634 research outputs found

    Assume-Admissible Synthesis

    Get PDF
    In this paper, we introduce a novel rule for synthesis of reactive systems, applicable to systems made of n components which have each their own objectives. It is based on the notion of admissible strategies. We compare our novel rule with previous rules defined in the literature, and we show that contrary to the previous proposals, our rule defines sets of solutions which are rectangular. This property leads to solutions which are robust and resilient. We provide algorithms with optimal complexity and also an abstraction framework.Comment: 31 page

    Pure Nash Equilibria in Concurrent Deterministic Games

    Full text link
    We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player turn-based game which turns Nash equilibria into winning strategies (for some objective that depends on the preference relations of the players in the original game). We use that transformation to design algorithms for computing Nash equilibria in finite games, which in most cases have optimal worst-case complexity, for large classes of preference relations. This includes the purely qualitative framework, where each player has a single omega-regular objective that she wants to satisfy, but also the larger class of semi-quantitative objectives, where each player has several omega-regular objectives equipped with a preorder (for instance, a player may want to satisfy all her objectives, or to maximise the number of objectives that she achieves.)Comment: 72 page

    AbsSynthe: abstract synthesis from succinct safety specifications

    Full text link
    In this paper, we describe a synthesis algorithm for safety specifications described as circuits. Our algorithm is based on fixpoint computations, abstraction and refinement, it uses binary decision diagrams as symbolic data structure. We evaluate our tool on the benchmarks provided by the organizers of the synthesis competition organized within the SYNT'14 workshop.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Compositional Algorithms for Succinct Safety Games

    Full text link
    We study the synthesis of circuits for succinct safety specifications given in the AIG format. We show how AIG safety specifications can be decomposed automatically into sub specifications. Then we propose symbolic compositional algorithms to solve the synthesis problem compositionally starting for the sub-specifications. We have evaluated the compositional algorithms on a set of benchmarks including those proposed for the first synthesis competition organised in 2014 by the Synthesis Workshop affiliated to the CAV conference. We show that a large number of benchmarks can be decomposed automatically and solved more efficiently with the compositional algorithms that we propose in this paper.Comment: In Proceedings SYNT 2015, arXiv:1602.0078

    Games on graphs with a public signal monitoring

    Full text link
    We study pure Nash equilibria in games on graphs with an imperfect monitoring based on a public signal. In such games, deviations and players responsible for those deviations can be hard to detect and track. We propose a generic epistemic game abstraction, which conveniently allows to represent the knowledge of the players about these deviations, and give a characterization of Nash equilibria in terms of winning strategies in the abstraction. We then use the abstraction to develop algorithms for some payoff functions.Comment: 28 page

    Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise.

    Get PDF
    International audienceWe analyze 3 years of continuous seismic records from broadband stations of the Caltech Regional Seismic Network (CI) in vicinity of the Los Angeles basin. Using correlations of ambient seismic noise, relative velocity variations in the order of 0.1 % can be measured between all inter-station pairs. It is the first time that such an extensive study between 861 inter-station pairs over such a large area has been carried out. We perform these measurements using the 'stretching' technique, assuming that one of the two waveforms is merely a stretched version of the other. Obviously this assumption is always violated and the two waveforms are generally decorrelated due to temporal changes in the Earth crust, due to different sources or simply because the cross-correlations are not fully converged. We investigate the stability of these measurements by repeating each measurement over various time-windows of equal length. On average between all inter-station pairs in the Los Angeles basin a seasonal signal in the relative velocity variation is observed, with peaks and troughs during winter and summer time respectively. Generally the observed signal decreases with increasing inter-station distance and relative travel-time perturbations can only be measured up to an inter-station distance of 60 km. Furthermore the travel-time perturbations do not depend on azimuth of station pairs, suggesting that they are not related to seasonal variations of the noise sources. Performing a simple regionalization by laterally averaging measurements over a subset of stations we found the sedimentary basin showing the most consistent signal and conclude that the observed seasonality might be induced either by changes in the ground-water aquifer or thermo-elastic strain variations that persist down to a depth of 15-22 km

    Cloud optical thickness and liquid water path – does the <i>k</i> coefficient vary with droplet concentration?

    Get PDF
    Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. <br><br> Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable relationship between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the today best estimate of the correction factor to use in general circulation models

    Imaging the dynamics of magma propagation using radiated seismic intensity.

    Get PDF
    International audienceAt shallow depth beneath the Earth's surface, magma propagates through strongly heterogeneous volcanic material. Inversion of buoyancy and/or solidification have strong impacts on the dynamics of propagation without any change of magma supply. In this paper, we study the spatial and time evolution of magma intrusions using induced seismicity. We propose a new method based on ratio analysis of estimates of radiated seismic intensities recorded at different stations during seismic swarms. By applying this method to the January 2010 Piton de la Fournaise volcano eruption, we image complex dike propagation dynamics which strongly differ from a model of constant velocity dike propagation. We provide a new method to image in real time the dynamics of dike propagation and to infer the position of eruptive fissures
    • …
    corecore