1,639 research outputs found

    A self-contained quantum harmonic engine

    Get PDF
    We propose a system made of three quantum harmonic oscillators as a compact quantum engine for producing mechanical work. The three oscillators play respectively the role of the hot bath, the working medium and the cold bath. The working medium performs an Otto cycle during which its frequency is changed and it is sequentially coupled to each of the two other oscillators. As the two environments are finite, the lifetime of the machine is finite and after a number of cycles it stops working and needs to be reset. We analyse the entanglement and quantum discord generated during the strokes and show that high work generation is always accompanied by large quantum correlations.Comment: Updated, published version. See also related but independent work from Pozas-Kerstjens et al. arXiv:1708.0636

    Manipulating matter waves in an optical superlattice

    Get PDF
    We investigate the potential for controlling a non-interacting Bose-Einstein condensate loaded into a one-dimensional optical superlattice. Our control strategy combines Bloch oscillations originating from accelerating the lattice and from time-dependent control of the superlattice parameters. We investigate two experimentally viable scenarios, very low and very high potential depths. We are able to exhibit a wide range of control over energy band populations using the superlattice control parameters. With this analysis we consider several examples of quantum state preparation in the superlattice structure that may be difficult to achieve in a regular lattice.Comment: 9 pages, 11 figures. Updated version as an artist's work is never finished, and due to publication. DOI & journal ref adde

    Pulse pedestal suppression using four-wave mixing in an SOA

    Get PDF
    Experimental results are presented demonstrating how four-wave mixing in a semiconductor optical amplifier can be used to remove pulse pedestals introduced due to nonlinearities which occur upon pulse propagation in an optical system. Such pedestals would degrade the performance of an optical time-division-multiplexed system due to coherent interaction between channels. An improvement of the temporal pulse suppression ratio to greater than 30 dB is achieved regardless of the level of the pulse pedestal on the input signal. This improvement takes place simultaneously with wavelength conversion and compression of the optical pulse

    Numerical analysis of four-wave mixing between 2 ps mode-locked laser pulses in a tensile-strained bulk SOA

    Get PDF
    A numerical model of four-wave mixing between 2-ps pulses in a tensile-strained bulk semiconductor optical amplifier is presented. The model utilizes a modified Schrodinger equation to model the pulse propagation. The Schrodinger equation parameters such as the material gain first and second order dispersion, linewidth enhancement factors and optical loss coefficient are obtained using a previously developed steady-state model. The predicted four-wave mixing pulse characteristics show reasonably good agreement with experimental pulse characteristics obtained using frequency resolved optical gating

    THE FEMALE TENNIS SERVE: AN ANALAGOUS VERSION OF THE MALE SERVE?

    Get PDF
    The mechanics of the high-performance male tennis serve have received considerable research attention; however, the relevance of this knowledge to the female serve is largely unknown. To address this research void, 3D body, racquet and ball kinematics were recorded from eight professional female players hitting a ‘first-power’ serve, using a 22-camera VICON MX system operating at 500 Hz. The kinematic data were then compared with the corresponding male data in the literature that have been garnered from high-performance players. The female mean resultant racquet velocity was 0.86 of the value reported for male players, which mirrored the ratio of the highest velocity serve recorded on the respective professional circuits. While the majority of kinematic variables were similar between these two groups, the lesser shoulder internal rotation by the females (0.83) compared with the males helps to define the above velocity difference

    Belief propagation as a partial decoder

    Full text link
    One of the fundamental challenges in enabling fault-tolerant quantum computation is realising fast enough quantum decoders. We present a new two-stage decoder that accelerates the decoding cycle. In the first stage, a partial decoder based on belief propagation is used to correct errors that occurred with high probability. In the second stage, a conventional decoder corrects any remaining errors. We study the performance of our two-stage decoder with simulations using the surface code under circuit-level noise. When the conventional decoder is minimum-weight perfect matching, adding the partial decoder decreases bandwidth requirements, increases speed and improves logical accuracy. Specifically, we observe partial decoding consistently speeds up the minimum-weight perfect matching stage by between 2x-4x on average depending on the parameter regime, and raises the threshold from 0.94 to 1.01

    Deleterious Effects of Neonicotinoid Pesticides on Drosophila melanogaster Immune Pathways

    Get PDF
    Copyright © 2019 Chmiel et al. Neonicotinoid insecticides are common agrochemicals that are used to kill pest insects and improve crop yield. However, sublethal exposure can exert unintentional toxicity to honey bees and other beneficial pollinators by dysregulating innate immunity. Generation of hydrogen peroxide (H2O2) by the dual oxidase (Duox) pathway is a critical component of the innate immune response, which functions to impede infection and maintain homeostatic regulation of the gut microbiota. Despite the importance of this pathway in gut immunity, the consequences of neonicotinoid exposure on Duox signaling have yet to be studied. Here, we use a Drosophila melanogaster model to investigate the hypothesis that imidacloprid (a common neonicotinoid) can affect the Duox pathway. The results demonstrated that exposure to sublethal imidacloprid reduced H2O2 production by inhibiting transcription of the Duox gene. Furthermore, the reduction in Duox expression was found to be a result of imidacloprid interacting with the midgut portion of the immune deficiency pathway. This impairment led to a loss of microbial regulation, as exemplified by a compositional shift and increased total abundance of Lactobacillus and Acetobacter spp. (dominant microbiota members) found in the gut. In addition, we demonstrated that certain probiotic lactobacilli could ameliorate Duox pathway impairment caused by imidacloprid, but this effect was not directly dependent on the Duox pathway itself. This study is the first to demonstrate the deleterious effects that neonicotinoids can have on Duox-mediated generation of H2O2 and highlights a novel coordination between two important innate immune pathways present in insects.IMPORTANCE Sublethal exposure to certain pesticides (e.g., neonicotinoid insecticides) is suspected to contribute to honey bee (Apis mellifera) population decline in North America. Neonicotinoids are known to interfere with immune pathways in the gut of insects, but the underlying mechanisms remain elusive. We used a Drosophila melanogaster model to understand how imidacloprid (a common neonicotinoid) interferes with two innate immune pathways-Duox and Imd. We found that imidacloprid dysregulates these pathways to reduce hydrogen peroxide production, ultimately leading to a dysbiotic shift in the gut microbiota. Intriguingly, we found that presupplementation with probiotic bacteria could mitigate the harmful effects of imidacloprid. Thus, these observations uncover a novel mechanism of pesticide-induced immunosuppression that exploits the interconnectedness of two important insect immune pathways

    Fundamental limits to optical response in absorptive systems

    Get PDF
    At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency, by contrast, we find that common "antenna" structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, χ2/Imχ|\chi|^2 / \operatorname{Im} \chi for a material with susceptibility χ\chi, that enables broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references

    Linking genetic kinship and demographic analyses to characterize dispersal:Methods and application to Blanding's turtle

    Get PDF
    Characterizing how frequently, and at what life stages and spatial scales, dispersal occurs can be difficult, especially for species with cryptic juvenile periods and long reproductive life spans. Using a combination of mark-recapture information, microsatellite genetic data, and demographic simulations, we characterize natal and breeding dispersal patterns in the long-lived, slow-maturing, and endangered Blanding's turtle (Emydoidea blandingii), focusing on nesting females. We captured and genotyped 310 individual Blanding's turtles (including 220 nesting females) in a central Wisconsin population from 2010 to 2013, with additional information on movements among 3 focal nesting areas within this population available from carapace-marking conducted from 2001 to 2009. Mark-recapture analyses indicated that dispersal among the 3 focal nesting areas was infrequent (<0.03 annual probability). Dyads of females with inferred first-order relationships were more likely to be found within the same nesting area than split between areas, and the proportion of related dyads declined with increasing distance among nesting areas. The observed distribution of related dyads for nesting females was consistent with a probability of natal dispersal at first breeding between nearby nesting areas of approximately 0.1 based on demographic simulations. Our simulation-based estimates of infrequent female dispersal were corroborated by significant spatial genetic autocorrelation among nesting females at scales of <500 m. Nevertheless, a lack of spatial genetic autocorrelation among non-nesting turtles (males and females) suggested extensive local connectivity, possibly mediated by male movements or long-distance movements made by females between terrestrial nesting areas and aquatic habitats. We show here that coupling genetic and demographic information with simulations of individual-based population models can be an effective approach for untangling the contributions of natal and breeding dispersal to spatial ecology
    corecore