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S U M M A R Y

Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic

unrest, earthquake mechanisms and fluid injection in the subsurface. The standard monitoring

approach relies on measuring traveltime changes of late coda arrivals between daily and

reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The

main assumption of this method is that the shape of the noise correlations does not change

over time or, in other terms, that the ambient-noise sources are stationary through time.

These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic

tremor, for example, perturbs the reconstructed Green’s function. In this paper, we propose

a general formulation for retrieving continuous time-series of noise-based seismic velocity

changes without the requirement of any arbitrary reference cross-correlation function (CCF).

Instead, we measure the changes between all possible pairs of daily cross-correlations and

invert them using different smoothing parameters to obtain the final velocity change curve.

We perform synthetic tests in order to establish a general framework for future applications of

this technique. In particular, we study the reliability of velocity change measurements versus

the stability of noise CCFs. We apply this approach to a complex data set of noise cross-

correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the

presence of highly non-stationary seismic tremors.

Key words: Time-series analysis; Coda waves; Seismic interferometry; Seismic noise; Vol-

cano monitoring.

1 I N T RO D U C T I O N

Noise-based monitoring techniques have been used extensively in

the past decade for different applications. The observation of con-

tinuous seismic velocity changes proved to be useful for detecting

crustal seasonal changes (e.g. Sens-Schönfelder & Wegler 2006;

Meier et al. 2010; Ugalde et al. 2014), co- and post-seismic evo-

lution of stress in fault areas (e.g. Brenguier et al. 2008a; Hobiger

et al. 2012) and, more recently, for studying the effects of fluid

∗ Now at: Dublin Institute for Advanced Studies, Geophysics Section, 5

Merrion Square, Dublin 2, Ireland.

injection (e.g. Zhou et al. 2010; Ugalde et al. 2013) and aseismic

deformation transients (Hillers et al. 2015).

Estimation of temporal velocity changes in volcano interiors us-

ing seismic noise cross-correlation has been shown to be an efficient

method for early detection of volcanic unrest prior to eruptions at

Piton de la Fournaise Volcano, La Réunion (e.g. Brenguier et al.

2008b; Duputel et al. 2009). Although precise eruption and eruptive

intensity forecasting is still a challenge, it has been demonstrated

that this method provides meaningful constraints on the location of

oncoming eruptions (Obermann et al. 2013).

The most important step in noise-based monitoring is the Green’s

function (GF) reconstruction between two receivers from the cor-

relation of ambient seismic noise (e.g. Shapiro & Campillo 2004;
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Shapiro et al. 2005; Larose et al. 2006; Wapenaar et al. 2010;

Campillo et al. 2011). If the noise sources are evenly distributed

over the Earth’s surface, leading to an isotropic and equipartioned

wavefield at the two station locations, the cross-correlation function

(CCF) between these two stations converges towards the GF (e.g.

Roux et al. 2005; Wapenaar & Fokkema 2006). This is an ideal

situation but, in practice, noise sources are distributed irregularly

leading to a partial reconstruction of the GF (Shapiro et al. 2006).

For monitoring purposes, it is possible to retrieve temporal seis-

mic velocity changes over a set of repetitive in-time noise cross-

correlations, even with anisotropic distributions of noise sources, as

long as this distribution does not change too much over time (Hadzi-

ioannou et al. 2009). Moreover, measuring traveltime changes in the

coda part of the noise cross-correlations makes velocity change

measurements less sensitive to noise source temporal changes

(Sens-Schönfelder & Wegler 2006; Wegler & Sens-Schönfelder

2007; Colombi et al. 2014). The standard monitoring approach re-

lies on measuring traveltime changes of late coda arrivals between

a daily and a reference noise-cross-correlation, usually chosen as

a stack of all daily cross-correlations. There are two main tech-

niques for the retrieval of the relative velocity changes. One is the

stretching technique for which the relative velocity variation is the

best-fitting factor by which the time axis of the current CCF is

stretched or compressed to obtain the best correlation with the ref-

erence trace (e.g. Obermann et al. 2013; Sens-Schönfelder et al.

2014; Hillers et al. 2015). The second technique is the moving win-

dow cross-spectral (MWCS) analysis where we obtain the relative

velocity change by adjusting, in the frequency domain, the phase

differences between the current and the reference CCF in each time

window (e.g. Brenguier et al. 2008b; Clarke et al. 2011). Advan-

tages and disadvantages of both techniques have been discussed in

the literature (e.g. Hadziioannou et al. 2009; Hillers et al. 2015).

In this study, we use the MWCS technique because we consider

that this technique is less sensitive to source variability. We assume

that the measured time delay from the coda waveform of noise

cross-correlations (dτ ) is caused by a spatially homogeneous rela-

tive velocity change, dν/ν. Under this assumption, the relative delay

time (dτ /τ ) is constant and independent of the lapse time at which

it is measured: dτ /τ = −dν/ν.

In different environments, and especially on volcanoes, the noise

correlations can be altered by strong episodic sources of noise, such

as a volcanic tremor, for example, that overlaps in frequency with

more stable microseismic noise. Thus, there is a problem with the

definition of the reference function if the sources are non-stationary

(Sens-Schönfelder et al. 2014). Very strong non-stationary noise has

been described by Ballmer et al. (2013) and Droznin et al. (2015) in

case of emission of low frequency volcanic tremor, a typical feature

of the unrest of many volcanoes and an important seismic source

for monitoring plumbing systems (e.g. Chouet 1996).

In this paper, we describe a generalized approach for retrieving

robust noise-based seismic velocity changes, where the final time-

series is obtained by measuring the changes between all possible

pairs of CCFs and inverting them (Brenguier et al. 2014, Section 2),

that is, without the definition of an arbitrary reference CCF. We de-

tail the method carrying out synthetic tests that allow us to evaluate

the reliability of measured velocity changes in regard to the level

of stability of noise CCFs and the influence of temporary changes

(Section 3). Finally, we apply our procedure to a data set from the

Klyuchevskoy volcanic group (Kamchatka) as a case study (Sec-

tion 4), where the recorded wavefield is dominated by strongly

localized volcanic tremor sources and is characterized by loss of

data.

2 M E T H O D

We retrieve continuous time-series of velocity changes without the

requirement of a reference stacked CCF. The procedure relies on

measuring seismic velocity changes between all possible pairs of

daily CCFs. An inversion step is further required to retrieve a con-

tinuous time-series of daily seismic velocity changes (Brenguier

et al. 2014). By considering (ccfi) as a CCF that corresponds to day

i, we can thus estimate a seismic velocity change between day i and

day j (δν ij) by applying the MWCS analysis to ccfi and ccfj:

δνi j =
ν j − νi

νi

= MWCS(cc fi , cc f j ), (1)

where δν ij is referred as a doublet measurement. This concept was

used, initially, in pairs of microearthquakes (Poupinet et al. 1984).

In a systematic manner, we can then estimate a velocity change

between all of the pairs of daily CCFs for one given station pair.

This constitutes the data vector of eq. (2):

d =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

δν12

δν13

δν14

...

δνn−1n

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (2)

where d is of length n·(n−1)

2
, with n the number of daily CCFs.

Our final goal is to reconstruct the time-series of daily velocity

changes. We can define these velocity changes as δνi =
νi −νref

νref
, with

νref the reference velocity averaged along the entire time period

considered. The series of velocity changes constitutes our model

vector, m, of eq. (3):

m =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

δν1

δν2

δν3

...

δνn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where m is of length n, the number of daily CCFs.

The relation between d and m is given by

δν j − δνi =
ν j − νi

νref

=
ν j − νi

νi

·
νi

νref

= δνi j ·
νi

νref

= δνi j · (1 + δνi ).(4)

Under the assumption that δν i and δν ij are small compared to 1

( <0.1%), we can write at the first order the direct linear relationship

between d and m as δν ij = δν j − δν i or d = Gm, with G being a

sparse matrix of dimension
[

n·(n−1)

2
, n

]

:

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 . . . . . . 0

−1 0 1 0 . . .
...

−1 0 0 1 0 . . .

...
. . .

...

0 . . . . . . 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5)

The assumption made above (δν i and δν ij< 0.1%) is necessary to

apply our method. Temporal velocity changes (δν i) are sensitive

to transient stress changes (e.g. Niu et al. 2008) and the magnitude

order of the seismic velocity changes depends on the level of applied

stress in the medium. Some examples of typical magnitude orders of

δν i estimations are ∼ −0.1% in the Piton de la Fournaise volcano

(Brenguier et al. 2008b; Obermann et al. 2013), ∼ −0.12% due

to the Tohoku-Oki earthquake (Brenguier et al. 2014), ∼ −0.15%
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due to the Parkfield earthquake (Schaff 2012), ∼ −0.5% due to

the Nicoya Peninsula earthquake (Chaves & Schwartz 2016) or

∼ −0.8% in Ruapehu volcano (Mordret et al. 2010).

The final time-series of velocity changes (m) is obtained by fur-

ther inversion, using a classical Bayesian linear least-squares for-

mulation (Tarantola 2005; details in Brenguier et al. 2014):

m =
(

Gt C−1
d G + αC−1

m

)−1
Gt C−1

d d, (6)

where Cd is a covariance matrix of dimension
[

n·(n−1)

2
,

n·(n−1)

2

]

that

describes the Gaussian uncertainties of the data vector d. These

values correspond to the estimated uncertainties of each δν ij value,

using the MWCS analysis. Cm is an a priori covariance matrix of

dimension [n, n] for model vector m. The parameter α is a weighting

coefficient: it is determined in a way that matrix
(

Gt C−1
d G

)

and
(

αC−1
m

)

have approximately the same weight. As α behaves as the

amplitude of the inverse of the distribution Cm, the higher the α,

the less the model can change from one point to another. Therefore,

the amplitude of the final time-series becomes lower and smoother.

The values of Cm describe for day i how δν i is correlated to δν j

at day j:

Cmi j
= e

−|i− j |
2β , (7)

where β is the characteristic correlation length between the model

parameters δν i. A day, i, is more correlated with the β days before

and after than with any others. For this reason, high values of β

correspond to long-term variations (LTV), whereas low β values

represent short-term variations (STV), the opposite situation.

We compute the difference data − misfit to have an estimation

of how well-constrained the inversion is. The misfit values are the

differences between all pairs of points of the reconstructed time-

series of velocity changes. To assess the data − misfit, we subtract

each doublet measurement to the corresponding misfit and average

the absolute value of the final result.

In Fig. 1 we compare the standard and the general approach. Even

though the computing cost of the general formulation is higher than

that of the standard approach, this formulation manifests several

advantages. We can manage irregular sampling in time of noise

correlations; therefore, this technique is more efficient when the data

set is complex. Also, long-term or short-term trends are obtained

directly from the inversion process rather than fitting the velocity

changes with polynomial functions, as in the standard approach

(Brenguier et al. 2008b).

In this work, we consider station pairs independently to obtain

single time-series of velocity fluctuations but we can also invert sev-

eral ray paths at the same time to achieve a more homogeneous and

general trend of seismic velocity variations rather than averaging

over different time-series from different station pairs. By concate-

nating doublet measurements from different station pairs for a global

inversion, the robustness of retrieved velocity changes improves as

the effect of missing data is minimized.

In the following, we describe synthetic tests to state the advan-

tages and limits of that novel approach.

3 S Y N T H E T I C T E S T S

We analyse how the stability of noise-correlations influences the

reconstruction of velocity change time-series for different cases:

(1)Seasonal-type trends which produce long-term periodic-type

fluctuations, that is, long-term velocity changes.

(2)Rapid transient changes similar to those produced as a result of

an earthquake or a volcanic eruption. The effect of those changes

in the noise correlations is the retrieval of a sudden velocity drop

(STV), corresponding to a permanent or almost permanent velocity

change.

(3)Transient noise perturbations due to a local source emission,

such as the perturbation induced by an episodic volcanic tremor

(Droznin et al. 2015). The consequence is a sudden velocity drop

and a sudden recovery, producing short- and medium-term velocity

fluctuations.

We use a synthetic test approach by artificially stretching noise

cross-correlations in order to simulate synthetic velocity changes.

We further degrade the quality of the data set of noise cross-

correlations by adding different levels of random noise in order

to simulate unstable to stable noise cross-correlations. We then ap-

ply our novel method for reconstructing velocity changes and finally

compare the ‘expected’ and the ‘reconstructed’ time-series of ve-

locity changes. We also study the improvement of averaging the

reconstructed time-series of velocity changes for different station

pairs.

The Pearson correlation coefficient (coherence) between two syn-

thetic noise cross-correlations is used as a proxy for the quality of

the associated doublet measurement and used to build the Cd matrix

of data weighting. The average of all Pearson correlation coefficients

between all pairs of noise cross-correlations (CCFs) is referred as

the coherence level (coh). This value describes the level of added

random noise by varying from 0 (totally incoherent noise CCFs) to

1 (no random noise added).

We refer to velocity change measurements at a crustal scale using

microseismic noise correlations in the frequency range from 0.1 to

1 Hz. However, this approach can be extended to other frequency

domains and sources of seismic noise.

3.1 Long-term periodic-type fluctuation test

By stretching a single arbitrary CCF with different daily velocity

changes (referred as expected velocity changes henceforth), we

simulate daily synthetic CCFs. Fig. 2, right-hand panel, shows the

expected velocity changes that we apply and the simulated long-term

periodic-type velocity changes to retrieve. The rest of the panels

of Fig. 2 are examples of synthetic CCFs with different levels of

noise. The different panels of synthetic CCFs are associated with

a coherence level (coh), which is a measure of the level of added

random noise. By adding random noise, we are ‘hiding’ the original

time-series of velocity changes that we want to reconstruct after

inversion, that is, the ‘expected’ velocity changes.

We obtain the data vector of velocity changes, d, by applying

an MWCS analysis between all possible pairs of CCFs. For n daily

CCFs, we estimate n(n−1)

2
doublet measurements. We measure dou-

blets in windows of 10 s centred between the direct surface wave

arrival time and a lapse time of 70 s in the coda. Moving windows

are overlapped by 80%. We finally perform the inversion to retrieve

daily velocity changes (vector m). As we are studying LTVs, we use

high β values to retrieve dν/ν series, β = 1000, while α decreases

with coh, from α = 5000 to α = 100, to fit better the expected

velocity change curve.

We compare the reconstructed time-series of velocity changes

obtained from the synthetic CCFs of Fig. 2 with the expected one

(Fig. 3). The more noise we add, the less the coherence level and

the more the reconstructed time-series of velocity changes differs

from the expected velocity changes.
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Figure 1. Workflow diagram showing the main steps of the standard approach and the general one. n is the number of days.

Figure 2. Examples of synthetic stretched CCFs with different levels of random noise. The coherence level (coh) is on top of each figure. On the right, expected

velocity changes (red curve) that are applied to stretch the CCFs.

We test three different levels of expected velocity changes

(Fig. 4a) to achieve the final one. The peak amplitude of the

expected velocity change curve 1 is 0.001%, while expected

velocity change curves 2 and 3 present peak amplitudes of

0.005 % and 0.01%, respectively. For Figs2 and 3, we use

the expected velocity curve 3. By considering higher velocity

change amplitudes (expected velocity change curve 3), we achieve

higher similarity between the reconstructed time-series of veloc-

ity changes and the expected ones, for the same level of noise

(Fig.4b).

To simulate the averaging of inverted time-series of velocity

changes over different station pairs, we compute different station

pairs with synthetic cross-correlation data: we apply the same ve-

locity change stretching procedure but with different random noise

to simulate different synthetic station pairs. We use the expected

velocity change curve 3 and a fixed high level of noise (coh = 0.06)
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Figure 3. Reconstructed velocity change time-series (blue curves) versus the expected velocity changes (red curve) for different coherence levels. Coherence

levels and correlation coefficients between both curves on top of each figure.

Figure 4. (a) Expected velocity change curves used in the long-term periodic-type fulctuation test. (b) Convergence curves of the coherence levels and the

correlation coefficients between the reconstructed velocity change time-series and the different expected velocity changes.

to simulate up to 50 different synthetic station pairs. After obtain-

ing the 50 reconstructed velocity change curves, we average them

to study the improvement. Nsta is the number of averaged curves of

reconstructed velocity changes.

Even with such a low coh considered (coh = 0.06), we see the

improvement when averaging over different station pairs (Fig. 5a):

from a correlation of 0.22 for Nsta = 1 to 0.87 for Nsta = 50 (correla-

tion increased by a factor of 3.9), whereas for Nsta = 20 we already
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Figure 5. For a coherence level = 0.06 and the expected velocity change curve 3: (a) correlation coefficients between the reconstructed velocity change

time-series and the expected velocity changes 3 as a function of the number of averaged curves of reconstructed velocity changes, Nsta. Associated standard

deviations in blue bars. (b) Reconstructed velocity change time-series for Nsta = 50 (blue) and the expected velocity change curve 3 (red).

reach a correlation coefficient of 0.7. In general, it is thus recom-

mended to average seismic velocity changes over at least 20 station

pairs when the noise cross-correlations are so unstable. Although

the correlation coefficient is 0.22 for Nsta = 1 in Fig. 5(a), we see

a higher correlation coefficient, 0.41, for the same coherence level,

coh= 0.06. This is because we picked one of the best examples

to show. The standard deviation bars for each Nsta of Fig. 5(a) are

the variations associated to the average of different combinations

of station pairs. The maximum number of combinations used is

10 000. The same is applied for the following tests. Fig.5(b) shows

the averaged curve for Nsta = 50 and the expected velocity change

curve 3. The amplitude of the reconstructed time-series of veloc-

ity changes for Nsta = 50 is one magnitude order smaller than the

expected velocity changes, probably due to an edge effect of the

time-series.

3.2 Velocity drop test

To test the reconstruction of an abrupt, rapid change of velocity,

similar to the effect of an earthquake (e.g. Brenguier et al. 2008a),

we add a Heaviside step function with a velocity change of 0.05 %

to the previous expected velocity change curve 3 (Fig.6, red curve),

referred as the drop curve.

As we are interested in recovering the drop, we use another coef-

ficient to study the similarity between the reconstructed time-series

and the drop curve instead of using the Pearson correlation coeffi-

cient. To estimate the quality of the reconstructed drop, we measure

the difference between the mean velocity changes after and before

the drop:

diff =

(

dν

ν

)

after drop

−

(

dν

ν

)

before drop

. (8)

We compute diff for both the reconstructed velocity change curve

and the expected drop curve. We then estimate the quality of the

reconstructed drop with the ratio:

Qdrop = |
diff reconstructed velocity change curve

diff drop curve

|. (9)

Here Qdrop is 1 when perfectly reconstructed and <1 otherwise. In

this test, we invert for time-series of velocity changes using a low

β to obtain STV, β = 5, and we avoid a smoothing factor (α ≈ 0),

as we want to study just the effect of the velocity drop.

As the level of noise increases (coh decreases), the drop in the

reconstructed time-series of velocity changes becomes smaller until

it almost disappears (when the coherence level is nearly zero; Fig. 6).

We observe the convergence of Qdrop for different coherence values

of the synthetic cross-correlations in Fig. 7.

We also study the improvement of averaging the reconstructed

velocity change curves over different station pairs. For a fixed co-

herence level of 0.37, we study the convergence of the retrieved

drop by increasing Nsta (Fig. 8a). Interestingly, by averaging more

reconstructed velocity changes, we smooth the sharp STV while the

recovered drop remains the same. We also estimate the increasing

signal-to-noise ratio (SNR) associated with the larger number of

averaged synthetic functions, Nsta, as

SNR =
level of recovered drop

rms(averaged dν

ν
curve)

, (10)

with rms(averaged dν

ν
curve) being the root mean square of the ve-

locity change mean curve of each Nsta (Fig. 8a).

A way to increase the coherence between CCFs and, therefore,

to improve the temporal resolution of the velocity change measure-

ments, is the use of denoising methods such as the Curvelet filtering

(Stehly et al. 2015) or the Wiener filtering. We applied a FIR Wiener

filter to our CCFs without obtaining a great improvement in the re-

constructed velocity changes, probably because this technique only

has an effect on the amplitude of the frequency spectrum whereas

the method presented in this paper only uses the phase of the signal.

For a coherence level of 0.37 and Nsta = 50, we obtain a Qdrop of

0.6 and a SNR of 38 (Figs 8a and b). Again, it is interesting to note

that, for highly unstable correlations (e.g. coh = 0.37), averaging

over different station pairs will not improve the value of the level

of the velocity drop that will remain underestimated. Averaging

over different receiver pairs will, however, improve the SNR of the

recovered velocity changes and thus, will allow a better estimate of

the timing of the velocity drop.
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Figure 6. Reconstructed velocity change time-series (blue curves) versus the drop curve (red curve) for different coherence levels. Coherence levels and Qdrop

on top of each figure.

Figure 7. Convergence curve between the coherence levels and Qdrop.

3.3 Transient noise perturbation test

In this test we study the effect of an episodic strong change in the

noise-correlation shape induced by a pronounced variation of a noise

source, for example, a passing storm or an episodic volcanic tremor.

This last situation has been described by Ballmer et al. (2013)

and Droznin et al. (2015) in case of noise-correlations affected by

the occurrence of low-frequency volcanic tremor. We herewith test

the ability of our method to recover robust short- to medium-term

fluctuations.

To compute the synthetic stretched CCFs, we consider two

real normalized CCFs, one corresponding to a non-tremor pe-

riod (C1) and the other to a tremor period (C2). Basically, we

consider C1 as the true GF and C2 as a pure tremor-related

bias. With both, we compute two new averaged correlations:

C3 = 0.8 × C1 + 0.2 × C2 and C4 = 0.8 × C2 + 0.2 × C1,

corresponding to a calm period (C3) and to a tremor period (C4),

respectively. We concatenate N1 correlations C3, N2 correlations

C4 and again N1 correlations C3, N1 and N2 being random num-

bers of daily CCFs. Then, the same way as previous tests, we

stretch the CCFs and add different levels of random noise to these

correlations.

Fig. 9(a) is an example of synthetic stretched CCFs with a certain

level of random noise (coh = 0.54). We see clearly the differences

in the shape of CCFs corresponding to the calm periods, C3 (from

day 1 to 30 and from day 90 to 120 in Fig. 9a), and to the tremor

period, C4 (from day 30 to 90 in Fig. 9a). Fig. 9(b) is the associated

correlation coefficient matrix of Fig. 9(a) that represents all Pearson

correlation coefficients between all pairs of CCFs. We observe the

lower correlation between CCFs of the tremor period comparing

with the calm periods.

Fig. 10 shows some examples of the resulting reconstructed time-

series of velocity changes for the maximum coherence level of 0.85

and for some lower ones, where the coherence level decreases due

to the increased level of random noise in the synthetic CCFs. We

also plot the expected velocity curve for comparison. As we are in-

terested in evaluating the sudden velocity drop and sudden recovery

in the reconstructed time-series of velocity variations, we consider
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Figure 8. For a coherence level = 0.37: (a) Qdrop (blue curve with associated standard deviations in blue bars) and signal-to-noise ratio (SNR; black curve) as

a function of the number of synthetic averaged functions (Nsta). (b) Reconstructed velocity change time-series for Nsta = 50 and drop curve.

Figure 9. (a) Example of normalized synthetic stretched CCFs with a random level of noise (shown for a coherence level between CCFs of 0.54). (b) Correlation

coefficient matrix associated to the doublets. C3 and C4 refer to calm and tremor periods, respectively.

β = 5 and α ≈ 0, as in the previous test. In cases of high coh, we

observe a double velocity drop in the recovered synthetic velocity

change curves (between days 30 and 90) due to the concatenation

of different synthetic CCFs, that is, the first N1 days (calm period),

the next N2 days (tremor period) and the last N1 days (calm period

again) (Fig. 9). We explain this double velocity drop by looking

at the correlation coefficient matrix (Fig. 9b). As the correlation

coefficients of the CCFs between the calm and the tremor period

are very low (Fig. 9b), our method treats these data segments sepa-

rately and, thus, generates this baseline difference between the two

periods. Therefore, these artificial velocity drops are artefacts from

our method. The double velocity drop observed in the reconstructed

time-series is hidden when the level of noise increases.

Even more interesting, when we increase the number of inverted

synthetic time-series of velocity changes for a low coh to study

the improvement associated with averaging over different station

pairs (Fig. 11a), we see clearly the increased similarity between the

inverted curves and the expected one (Fig. 11b). This is because only

C1, the medium, is coherent and the noise source perturbation is not

seen the same way by all receiver pairs. This means that for some

station pairs, the double velocity drop induced by the tremor has,

sometime, opposite sign which, simply, cancels out while summing

over different receiver pairs. We show, as well, the improvement

of the generalized formulation compared to the standard approach

when averaging over different station pairs (Figs 11c and d). For the

same synthetic data and coherence level, the double velocity drop

does not cancel out (Fig. 11d).

3.4 Summary

To conclude, the synthetic tests have shown the behaviour of three

different realistic scenarios that have their imprints in the noise cor-

relations and, therefore, we have to handle them in the reconstructed

velocity changes. The scenarios are (1) long-term periodic-type

fluctuations produced by a seasonal-type trend, (2) sudden velocity

drops as effects of sudden changes in the structure, such as earth-

quakes or volcanic eruptions and (3) transient noise perturbations

Downloaded from https://academic.oup.com/gji/article-abstract/214/2/1218/4999900
by Dublin Institute for Advanced Studies user
on 12 July 2018
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Figure 10. Synthetic velocity change time-series (blue curves) versus the expected velocity changes (red curve) for different coherence levels. Coherence

levels on top of each figure.

due to the effect of a transient local source emission, such as a vol-

canic tremor. In general, we choose the inversion parameters with

respect to the type of velocity changes we are looking for, STV or

LTV, respectively. In Table 1 we summarize the parameters used

in the synthetics. These values respond to our particular tests and

should be changed according to the characteristics of the data set,

but the magnitude orders of Table 1 can be used as a guidance. In

general, it is easier to choose first the value of β, then adjust α,

which works as a smoothing factor. We choose lower β values for

STV, as we have done in the velocity drop and transient noise per-

turbation tests, than for LTV (long-term periodic-type fluctuation

test case). The parameter α is directly proportional to the coh of the

reconstructed time-series of velocity changes (Fig. 3 and Table 1):

higher values of α (α > 1000) are recommended with high coh,

as the higher the α value, the lower the amplitude and smoother

the final time-series of velocity changes. In the case of the veloc-

ity drop and the transient noise perturbation tests, we avoided the

smoothing (α ≈ 0), in order to study just the effect of the sudden

velocity drops (and recoveries in case of the last test), but, to pro-

cess real data to retrieve STV, we can use medium to low values

of α.

We have also investigated the effect of the amplitude of the ex-

pected velocity change curves: time-series of velocity changes are

better reconstructed when the amplitudes of the expected changes

are higher (Figs3 and 4). In case of medium to low coh, the differ-

ence in retrieving the amplitudes of the different expected changes

is considerable (Fig. 4a). According to these results, in case of real

data with a low coh, we can count on reconstructing STV and LTV

with amplitudes of the same magnitude order than the peak-to-

peak amplitude of the reconstructed velocity changes but not much

smaller. We have also explored the improvement of averaging the

reconstructed time-series of velocity changes for different station

pairs even with very low coh (Figs 5, 8 and 11). However, although

there is a substantial increase in the correlation coefficient between

the reconstructed velocity change time-series and the expected ve-

locity changes or in the SNR of the reconstructed velocity changes

(for the velocity drop test), the amplitudes of the final velocity

change time-series (both STV and LTV) are underestimated. This

is a drawback of our method that needs to be further studied. One

reason might be that the covariance matrix associated to the data

vector is, actually, damping the data during the inversion (eq. 6).

Leaving the amplitude aside, these synthetic tests give us an esti-

mation of the number of station pairs of real data that we need to

average in order to retrieve a proper velocity change curve when

coh is low.

Finally, in the situation of strong noise perturbations, we have

observed artificial velocity drops produced by our method, visible

only when the coh of the CCFs is high. There are two approaches

to handle this scenario: in case the coherence level between the

noise CCFs is high, it might be worth correcting for the artificial

baseline difference after the inversion to retrieve proper velocity

changes. Otherwise, when coh is low, the only way to retrieve a
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Figure 11. For a coherence level = 0.54: correlation coefficients between synthetic velocity change curves and the expected velocity change curve as a

function of the number of synthetic averaged functions (Nsta) for (a) the generalized formulation and for (c) the standard method. Reconstructed velocity

change time-series for Nsta = 50 (blue curve) compared to the expected velocity changes (red curve) for (b) the generalized formulation and for (d) the standard

method. In the standard method we have used a moving window of 5 d.

Table 1. Inversion parameters used in the synthetic tests.

Synthetic tests α β

Long-term periodic-type

fluctuation test

high coh � high α; low coh �

low α

1000

Velocity drop test ≈0 5

Transient noise perturbation test ≈0 5

proper velocity change curve is to average over sufficient station

pairs.

4 A P P L I C AT I O N T O R E A L DATA

With synthetic tests, we have established a general framework to

identify and interpret long-term periodic-type velocity changes

from seasonal-type trends, rapid velocity drops (due to transient

changes) and sudden velocity drops and recoveries as an effect of

transient and sudden local source emissions. We have analysed the

effect of the regularization parameters and the averaging over sta-

tion pairs for the three different cases. Now, we apply the method

to a complex data set of noise cross-correlations at Klyuchevskoy

volcanic group (Kamchatka), hampered by loss of data and the

presence of highly non-stationary seismic tremors.

4.1 Klyuchevskoy volcanic group

The Klyuchevskoy volcanic group (KVG), located in Kamchatka,

is one of the most active clusters of subduction-zone volcanoes in

the world, where the annual rate of explosive eruptions is three to

five (Schneider et al. 2000). The KVG has an averaged extension of

70 km and 13 stratovolcanoes. It includes active volcanoes such as

Klyuchevskoy, Krestovsky, Ushkovsky, Bezymianny and Tolbachik.

The Klyuchevskoy volcano, the most outstanding volcano which

is 4750 m high, is associated with the emission of basaltic and

basaltic–andesitic lavas and it has a mean eruptive rate of 1 m3

s−1 over the last 10 kyr (Fedotov et al. 1987). Two other active

volcanoes, Shiveluch and Kizimen, are located only 60 km north

and south of KVG, respectively. This cluster of volcanoes is located

off the edge of a tectonic junction: the Pacific Plate is subducting

down the Aleutian Trench and also moving under the Okhotsk Plate.

The high volcanic activity is also a consequence of the Hawaii–

Emperor Seamount chain that terminates in the Kuril–Kamchatka

Trench. Geodynamic models that have been proposed to explain

the exceptional activity of the KVG include fluid being released

from the thick, highly hydrated Hawaii–Emperor Seamount crust

(Dorendorf et al. 2000), mantle flow around the corner of the Pacific

plate (Yogodzinski et al. 2001) and recent detachment of a portion

of the subducting slab (Levin et al. 2002; Levin et al. 2005).

The volcanic activity of the KVG leads to the generation of strong

volcanic tremors (Gordeev et al. 1990) with sources located very

close to the surface and at depth near the crust mantle boundary
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(Shapiro et al. 2017a). These tremors spoil the ambient noise cross-

correlations. We use the information of Droznin et al. (2015) and

Soubestre et al. (2018) about detection of these signals and about

location of their sources in Klyuchevskoy volcanic group to recover

seismic velocity fluctuations in this region, as we use the same data

set of noise cross-correlations.

The particular tectonic settings surrounding KVG and its strong

eruptions with high seismic activity (e.g. Senyukov et al. 2009;

Zharinov & Demyanchuk 2009; Ozerov et al. 2013) enable many

seismic tomographic surveys (e.g. Slavina et al. 2012; Koulakov

et al. 2013; Lees et al. 2013) and receiver function analysis to study

the internal structure of the KVG (Nikulin et al. 2010).

Tomographic studies on the KVG reveal an extremely high Vp/Vs

ratio (up to 2.2), below 25 km depth. This feature can act as a channel

that brings deep mantle materials to the bottom of the crust. It is

also responsible for all volcanic activity in the KVG (Koulakov et al.

2013).

Our study covers January 2009 to July 2013 when both the

Klyuchevskoy and the Tolbachik volcanoes erupted. Both volca-

noes are characterized by effusive eruptions with basaltic to basal-

andesitic lavas (e.g. Churikova et al. 2013, 2015; Belousov et al.

2015). Two eruptions took place on the Klyuchevskoy volcano. The

first one started in June 2008 and the volcanic activity ceased at the

end of January 2009. The second Klyuchevskoy eruption goes from

July 2009 to 2010 December 7. Spatterings of hot magma started on

2009 August 2. The summit eruption activity was characterized by

weak ash emissions (less than 300 m of height), although in 2010

the ash emissions were stronger (9 km of height). The eruption in-

tensity decreased at the end of 2010. All the recorded Klyuchevskoy

summit eruptions are characterized by a gradual growth of activity

(Senyukov 2013). A detailed analysis of records of volcanic tremors

has been used by Soubestre et al. (2018) to identify two different

stages of the 2009–2010 Klyuchevskoy eruption with the stronger

second stage starting approximately in June 2010.

The last eruption is the fissure eruption of the Tolbachik vol-

cano (2012–2013). The 2012–2013 Tolbachik eruption started on

2012 November 27 corresponding to an eruptive tremor (Fig. 16)

due to a first magma migration (Caudron et al. 2015). The Tol-

bachik regional zone of cinder cones is 900 km2 in size and 70 km

long. Before last eruption (2012–2013), historical eruptions in Tol-

bachik zone occurred in 1740, 1941 and 1975–1976 (Gordeev et al.

2013).

The three eruptions that take place during our study are charac-

terized by the generation of seismic tremors (Gordeev et al. 1990;

Droznin et al. 2015; Shapiro et al. 2017a).

4.2 Data

We use continuous records from a total of 18 three-component seis-

mic stations (Fig. 12) of the seismic network deployed by the Kam-

chatka Branch of the Geophysical Service (KBGS) of the Russian

Academy of Sciences (Chebrov et al. 2013). Each station compo-

nent has a CM-3 short-period sensor. We analyse data recorded

continuously between 2009 January 1 and 2013 July 7.

Records are digitized at 128 samples per second and downsam-

pled to 8 samples per second. Cross-correlations are calculated in

24-hr long segments. We pre-process the continuous records fol-

lowing the method described by Bensen et al. (2007). We choose

a spectral band between 0.08 and 0.7 Hz because, after 0.7 Hz,

the correlations are too much affected by volcanic tremor cor-

relation signals. After whitening, 1-bit normalization suppresses

high-amplitude data, such as earthquake signals, and emphasizes

low-amplitude data, such as ambient seismic vibrations. Even af-

ter reducing persistent signals from localized sources with pre-

processing, volcanic tremors still act as potential biasing signals

perturbing the reconstructed GF. Then, we compute daily CCFs for

all possible station pairs. We work with coda waves of daily CCFs

between the vertical-component records of the station pairs (Rivet

et al. 2014).

For passive monitoring techniques, both the continuity of the

records and the good quality of data are important. For this reason,

we do first a quality check of the daily CCFs for each possible

seismic station pair, 209 pairs in total. We visually inspect all CCFs

of each station pair to rank them in different groups according to

the quality of the recordings. Taking into account the continuity

and regularity over time of the CCFs, where coda waves are clearly

distinguished, we consider three quality groups, from best to worst:

A, B and C. We can apply our method to the CCFs of the station

pairs ranked in groups A and B but not to those of group C.

We work with station pairs ranked in group A, there are 23

in total. Fig. 13 shows an example of daily CCFs computed for

a station pair ranked in group A with its associated correlation

coefficient matrix. The periods with highest correlation coefficients

correspond to the first two-thirds of 2010 and to 2013. While most of

the station pairs of the group A are in the vicinity of Klyuchevskoy

and Tolbachik volcanoes, three station pairs (from stations BDR,

SMK and SRK) are farther away from the rest, in the vicinity

of the Shiveluch volcano (Fig. 12). Because of this, in our study

we separate these three pairs near Shiveluch from the others. We

compute all the doublets for the 23 station pairs with the MWCS

analysis.

Correlation coefficient matrices for each station pair ranked with

A are in Figs 14 and 15. We can see different patterns in correlation

coefficients if we compare the main group of station pairs (Fig. 14)

with the northern group (Fig. 15). All pairs show a strong correlation

in the second half of 2010 and in 2013, matching with the ongoing

Klychevskoy and Tolbachik eruptions [Droznin et al. (2015), fig.

5], respectively. Highest correlation values are observed between

the stations of the main group (Fig. 14).

Daily averaged levels of tremors are shown in Fig. 16, determined

by the KBGS operators. The strongest tremor activities of both vol-

canoes also match with the highest correlation coefficients between

CCFs (Fig. 14), which means that tremors are the main sources.

Before the inversion, we reject the doublets where the as-

sociated correlation coefficients (Figs 14 and 15) are smaller

than 0.3. Thereby, we ensure the recovered temporal velocity

variation curves tend towards zero for days with bad quality

recordings.

4.3 Results

We compute the whole relative velocity changes (STV + LTV) for all

station pairs of the quality group A and then, we average, indepen-

dently, the stations near Shiveluch (three station pairs; Fig. 17) and

the main group of station pairs (20 pairs; Fig. 18) near Klyuchevskoy

because the velocity changes associated with these two volcanoes

can be very different. Both STV and LTV are not independent

measurements but result directly from inversion, applying different

regularization parameters. The choice of the regularization param-

eters for the inversion is based on the conclusions of our synthetic

tests. The parameters used for the whole velocity variations are

α = 100 and β = 5 to highlight STV (Figs 17 and 18, black curves).
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Figure 12. Topographic map of the Klyuchevskoy group of volcanoes in Kamchatka peninsula with positions of seismic stations. Red stars are the eruptive

centres of the 2009–2010 Klyuchevskoy and of the 2012–2013 Tolbachik volcanoes.

However, to converge towards the actual relative velocity changes of

the medium, we need to retrieve a stable trend due to LTV. Thus, we

compute reconstructed velocity change time-series from all consid-

ered station pairs with a high β value (β = 1000) to obtain precise

velocity change curves that avoid STV. The smoothing parameter

is the same than before, α = 100. After obtaining all the individual

LTV, we average them all to get the general trend (Figs 17 and 18,

red curves).

We compute the data − misfit for each individual time-series of

velocity changes retrieved from the different station pairs. Then, we

average all the values obtained for the main group of station pairs

and for the three station pairs near Shiveluch ( data − misfit =

0.074% for both groups).

To establish a relation between the results of the real data and the

synthetics, we need to know the amplitude of the retrieved velocity

changes and the coherence level of the real CCFs. Concerning the

amplitude, the maximum peak-to-peak amplitudes of the retrieved

LTV and the whole relative velocity changes, that is, STV + LTV, are

about 0.02 % and 0.05%, respectively, for 20 station pairs (Fig.18),

which correspond to the magnitude orders of the amplitudes of the

expected velocity change curves used in Sections 3.1 [Fig. 4(a), ex-

pected velocity curve 3], 3.2 and 3.3. On the other hand, the mean
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Figure 13. (a) Daily CCF computed from station pair BZM–KIR. (b) Correlation coeffient matrix associated to the doublets of the station pair BZM–KIR.
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Figure 14. Correlation coefficient matrices between all daily CCFs from January 2009 to July 2013 associated to 20 station pairs of group A located in the

vicinity of Klyuchevskoy and Tolbachik volcanoes.
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Figure 15. Correlation coefficient matrices between all daily CCF from January 2009 to July 2013 associated to the station pairs of group A located in the

vicinity of Shiveluch.
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Figure 16. Normalized tremor amplitudes for Klychevskoy (green) and Tolbachik (blue) volcanoes.

Figure 17. Evolution of relative velocity changes measured from three pairs of stations located near Shiveluch from January 2009 to July 2013. The whole

relative velocity changes (STV+LTV in black) and long-term velocity variations (red curve) are overlaid. Klyuchevskoy and Tolbachik eruptive periods are

shown with green and blue rectangles, respectively.
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Figure 18. Evolution of relative velocity changes on Klyuchevskoy volcanic group from January 2009 to July 2013 (averaging of time-series of velocity changes

over 20 station pairs). The whole relative velocity changes (STV+LTV in black) and long-term velocity variations (red curve) are overlaid. Klyuchevskoy and

Tolbachik eruptive periods are shown with green and blue rectangles, respectively.

coherence level of the real CCFs, after rejecting correlation coef-

ficients smaller than 0.3 (Figs 14 and 15), is coh = 0.41 for both

groups of station pairs. Then, we can compare the similarity of the

LTV and STV of the real data with the synthetics: for long-term

periodic-type fluctuations the correlation with the expected velocity

change curve is 0.77 (Fig. 4b, coh = 0.41) and, for short-term fluctu-

ations, Qdrop = 0.67 (Fig. 7, coh = 0.41). It is important to note that,

for STV and LTV, averaging over different pairs keeps these changes

underestimated (Figs 5a and 8a), even though the coherence level

of the real CCFs, coh= 0.41, is higher than those coh values consid-

ered in the synthetics. Nevertheless, the SNR increases by a factor

of 1.6 when considering three station pairs instead of only one, and

up to 2.5 with 20 station pairs, in case of short-term fluctuations

(Fig. 8a) and, for long-term periodic-type variations, the correlation

with the expected velocity curves of the reconstructed time-series of

velocity changes goes from 0.22 ± 0.28, in case of only one station

pair considered, to 0.38 ± 0.25, averaging over three station pairs,

and to 0.74 ± 0.10 with 20 station pairs (Fig. 5a). Extrapolating to

our results with real data (coh = 0.41), the correlation is close to 1

when averaging over 20 station pairs. Therefore, we achieve stable

LTV and STV with the averaged time-series of velocity changes

of the main group of 20 station pairs near Klyuchevskoy (Fig. 18)

while the final time-series of velocity changes of the three station

pairs near Shiveluch is still very noisy (Fig. 17). In this case it

would be necessary to average more station pairs in order to ob-

tain cleaner velocity changes. We also improve the ability of our

method to recover velocity changes during the occurrence of low-

frequency volcanic tremors by averaging different synthetic station

pairs (Fig. 11a). Although there are high correlations between daily

CCFs when strong tremor activities take place (around 0.8 during

2010 and 2013 periods in Figs 14 and 16), the high instability of

correlations keeps low the mean coherence level of the final inver-

sion (coh = 0.41). Under these circumstances, we need to average

over enough station pairs. By averaging over 20 station pairs, the

correlation of the reconstructed time-series of velocity changes with

the expected velocity curve increases by a factor between 2.2 and

17.3, with regard to a single station pair (Fig. 11a). However, we

would retrieve more proper short- to medium-term velocity changes

due to episodic volcanic tremors by averaging over more than 40

station pairs, to interpret these velocity drops and retrievals without

ambiguity (Fig. 11a).

4.4 Interpretation of the results

The seismic velocity variations measured near Shiveluch (Fig. 15)

are difficult to interpret because this measurement was done only

with three station pairs and is, therefore, very noisy. Besides,

the measurements made with 20 station pairs surrounding the

Klyuchevskoy group of volcanoes show velocity variations that can

be interpreted in relationship of eruptive history of the two most

active volcanoes of this group: Klyuchevskoy and Tolbachik. The

whole velocity variations (STV+LTV) are controlled by the com-

bination of two main mechanisms: (1) the variations of the media

mechanical properties caused by the magma motion and pressur-

ization within the volcano plumbing systems and (2) the environ-

mental effects. These two mechanisms cannot be simply separated

as STV and LTV computed during the data analysis because the

long-duration eruptions of Klyuchevskoy and Tolbachik have their

imprints on both STV and LTV.

The environmental contribution to the seismic velocity variations

is expected to be controlled by seasonal changes in temperature,

in hydrological loads and in snow cover. These seasonal effects

are particularly strong in Kamchatka and, therefore, we decided to

estimate and remove them from the whole time-series, expecting

that the remaining velocity variations mainly reflect the dynamics

of the volcano plumbing system. To estimate the average long-term

seasonal component from the velocity variation time-series shown

in Fig. 18, we computed median dν

ν
values for every Julian day.

Then, the obtained 1-yr periodic function has been smoothed in

a 3-month long moving window. The resulted seasonal variations

are shown with a thick grey line in Fig. 19(a). The seasonality is

very clear with a very pronounced velocity increase during winter

(between end of December and end of April) and a pronounced

velocity decrease during summer (between end of May and end of

August).

After removing this seasonal trend, the velocity variations ex-

hibit three significant periods with decrease over 0.01 % (Fig19b).

The first of this velocity drops corresponds to the end of the 2008–

2009 Klyuchevskoy eruption. The second drop starts at the end

of May 2010 and terminates simultaneously with the 2009–2010

Klyuchevskoy eruption. The third velocity decrease starts, approx-

imately, simultaneously with the 2012–2013 Tolbachik eruption.

Therefore, all detected decreases in seismic velocity are observed

during eruptions and most likely reflect the inflation-caused dila-
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Figure 19. Evolution of relative velocity changes on Klyuchevskoy volcanic group from January 2009 to July 2013 (averaging of time-series of velocity

changes over 20 station pairs). (a) The whole relative velocity changes (in black) and average seasonal variations (thick grey curve) are overlaid. (b) Velocity

variations after removing the seasonal component. Periods of the Klyuchevskoy and Tolbachik eruptions are shown with green rectangles, respectively. The

vertical red dashed line indicates the onset of the second stage of the 2009–2010 Klychevskoy eruption (Soubestre et al. 2018). (c) Zoom on one-month period

including the beginning of the Tolbachik eruption (blue rectangle). The vertical red dashed line indicates the onset of the main eruption stage.

tion of the shallow crustal layers. Nevertheless, the durations of the

observed velocity drops do not exactly coincide with the known

periods of eruptive activity. A possible explanation for this is that

during the long-duration of Kamchatka volcanoes, the state of the

plumbing system exhibits significant changes.

The detailed source analysis of coeruptive tremors by Soubestre

et al. (2018) has identified two separate stages of activity during the

2009–2010 Klyuchevskoy eruption. The second stage that started

approximately in May 2010 (indicated with vertical dashed line in

Fig. 19b) was more intensive with magma likely moving closer to

the surface. The observed velocity drop coincides in time with the

second stage and confirms that the large-scale magma migration

occurred between the two stages of eruption.

The level of seismic velocity changes also strongly varied during

the 2012–2013 Tolbachik eruption. We observe, in particular, that

the onset of the strong velocity drop does not coincide with the

beginning of the eruption (Fig. 19c) but rather with the beginning

of its main stage, when the outpouring of lava concentrated in a

single vent where the main eruptive Naboko cone started to grow

(Belousov et al. 2015). The later variations in seismic velocities

are consistent with changes in tremor sources identified based on

correlations of continuous seismic records (Shapiro et al. 2017b).

5 C O N C LU S I O N S

A general framework has been established to provide insights

into volcanic unrest using continuous noise-based seismic velocity

change observations. Particular care is required to recover temporal

velocity variations from CCFs where the noise field recordings are

affected by transient tremor signals. The generalized formulation

can also be used to study crustal earthquake relaxations and the ef-

fects of fluid injections in the subsurface, regardless of the seismic

activity. This approach will be useful for improving noise-based

seismic monitoring at all scales in cases where noise sources are

not stable in time and a localization of the changes is not attempted.

To summarize, we classify the principal ideas of this work in three

itemized sections.

5.1 Methodology

A general formulation for retrieving velocity changes is applied

avoiding the definition of an arbitrary reference CCF. The final

time-series of velocity changes is obtained by inversion, using a

classical Bayesian linear least-squares formulation. The role of α

and β, the regularization parameters, is essential and further studied

with the synthetic tests. STV and LTV are sorted after the inversion:

for retrieving LTV, a high β is needed. STV is obtained afterwards,

subtracting the LTV from the whole relative velocity changes, which

are computed with a lower β.

5.2 Synthetic tests

The choice of the inversion parameters depends on the type of

velocity changes to retrieve (STV or LTV) and on the coh of the

CCFs (Table 1). α, the smoothing parameter, and the coh level are

directly proportional.

Artificial velocity drops might appear in the reconstructed veloc-

ity change time-series when the data are affected by strong noise

perturbations and in case of strong differences in the coh of CCFs

between calm and noise-perturbed periods. If the coh is low we have

to average over sufficient station pairs to retrieve a proper velocity

change curve. In general, the number of station pairs needed to

average depends on the coh level of the CCFs. This method pro-

duces an underestimation of the amplitude of the final averaged

time-series of velocity changes that might have a relation with the
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Table 2. Inversion parameters used with real data.

Real data α β

Whole relative velocity changes (STV + LTV) 100 5

LTV 100 1000

covariance matrix of the data vector, which could decrease the dou-

blet measurements. In case of low coh we can retrieve STV and

LTV of a similar magnitude order than the peak-to-peak amplitude

of the reconstructed time-series of velocity changes. Despite the

drawback, averaging over different station pairs still improves the

reconstructed time-series of velocity changes.

5.3 Real data

The method was applied to the Klyuchevskoy volcanic group data

set of noise cross-correlations, interfered with strong and localized

volcanic tremors and the loss of data. Two groups of station pairs

were treated separately because the surrounding volcanoes produce

different behaviours in the CCFs: three station pairs located in the

vicinity of the Shiveluch volcano and 20 station pairs, the main

group of stations, in the KVG area. The parameters used in the

inversion are summarized in Table 2 considering the results of the

synthetics (Table 1). Stable LTV and STV are obtained for the main

group of 20 station pairs. Regarding the three station pairs near

Shiveluch, more pairs to average would be necessary in order to

have cleaner velocity changes. To interpret velocity drops during

the occurrence of volcanic tremors without ambiguity, it would be

necessary to average over, at least, twice the number of station pairs

used (20 receiver pairs).

Long-term eruptions of Klyuchevskoy and Tolbachik are con-

trolled by the fluctuations of the media mechanical properties and

by environmental effects. Therefore, both STV and LTV are affected

by the two mechanisms and cannot be separated. Three velocity de-

crease periods over 0.01 % are observed after removing the seasonal

trend due to the environmental effects to the whole velocity varia-

tions. The decreases are related with the inflation-caused dilation of

the shallow crustal layers. The first decrease occurs at the end of the

2008–2009 Klyuchevskoy eruption, the second corresponds to the

second stage of the 2009–2010 Klyuchevskoy eruption (Soubestre

et al. 2018) and the third coincides with the beginning of the main

stage of the 2012–2013 Tolbachik eruption (Belousov et al. 2015).

The duration of these velocity decrease periods does not exactly co-

incide with the eruptive activity, probably because of the continuous

and significant changes of the plumbing system in the Kamchatka

volcanoes.
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region via the SEASAME programme, by France-Grille, and by the

CNRS MASTODONS programme).

R E F E R E N C E S
Ballmer, S., Wolfe, C.J., Okubo, P.G., Haney, M.M. & Thurber, C.H.,

2013. Ambient seismic noise interferometry in Hawai’i reveals long-

range observability of volcanic tremor, Geophys. J. Int., 194(1),

512–523.

Belousov, A., Belousova, M., Edwards, B., Volynets, A. & Melnikov,

D., 2015. Overview of the precursors and dynamics of the 2012–13

basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia, J.

Volc. Geotherm. Res., 307, 22–37.

Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F.,

Moschetti, M.P., Shapiro, N.M. & Yang, Y., 2007. Processing seismic

ambient noise data to obtain reliable broad-band surface wave dispersion

measurements, Geophys. J. Int., 169(3), 1239–1260.

Brenguier, F., Campillo, M., Hadziioannou, C., Shapiro, N., Nadeau, R.M.

& Larose, E., 2008a. Postseismic relaxation along the San Andreas

fault at Parkfield from continuous seismological observations, Science,

321(5895), 1478–1481.

Brenguier, F., Shapiro, N.M., Campillo, M., Ferrazzini, V., Duputel, Z.,

Coutant, O. & Nercessian, A., 2008b. Towards forecasting volcanic erup-

tions using seismic noise, Nat. Geosci., 1(2), 126–130.

Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N.M., Briand,

X., Emoto, K. & Miyake, H., 2014. Mapping pressurized volcanic

fluids from induced crustal seismic velocity drops, Science, 345,

80–82.

Campillo, M., Sato, H., Shapiro, N.M. & Van Der Hilst, R.D., 2011. New de-

velopments on imaging and monitoring with seismic noise, C. R. Geosci.,

343(8–9), 487–495.

Caudron, C., Taisne, B., Kugaenko, Y. & Saltykov, V., 2015. Magma migra-

tion at the onset of the 2012–13 Tolbachik eruption revealed by Seismic

Amplitude Ratio Analysis, J. Volc. Geotherm. Res., 307, 60–67.

Chaves, E.J. & Schwartz, S.Y., 2016. Monitoring transient changes within

overpressured regions of subduction zones using ambient seismic noise,

Sci. Adv., 2(1), e1501289, doi:10.1126/sciadv.1501289.

Chebrov, V.N., Droznin, D.V., Kugaenko, Y., Levina, V.I., Senyukov, S.L.,

Sergeev, V.A., Shevchenko, Y. & Yashchuk, V.V., 2013. The system of

detailed seismological observations in Kamchatka in 2011, J. Volcanol.

Seismol., 7(1), 16–36.

Chouet, B.A., 1996. Long-period volcano seismicity: its source and use in

eruption forecasting, Nature, 380(6572), 309–316.

Churikova, T., Gordeychik, B., Edwards, B.R., Ponomareva, V. & Zelenin,

E., 2015. The Tolbachik volcanic massif: a review of the petrology, vol-

canology and eruption history prior to the 2012–2013 eruption, J. Volc.

Geotherm. Res., 307, 3–21.

Churikova, T.G., Gordeychik, B.N., Ivanov, B.V. & Wörner, G., 2013. Rela-

tionship between Kamen volcano and the Klyuchevskaya group of volca-

noes (Kamchatka), J. Volc. Geotherm. Res., 263, 3–21.

Clarke, D., Zaccarelli, L., Shapiro, N.M. & Brenguier, F., 2011. Assessment

of resolution and accuracy of the Moving Window Cross Spectral tech-

nique for monitoring crustal temporal variations using ambient seismic

noise, Geophys. J. Int., 186(2), 867–882.

Colombi, A., Chaput, J., Brenguier, F., Hillers, G., Roux, P. & Campillo, M.,

2014. On the temporal stability of the coda of ambient noise correlations,

C. R. Geosci., 346(11–12), 307–316.

Dorendorf, F., Wiechert, U. & Wörner, G., 2000. Hydrated sub-arc mantle:

a source for the Kluchevskoy volcano, Kamchatka/Russia, Earth planet.

Sci. Lett., 175(1), 69–86.

Droznin, D.V., Shapiro, N.M., Droznina, S.Y., Senyukov, S.L., Chebrov,

V.N. & Gordeev, E.I., 2015. Detecting and locating volcanic tremors on

Downloaded from https://academic.oup.com/gji/article-abstract/214/2/1218/4999900
by Dublin Institute for Advanced Studies user
on 12 July 2018

http://www.emsd.ru
http://dx.doi.org/10.1093/gji/ggt112
http://dx.doi.org/10.1016/j.jvolgeores.2015.06.013
http://dx.doi.org/10.1111/j.1365-246X.2007.03374.x
http://dx.doi.org/10.1126/science.1160943
http://dx.doi.org/10.1038/ngeo104
http://dx.doi.org/10.1126/science.1254073
http://dx.doi.org/10.1016/j.crte.2011.07.007
http://dx.doi.org/10.1016/j.jvolgeores.2015.09.010
http://dx.doi.org/10.1126/sciadv.1501289
http://dx.doi.org/10.1134/S0742046313010028
http://dx.doi.org/10.1038/380309a0
http://dx.doi.org/10.1016/j.jvolgeores.2015.10.016
http://dx.doi.org/10.1016/j.jvolgeores.2013.01.019
http://dx.doi.org/10.1111/j.1365-246X.2011.05074.x
http://dx.doi.org/10.1016/j.crte.2014.10.002
http://dx.doi.org/10.1016/S0012-821X(99)00288-5


Retrieving vel. changes from sparse data sets 1235

the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations

of continuous seismic records, Geophys. J. Int., 203(2), 1001–1010.

Duputel, Z., Ferrazzini, V., Brenguier, F., Shapiro, N., Campillo, M. & Ner-

cessian, A., 2009. Real time monitoring of relative velocity changes using

ambient seismic noise at the Piton de la Fournaise volcano (La Réunion)
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