms is merely a stretched version of the other. Obviously this assumption is always violated and the two waveforms are generally decorrelated due to temporal changes in the Earth crust, due to different sources or simply because the cross-correlations are not fully converged. We investigate the stability of these measurements by repeating each measurement over various time-windows of equal length. On average between all inter-station pairs in the Los Angeles basin a seasonal signal in the relative velocity variation is observed, with peaks and troughs during winter and summer time respectively. Generally the observed signal decreases with increasing inter-station distance and relative travel-time perturbations can only be measured up to an inter-station distance of 60 km. Furthermore the travel-time perturbations do not depend on azimuth of station pairs, suggesting that they are not related to seasonal variations of the noise sources. Performing a simple regionalization by laterally averaging measurements over a subset of stations we found the sedimentary basin showing the most consistent signal and conclude that the observed seasonality might be induced either by changes in the ground-water aquifer or thermo-elastic strain variations that persist down to a depth of 15-22 km

    Imaging the dynamics of magma propagation using radiated seismic intensity.

    No full text
    International audienceAt shallow depth beneath the Earth's surface, magma propagates through strongly heterogeneous volcanic material. Inversion of buoyancy and/or solidification have strong impacts on the dynamics of propagation without any change of magma supply. In this paper, we study the spatial and time evolution of magma intrusions using induced seismicity. We propose a new method based on ratio analysis of estimates of radiated seismic intensities recorded at different stations during seismic swarms. By applying this method to the January 2010 Piton de la Fournaise volcano eruption, we image complex dike propagation dynamics which strongly differ from a model of constant velocity dike propagation. We provide a new method to image in real time the dynamics of dike propagation and to infer the position of eruptive fissures

    Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise.

    Get PDF
    International audienceTemporal variations in the elastic behaviour of the Earth's crust can be monitored through the analysis of the Earth's seismic response and its evolution with time. This kind of analysis is particularly interesting when combined with the reconstruction of seismic Green's functions from the cross-correlation of ambient seismic noise, which circumvents the limitations imposed by a dependence on the occurrence of seismic events. In fact, because seismic noise is recorded continuously and does not depend on earthquake sources, these cross-correlation functions can be considered analogously to records from continuously repeating doublet sources placed at each station, and can be used to extract observations of variations in seismic velocities. These variations, however, are typically very small: of the order of 0.1 per cent. Such accuracy can be only achieved through the analysis of the full reconstructed waveforms, including later scattered arrivals. We focus on the method known as Moving-Window Cross-Spectral Analysis that has the advantage of operating in the frequency domain, where the bandwidth of coherent signal in the correlation function can be clearly defined. We investigate the sensitivity of this method by applying it to microseismic noise cross-correlations which have been perturbed by small synthetic velocity variations and which have been randomly contaminated. We propose threshold signal-to-noise ratios above which these perturbations can be reliably observed. Such values are a proxy for cross-correlation convergence, and so can be used as a guideline when determining the length of microseismic noise records that are required before they can be used for monitoring with the moving-window cross-spectral technique

    High temporal resolution monitoring of small variations in crustal strain by dense seismic arrays

    Get PDF
    Abstract We demonstrate the feasibility of detecting very weak deformation in the shallow crust with high temporal resolution by monitoring the relative changes in seismic wave velocity (dv/v) using dense arrays of seismometers. We show that the dv/v variations are consistent between independent measurements from two seismic arrays. Dominant peaks in the observed dv/v spectrum suggest that tides and temperature changes are the major causes of daily and sub-daily velocity changes, in accordance with theoretical strain modeling. Our analysis illustrates that dv/v perturbations of the order of 10-4, corresponding to crustal strain changes of the order of 10-8, can be measured from ambient seismic noise with a temporal resolution of one hour. This represents a low-cost technique for high precision and high time-resolution monitoring of crustal deformation that is complementary to existing geodetic measurements and is instrumental in both the detection and understanding of low-amplitude precursory processes of natural catastrophic events.Peer reviewe

    Monitoring volcanoes using seismic noise correlations Surveillance des volcans Ă  partir du bruit de fond sismique

    Get PDF
    International audienceIn this article, we summarize some recent results of measurements of temporal changes of active volcanoes using seismic noise cross-correlations. We first present a novel approach to estimate volcano interior temporal seismic velocity changes. The proposed method allows to measure very small velocity changes (≈ 0.1%) with a time resolution as small as one day. The application of that method to Piton de la Fournaise Volcano (La RĂ©union Island) shows velocity decreases preceding eruptions. Moreover, velocity changes from noise cross-correlations over 10 years allow to detect transient velocity changes that could be due to long-lasting intrusions of magma without eruptive activity or to pressure buildup associated to the replenishing of the magma reservoir. We also present preliminary results of noise cross-correlation waveform perturbation associated with the occurrence of dike injection and volcanic eruption. We show that such an analysis leads us to locate the areas of dike injection and eruptive fissures at Piton de la Fournaise Volcano. These recent results suggest that monitoring volcanoes using seismic noise correlations should improve our ability to forecast eruptions, their intensity and thus potential environmental impact

    The High-Resolution Imaging (HRI) Portable Array: A Seismic (and Internet) Network Dedicated to Kilometric-scale Seismic Imaging

    Get PDF
    International audienceWe have developed a network of portable seismic stations dedicated to the high resolution imaging of geological, potentially hazardous, targets. These targets - volcanoes, fault zones, landslide areas - are characterized by strong medium heterogeneities, rugged topography, rough field conditions, and require dedicated equipment in order to maximize the number of recording points. This new network is designed to a) operate experiments with a limited size crew, b) run on low power for possible use in remote areas and difficult conditions, c) record both active and passive seismic sources. The actual network consists of 30 clusters of 9 channels digital acquisition system (DAS), equipped with 6 vertical sensors plus 1 three-component sensor. Each DAS uses Ethernet and 802.11 (WiFi) connections that permit to a single operator to remotely control the entire network. We present the main characteristics of this new portable array, describe the calibration method developed for our sensors and show examples of configuration and recordings for two recent experiments

    Toward Forecasting Volcanic Eruptions using Seismic Noise

    Full text link
    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.Comment: Supplementary information: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguier_SI.pdf Supplementary video: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguierMovieVolcano.av
    • 

    corecore