Manipulating matter waves in an optical superlattice

Brendan Reid!, Maria Moreno-Cardoner!, Jacob Sherson?, Gabriele De Chiaral
L Centre for Theoretical, Atomic, Molecular & Optical Physics, Queen’s University, Belfast BT7 1NN, Northern Ireland
2 Department of Physics and Astronomy, Ny Munkegade 120, Aarhus University, 8000 Aarhus C, Denmark.

We investigate the potential for controlling a non-interacting Bose-Einstein condensate loaded
into a one-dimensional optical superlattice. Our control strategy combines Bloch oscillations, origi-
nating from accelerating the lattice, with time-dependent control of the superlattice parameters. We
investigate two experimentally viable scenarios, very low and very high potential depths, in order
to gain a better understanding of matter wave control available within the system. Multiple lattice
parameters and a versatile energy band structure allow us to obtain a wide range of control over
energy band populations. Finally, we consider several examples of quantum state preparation in the
superlattice structure that may be difficult to achieve in a regular lattice.

I. INTRODUCTION

The simulation of quantum processes using optical lat-
tices has attracted intense research into their advantages
and viability over recent years [IH3]. While a universal
quantum simulator as envisioned by Feynman [4] may
still be a number of years away, many important ad-
vancements have been made. Having complete control
over the structure of an optical lattice, coupled with a
wide range of applications, has put these types of sys-
tems at the forefront of quantum simulation research.
Applications have been found in relativistic field theories
for fermions [0, exotic forms of magnetism [6], imple-
mentation of quantum logic gates [7] and demonstration
of phase transitions from a superfluid to a Mott insula-
tor in ultra-cold atoms [8]. Engineering specific quantum
states and exercising control is vital for quantum simu-
lation and ultra-cold atoms loaded into optical lattices
have shown promise in this regard [9] [10]. The matter-
wave nature of ultra-cold atoms means Bose-Einstein
condensates (BEC) can be reliably controlled in an opti-
cal lattice [I1] and prepared in non-trivial states desirable
for experimental consideration [12]. These systems have
been used in spin-exchange interactions [I3], exact con-
trol on the atomic number distribution using the interac-
tion blockade mechanism [I4] and a promising platform
for investigating frustrated geometries [15]. Similar to
the work performed in [16], here we employ Bloch os-
cillations as a driving force for particles, highlighting the
potential for arbitrary generation and coherent control of
quantum states in a one dimensional superlattice struc-
ture.

Bloch oscillations were originally formulated to de-
scribe electron motion in crystalline structures in the
presence of an external electric field [I7]. Maintaining
these ‘crystals’ in a regime where quantum effects can
occur is experimentally difficult and so periodic optical
lattices have been employed as a substitute, with the first
experimental observation of Bloch oscillations confirmed
in 1996 [I8 19]. Replacing crystals with optical struc-
tures does not change the nature of Bloch oscillations:
any external force acting on a periodic system, such as
gravity in a vertical lattice or inertial forces in acceler-
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FIG. 1. Colour online. Here, the superlattice parameters
are Ay = 3ERr, A2 = 2Eg and ¢ = 0. Top: The modulus
square of the initial wave function Eq. localised into the
lowest energy band with an initial Gaussian quasi-momentum
distribution with standard deviation o = 2k, /5. Bottom: The
potential Eq. plotted on the same scale.

ated lattices, will induce these oscillations [20, 2I]. Op-
tical waveguides are an alternative platform to observe
Bloch oscillations and other coherent wave phenomena
22, 23,

Control of the vibrational states of a BEC in a conven-
tional (or ‘simple’) optical lattice has been achieved using
Landau-Zener tunnelling [24H26] and more sophisticated
optimal control techniques to generate trapping poten-
tials in atom chips [27]. Optimal preparation of the in-
ternal state of ultracold atoms trapped in optical lattices
and atom-chip devices has also been achieved [28] [29].
The interesting combination of spin-dependent forces and
Bloch oscillations allow one to perform quantum simula-
tion of relativistic effects [30]. Combining Bloch oscilla-
tions with a non-standard lattice structure, a superlat-
tice, allows us to investigate control processes that may
not be possible in a simple lattice [31], [32].

In this paper, we consider a period-4 superlattice ob-
tained from combining two optical fields with close ly-
ing wavelengths [33]. Such a lattice exhibits an interest-
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FIG. 2. Colour online. Panel (a) shows the superlattice plotted in real space. Panels (b) and (c) show the lowest four and
lowest five energy bands plotted in momentum space respectively. Here A1 = 3ER, A2 = 2ERr and ¢ = 0. Panels (e), (f) and
(g) have the same potential depths but ¢ = /8. Panels (d) and (h) display the band structure for the simple lattice when

Vo = 2ER and Vp = 20ER respectively.

ing energy band structure: the gaps between bands do
not decrease monotonically with band index. The trans-
port of atoms, caused by Bloch oscillations, through such
an interesting band structure provides an experimentally
viable landscape for complex quantum state prepara-
tion. In contrast to previous approaches for the control
of atomic wave packets, we combine Bloch oscillations
with time-dependent control of the superlattice, achieved
through step-wise changes of the lattice parameters, with
the aim of manipulating a non-interacting BEC and cre-
ating non-trivial superpositions of momentum states in
different bands.

The paper is organized as follows. In Section [[I] we
present the theoretical methods behind our numerical
calculations and simulations. Section [[I]] goes into de-
tail on the effect Bloch oscillations have on wave packets
inside a periodic lattice structure. Section [[V]details the
control processes we employ to generate and manipulate
quantum states of matter within the superlattice struc-
ture. In Section [V] we conclude.

II. METHODS

Bloch’s theorem states that translational invariance in
a periodic potential causes particle eigenstates to have
well defined quasi-momentum (or crystal momentum).
Thus, for particles in an optical lattice, a description in
quasi-momentum space is often more convenient than in
real space. Applying an external force to a particle in
an optical lattice will increase its quasi-momentum lin-
early in time and proportionally to the magnitude of the
force. A condensate with zero initial quasi-momentum
will therefore begin to travel through the lattice. Due to
the periodicity and symmetry of the potential structure,
the quasi-momentum dynamics can be redefined in the
first Brillouin zone. This movement in quasi-momentum
space manifests as a periodic and symmetric evolution

in position space as explained in [34]. The amplitude of
these oscillations is inversely proportional to the force,
with the period given by 75 = 2hnw/(djtF') where djq;
is the spatial period of the lattice considered. As 73,
known as the Bloch period, becomes smaller, inter-band
transitions can occur at any avoided crossings present in
the band structure. We can use these crossings to split a
BEC into a superposition of states [35].

While the solutions for the Schrodinger equation with
a periodic potential are well known, the addition of the
force means that Bloch functions are no longer eigen-
states of the Hamiltonian. In order to solve the 1D
Schrédinger equation for the Hamiltonian

H= - 2+V F 1
=R+ V(a) - Fu 1)

where V(z) is a periodic function, we use an ansatz of
the real space wave function [36],

U(a,t) =3 calk)e F o WEMg (2).  (2)

The index « is a band index, F, (k) denotes the energy
value for the band « at quasi-momentum k, ® are the
Bloch functions of the optical lattice and k' is the time-
dependent quasi-momentum defined
Ft
K =ky+ — (3)
h
for each kg = k(t = 0) across the Brillouin zone.
The coefficients ¢, (k) are found by solving the differ-
ential equation

ta=—3F 3 / dwXop(x) e F 0 Bosey  (a)
B

where Xo 5(7) = @}, 1 (2)0xPp i (7) and Ay g = Eo (k') -
Eg(k’). The initial state we consider, v¥(z,0), deter-
mines the initial conditions ¢, (ko). The solutions to



Eq. . = {ca(t) }a=1..., provide information on how
an atomlc cloud behaves in a periodic band structure,
including how it interacts with avoided crossings. The
absolute square value of the solutions can be interpreted
as the ‘population probability’ of each energy band.

Periodic potentials in the presence of an external static
force can also be described in terms of Wannier-Stark res-
onances [37] providing an alternative framework to study
wave packet propagation [38].

The periodic lattice system that we will consider is a
superlattice — an incoherent sum of two lattices realised
with different light polarisations. The resulting potential
is given by

V(z) = —Aj cos?(k1x) — Ay cos®(kox + ¢).  (5)
We consider a specific case of Eq., where we have de-
fined the wave vector ko = 5k1/4. This choice of wave
vector for the secondary lattice creates a superlattice
structure with a periodicity four times that of a simple
lattice with wave vector ky = w/d, d = \/2 where X\ is
the wavelength. The recoil quasi-momentum (or, half-
width of the first Brillouin zone) of the superlattice is
ky = m/dsuper Where dgyper = 4d. The potential depths
Aq and A, are measured in the usual units of recoil en-
ergy for a single lattice Exr = h?7?/2md?. We are using
a matter wave to simulate a non-interacting BEC of 8"Rb
atoms trapped inside this lattice, m = mpg;,. If the BEC
is prepared initially localised to the lowest energy band,
with a Gaussian quasi-momentum distribution centred
on k = 0 and standard deviation o = 2k,./5, Fig shows
the modulus square of the initial wave-function ¥(z,0)
with the potential structure V' (x) plotted below on the
same axis, displaying how the peaks of the atomic den-
sity distribution correspond directly to the wells of the
superlattice.

The relationship between the wave vectors of the two
lattices produces the non-standard structure of the su-
perlattice. The superlattice parameters A; and A, can
be used to control how deep the potential is and the rel-
ative phase ¢ affects the layout of the unit cell, changing
the deepest minimum in the potential from singly- to
doubly-degenerate (¢ = 0 — m/8). This modification
of the lattice in real space has a corresponding effect in
momentum space. With no relative phase present the
second and third energy bands are closer in energy, ap-
proaching degeneracy for very high potential depths (see
Section . Increasing the relative phase up to 7/8
increases the energy difference between the second and
third energy bands, moving each band closer in energy
to the first and fourth bands respectively. For a more
complete picture of how the relative phase affects the
distances between bands in the superlattice, Fig.1 in the
Supplementary Material [39] gives more details.

Figure [2| shows the potential structure and the cor-
responding band structure of the lowest four and five
energy bands. In the regime of A; > A; the energy
difference between the fourth and fifth energy bands is
much larger than the interband gaps between the first
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FIG. 3. Colour online. The time evolution of the wave-
function |4 (z,t)|* for one Bloch period when A; = 3FERg,
Ay = 2ER and ¢ = 0 with Left: F = 1 x 10"*Eg/4d and
Right: FF' =2 X 1074ER/4d. The initial quasi-momentum dis-
tribution, localised in the lowest energy band, is described by
a Gaussian function centred on £ = 0 with standard deviation
o = 2k, /5.

four bands, while in the regime A; < As the fifth band
decreases in energy, moving closer to the lowest four,
and a large gap opens up with respect to higher en-
ergy bands. In each case the superlattice has four and
five wells respectively in its unit cell, whilst its period-
icity remains un-changed. Panels (d) and (h) in Fig[]
show the band structure of a simple lattice of the form
V(x) = —Vpcos?(mx/d) for comparison. In stark con-
trast to the superlattice, the band gaps for the simple
lattice decrease monotonically with the band index and
a quasi-isolated set of bands within which one could per-
form state engineering is not available. This highlights
the usefulness of the superlattice.

III. BLOCH OSCILLATIONS IN THE
SUPERLATTICE

We consider first the case where the force is small
enough so that tunnelling to higher energy bands can
be neglected. Figure [3| is a simulation of the atomic
wave-function, with the same initial spatial distribu-
tion shown in Fig[l] in the lowest energy band, evolv-
ing for one Bloch period of the superlattice, ’Tgup =
2hr/Fdsyper = hm/2Fd. The plots, from left to rlght
use F' = 1 x 107%ER/4d =~ 0.7 x 107%mg and F =
2 x 107*ERr/4d =~ 1.4 x 10~*mg respectively. These val-
ues are weak enough to ensure no transitions to higher
bands occur. From the figure it is clear that when
we increase the force the amplitude of the oscillations
decreases. Bloch oscillations constrain how the wave-
function becomes displaced: atoms move to the right due
to the direction of our force. These results show that for
the atomic cloud to perform Bloch oscillations we need
a very weak force, much weaker than gravity, acting on
the system.

As mentioned previously, as the value of the force in-
creases we must consider the tunnelling between energy
bands. We can simulate these effects by numerically solv-



ing Eq. with the requirement that Y |ca/? = 1. In
the following we employ Landau-Zener type tunnelling
between energy bands for quasi-general control at se-
quential passage of avoided crossings within the Brillouin
zone. We define the transition probability Ty g from band
a to band S as follows: we prepare the atomic cloud such
that |co(k(t = 0))]? = 1 while the others are zero and
Top = |Cﬂ(k(tmax))|2 where t,,,, is the instant of time
where |cg(k(t))]? is maximum.

Ideally these transitions would be sharply defined, en-
abling general control as a sequence of two-level beam-
splitters [40]. However, in reality the transitions have
a finite width 2e [4I] such that they occur in a region
[k — &, ke + €], where k. is the quasi-momentum at the
minimum band gap. We define the half-width e such
that, when the particle’s quasi-momentum approaches
ke — ¢, at least 0.5% of the population of one band tran-
sitions to the other. This finite width means the avoided
crossings are not always independent of each other; Fig-
ure [ shows the values of A; and A, where the avoided
crossings overlap. While we wish to avoid or minimise
this type of overlap it is possible to utilise it to implement
fast, reliable transfers between energy levels [42], [43].

We will consider separately two scenarios for the dy-
namics in the superlattice: with very low and very high
potential depths. For very low potential depths the
width of the avoided crossings can, to an extent, be iso-
lated from each other (see top panel in Fig. 4). For
high potential depths, creating flat bands, possible when
Ay, Ay > 5ER, the concept of transition widths becomes
irrelevant and population exchange resembles Rabi os-
cillations instead of Landau-Zener transitions. Although
mathematically our treatment is the same, the physics
of the two scenarios is significantly different and strongly
affects the time scale of the evolution: this is set by the
Rabi frequency in the deep lattice regime and by the
Bloch period for a shallow lattice. To simplify calcu-
lations we consider the initial quasi-momentum distri-
bution of the particles to be modelled by a Dirac delta
function centered at k = 0. This is a good approximation
for narrow Gaussian distributions centered at k = 0 with
a standard deviation 2k, /5 or smaller.

A. Population transfers with low potential depths

Our aim is to achieve a degree of control over the super-
lattice without the procedures becoming experimentally
difficult, i.e. minimising the changes made to the super-
lattice. To realize general control we need to be able to
design inter-band beam splitters with transition proba-
bilities spanning the interval from 0 to 1 for each avoided
crossing. Here we present one case where this can be
achieved.

The parameters we consider are F = 0.05Eg/4d,
A; = 2ER and ¢ = 7/8. We are presenting this case as
an example; changing the superlattice parameters, or the
force, provides a plethora of accessible transition proba-
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FIG. 4. Colour online. Top: An example of transition widths:
the lowest four energy bands in the superlattice for A; = Ay =
2ERr and ¢ = 0. The width of the transitions (where inter-
band transitions can occur) are depicted by the black boxes.
Bottom Left: A diagram showing the range of parameters of
Ay and As for which the transitions 1 — 2 and 2 — 3 do or
do not overlap for ¢ = 0 (red) and ¢ = 7 /8 (orange). Bottom
Right: A similar diagram for the transitions 2 — 3 and 3 — 4.
F = 0.05Er/4d here.

bilities. With these experimental settings we numerically
measure population transfer across each avoided crossing
in the band structure with the exception of the fourth and
fifth energy band. As the distance between these bands
is very large, these probabilities quickly fall to zero for
Ay > Ay > 1ER.

Figure presents transition probabilities at each
avoided crossing in the superlattice band structure:
the curves represent probabilities from the analytical
Landau-Zener formula and the markers represent our
simulations. Tio (red, solid curve, circles), Tas (blue,
dotted curve, diamonds) and T34 (green, dashed curve,
squares) are plotted against Ay ranging from 0.25Fg to
3ER. For each data point the atomic cloud was pre-
pared in the lower of the two bands a distance 7 /4d from
the minimum band gap. From this point the system
evolves for a full Bloch period, ensuring the full tran-
sition width is covered. The transition probabilities T}o
and T34 are measured at the same point in the band struc-
ture (k = m/4d) and so their curves are similar. As the
minimum band gap between bands three and four is, on
average, smaller than between one and two, the probabil-
ities Ty are consistently lower than T3, as the potential
depths increase. For both curves changing ¢ = 7/8 — 0
would decrease the transition probabilities for higher val-
ues of As, as the energy difference between the second
and third bands decreases (see Fig.2 b, f). The blue curve
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Colour online. An example of population transi-
tion probabilities at each avoided crossing when A; = 2FEg
and ¢ = 7/8. Shown are Ti2 (red, solid curve, circles) and
T54 (green, dashed curve, squares) measured at k = 7/4d in
the Brillouin zone, and T>3 (blue, dotted curve, diamonds)
measured at k = 0. The curves represent the theoretical pre-
dictions for these transitions from the Landau Zener formula;
the markers represent our simulations.

FIG. 5.

(To3) is calculated instead at a different location in the
band structure (k=0) and, when ¢ = /8, bands two and
three begin to separate as the potential depth increases.
Changing ¢ = 7/8 — 0 would significantly increase these
probabilities. We have included band structures for the
extreme values of Ay shown in Fig. [5| to provide some
intuition on the avoided crossings at these values in Fig.
2 of the Supplementary Material [39].

As mentioned, when we are performing control pro-
cesses we need to keep in mind that the 1 — 2 and 3 — 4
transitions happen at the same location in the Brillouin
zone. In general, these avoided crossings cannot be in-
dependently controlled: changing parameters to create a
specific transition in one crossing will inevitably affect the
other: Table [[] shows a small example, for specific values
of Th2 (0.25, 0.5 and 0.75 are shown), which values of T34
can be realised. There are certain lattice parameters that
allow these transitions to be treated independently how-
ever, as far as we are aware, one cannot achieve a transi-
tion probability of 1 in either of these crossings while the
other is 0.

TABLE I. Comparing transition probabilities at similar
avoided crossings.

Ai1/Er|A2/Er| ¢ | Tas

_ 1.5 1.69 | 0 |0.606
T2 =025 4 1.27 | 0 |0.505
1.0 179 | 0 |0.868

Ti.=05| 1.5 1.21 |7/8]0.786
2.0 0.92 |7/8]0.703

_ 0.5 2.32 |7/8[0.985
T2 =075 1.15 |7/8]0.95
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FIG. 6. Colour online. The gap between each band (Aqg)
when A1 = 8Er and Az = 5FER, corresponding to a band
structure with very flat bands, with changing ¢. The lines
shown are A2 (blue, solid), A23 (orange, dotted), Ass (green,
dashed), Aus (red, dot-dashed).

B. Population transfers with high potential depths

Realising flat energy bands in close vicinity to each
other can create some interesting phenomena but nor-
mally requires engineering the lattice topology in two-
dimensional and quasi-one-dimensional lattices [44H46].
In simple lattice structures the energy gap between bands
increases with the potential depth so this type of energy
band-control is not possible. Normally very exotic lat-
tice geometries are considered to overcome this, here we
demonstrate that this behaviour can be realized in our
experimentally feasible approach and we explore the po-
tential for quantum state preparation and transfer in this
geometry.

By increasing the values of A; and A, we can create
nearly flat bands, such that the band gap varies only
0.5% from the mean value across the Brillouin zone. To
better understand the setup in this regime, and a more
intuitive interpretation of the flat band dynamics, the
band structures for this scenario can be seen in the Sup-
plementary Material. In comparison to a simple lattice
in Fig. |2l where only the lowest two bands are approxi-
mately flat for Vj = 20ER, the lowest four energy bands
of the superlattice are already flat at Ay, Ay > 5ER. Fig-
ure |§| shows the superlattice energy band distance Agg
between bands « and 8 against ¢, proving that pairs of
energy bands in the superlattice can be made almost de-
generate. As mentioned previously ¢ controls the gap
between the second and third bands and this plot shows
that we can strongly couple energy bands only by chang-
ing ¢.

Being able to ‘couple’ energy bands in the superlattice
band structure means we can also transfer population
between bands. In order to encourage this exchange we
use a force equivalent to gravity (= 1.42FEg/4d) to in-
crease the velocity of the particles. For these tests we



chose Ay = 8FEr > Ay = 5FER to ensure isolation of the
lowest four energy levels. The band dynamics in this
regime will be considered for three values of the relative
phase corresponding to a strong coupling between the
second and third energy bands (¢ = 0), a separation of
the energy bands (¢ = 7/20) and strong coupling be-
tween the first and second, and third and fourth energy
bands (¢ = 7/8). By preparing the particles in the lower
band of each pair we let the system evolve for four Bloch
periods of the superlattice, aiming to show how popula-
tion transfers can still occur for very flat bands. Figure
[@ shows these results.

The population transfer between the lowest two energy
bands (top left) take over two Bloch periods to complete.
Between the second and third bands (top right) transi-
tions are much faster as the bands become almost de-
generate in energy. The transfer between the third and
fourth energy band (bottom left) is slightly faster than
in 1 — 2, as the energy gap in the former is consistently
lower than the latter. The bottom right panel is an ex-
ample of how we can suppress population transfers by
separating the bands. With the particles initially in the
second energy band with ¢ = 7/20 even after ten Bloch
periods, 99.89% of the population has remained in the
second band. There is a small population transfer into
the lowest energy level, as the bands are not perfectly
flat, although this oscillates. Using a very deep potential,
the relative phase can be used to almost totally suppress
population transfers over long periods of time. While the
bands are very flat there are no longer ‘avoided crossings’
for the particles to encounter, and instead transitions can
occur across the entire Brillouin zone. In this sense, these
oscillations are very similar to Rabi oscillations.

IV. CONTROLLING THE ENERGY BAND
POPULATIONS

The analysis of the previous section allows us to in-
troduce the main results of the manuscript. Knowledge
of how a BEC divides across avoided level crossings, as
well as how the avoided crossings overlap and interact
with each other, gives us the ability to manipulate, in an
almost general way, the dynamics of an atomic cloud in
the superlattice. While we do not consider interference
effects here, repeated Landau-Zener transitions leading
to interference is reviewed in [47], with a special case
of superlattice Landau-Zener tunnelling explored in [4g]
and experimental realisations in [49H5T].

To perform this control effectively we will change the
superlattice parameters in situ in a step-wise manner.
As the Bloch period of the superlattice is of the order
757" ~ 10~*s when the force present is equal to gravity,
changes to the optical lattice structure can be achieved
using acousto-optic modulators acting on a timescale of
microseconds (~ 107%s). Consequently we are able to
assume that changes to the superlattice parameters oc-
cur instantaneously in our simulations. This step-wise
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FIG. 7. Colour online. Tunnelling between energy bands for
a very deep potential. Each image has A; = 8Er and Ay =
5EgR. Top Left: ¢ = w/8. Population exchange between the
first and second energy band. Top Right: Second and third
band population transfer when ¢ = 0. Bottom Left: Transfer
between the third and fourth bands with ¢ = n/8 Bottom
Right: The particles are loaded into the second energy band
and no two bands are coupled, ¢ = 7/20. Even after ten Bloch
periods we retain 99.89% in the second energy band. Small
population transfer to the lowest energy band does occur as
the bands are not mathematically flat.

method of varying the parameters allows us to simulate
quantum state manipulation in the superlattice. This
strategy is well suited for the numerical resolution of
Eq. : we assume the state is frozen while changing
the lattice parameters. The data associated with Fig.
allows us to utilise the band structure of the superlat-
tice as a series of concatenated beam splitters, picking
our sets of parameters carefully to achieve a state dis-
tributed among different bands or localised in one band.
With the multitude of control parameters we have a wide
range of options for state engineering, and we present a
few examples below of the potential uses of these con-
catenated beam splitters and making careful choices of
parameter changing.

A. DMoving the condensate from the first to the
fourth energy band

As a first example, we aim at transferring all the pop-
ulation of the first band into the fourth band. This is
achieved by sequentially transferring the atomic sample
from the first to the second band, then to the third and
finally to the fourth energy band. Within a simple lattice
structure tunnelling into the higher energy bands is easily
done, although the packet will continue to travel up the
energy bands until it is no longer trapped inside the lat-
tice. In contrast, the structure of the superlattice allows
us to isolate the particles in the fourth band and prevent
transitions into higher bands. The large energy gap be-
tween the fourth and fifth energy band, as seen in Fig[2]
prevents exchanges at the avoided crossings already for
Al, Ay > 1FEpR.
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FIG. 8. Colour online. Top: The relevant band structure
for the simulation in Sect. IV A lasting 1.6 x 757" when
A1 = 0.5 = 24, and ¢ = 7/8. The BEC starts at k = 0
in the lowest energy band. Bottom: The band population
probabilities plotted against time. The wave packet starts
in the first energy band (blue, solid) before making complete
transitions into the second band (yellow, dotted), the third
(green, dashed) and finally in the fourth energy band (red,
dot dashed). The evolution has been extended beyond the
final time of 1.675*"" to provide clarity on the line styles.

We prepare the condensate in the lowest energy band
with its quasi-momentum distribution modelled by a
Dirac delta function on k& = 0. The force acting on the
particles is 0.05Er/4d = 0.035mg. As can be seen from
the figures in Section [[ITA] in order to achieve maximum
population exchange at avoided crossings the superlat-
tice must be prepared with very low potential depths,
Ay =0.5ER, Ay = 0.25FER and ¢ = 7/8. We aim to stop
the simulation (i.e. turn off the external force) when the
population probability of the fourth energy band is max-
imum. The time this happens at is ¢, = 1.675"7°" with

lc(t1)|> = {0,0.004,0,0.996,0}.

Fig[§shows the evolution of the population bands during
this process in the lower panel, as well as the correspond-
ing band structure in the upper panel. The energy band
gaps at each avoided crossing, perhaps not visible in the
plot, are of the order 1072, 10~* and 1073E/ER for the
first, second and third avoided crossings encountered by
the wave packet respectively. The evolution has been ex-
tended beyond ¢ = 1.673""" to provide clarity on the
line styles.

B. Creating a balanced superposition in the second
and third energy band

Here we show an example of splitting a wave packet ini-
tially prepared in the lowest energy band evenly between
the second and third energy bands. While it is clear that
numerical optimisation would achieve a high fidelity pro-
cess, we will first develop an intuitive approach. Even
if this is perhaps less powerful, it nevertheless provides
a deeper insight into the role of each transition in the
overall process. Of course, for any practical application
numerical optimisation can yield solutions to the required
accuracy.

To create this superposition we first need a 100% trans-
fer into the second energy band and a further 50% trans-
fer into the third. To achieve Ti5 ~ 1 the superlattice
parameters can be set to Ay = 0.5ERr, As = 0.25FR
and ¢ = 7/8. A 50% transfer between two and three
is slightly more difficult although we can use the results
in Fig[p] as well as data not presented here, to choose
our parameters carefully. We have two options when

¢ =m/8:
e Ay =1.5Ep and Ay = 2.72ER
(] Al = 2ER and A2 = 195ER

Recall that these values for the potential depths cre-
ate a 50% transfer between the second and third energy
bands when ¢ = 7/8 and F = 0.035mg: alternative
values for these parameters would yield similar, or even
superior, results. We have chosen to restrict ourselves
to parameters already presented in the manuscript. It
is unavoidable that when we change the parameters to
either one of these options the widths of the transitions
Ty and Th3 will change and, from Fig[] overlap. Both
of these parameter sets cause the transitions to overlap
and we must make a careful choice on the time to imple-
ment the parameter changes. From Fig[]it is clear that
the lower value of Ay causes the transitions to overlap
less, and it is the more convenient choice. This simply
reduces the probability of losing some of the particles
to the lower band but it does not eliminate it. Letting
Eq. evolve with the lowest potential depths to a time
t1 = 0.89757", right before the minimum band gap be-
tween bands two and three, the populations are:

le(t1)|* = {0.003,0.996,0,0,0}.

Continuing the evolution with A; = 2Fr and Ay =
1.95FER (as this gives narrower transition widths than
the other) to a time ¢y = 1.2675""", after the transition,
we obtain

le(t2)]? = {0.056,0.505, 0.435, 0, 0},

where some population has dropped down to the lowest
energy band. We did not achieve a perfect 50/50 split
between energy bands two and three but it is possible to
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FIG. 9. Colour online. Top: The relevant band structure for
the simulation in Sect. IV B lasting 757" when A; = A =
0.5FERr and ¢ = /8. Bottom: Band population probabilities
plotted against time. The particles are initially populating
the lowest energy band (blue, solid) transferring 100% in the
second band (yellow, dotted) and transferring 50% into the
third band (green, dashed). This plot moves slightly beyond

super

T 7" to illustrate the 50/50 superposition.

improve this result. Via careful monitoring of the pop-
ulations at each time step we are theoretically able to
choose an optimal time for the parameter change. In-
stead of changing the parameters before the transition
between the second and third energy bands we can pin-
point the time where the population transfer is 50% com-
pleted. If the superlattice potential depths are set to
Ay, = 245 = 0.5FER the avoided crossing between lev-
els one and two is very sharply defined; it becomes dif-
ficult to precisely measure the point where the transi-
tion is 50% completed. For this reason, we instead set
A; = Ay = 0.5FR such that the dynamics are slightly
slower but transition probability is still very high. Our
accuracy of tracking the transition probability in real-
time becomes more refined. We see that the 50% transi-

. . y __ _super
tion point occurs at t1 = 75 ,

lc(f1)]? = {0.014,0.491,0.496, 0, 0}.

The upper panel in Fig[9 shows the relevant band struc-
ture up to ¢; - one Brillouin zone. The lower panel shows
the population evolution from the first to the third band,
where for illustrative purposes we continued the evolution
slightly further than #; to show the 50/50 split.
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FIG. 10. Colour online. The values of superlattice parame-

ters we use for the process in Sect. Main figure: Ay (red
squares), Az (blue triangles) over time. The potential depth
changes are performed at ¢/75"7°" = 2.6 and t/75"7°" = 3.2.
Inset: The relative phase ¢ versus time. The changes are
performed at ¢t/75"7" = 2, 2.6, 3.2 and 4.8.

C. An arbitrary split between the first and third
energy band

Due to the coupling of the avoided crossings at k =
7w/4d we have some restrictions when we want to cre-
ate an arbitrary superposition in the superlattice. As an
example of the power of these concatenated beam split-
ters here we aim for a final population distribution of
{0.25,0,0.75,0,0}. We need T12 = 0.75 and Thy = 1
to complete this. This process is done over two Bloch
periods. With the analysis presented in Fig., we
know we can have a value Ti5 = 0.75 when A; = 2Fg,
Ag ~ 0.584FER and ¢ = /8. A 100% transfer between
bands two and three is achieved by extremely low po-
tential depths, and in neither case do the transitions
overlap. After the first population exchange, at a time
t1 = 0.7275""", the population distribution is

le(t1)]? = {0.25,0.75,0,0,0}.

We change the parameters to Ay = 0.5Fg, Ay = 0.25FER
and ¢ = 0 and continue the evolution through the
avoided crossing between bands two and three, before
stopping the evolution at a time to = 1.275"". The
final population distribution is

le(t2)|* = {0.249,0.002,0.749,0,0}.

This example of using the band structure as a series
of beam splitters between energy bands might have im-
proved fidelity when optimised.

D. From an equal band superposition to a single
band

In our last example of the control over the superlattice,
we simulate a wave packet initially distributed across the
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FIG. 11. Colour online. Population probabilities of each

energy band plotted against time in the simulation in Sect
IV D. The wave packet begins in a state evenly spread across
the lowest four energy bands and we dynamically manipulate
its movement through the superlattice to regain 96% into the
lowest energy band (blue, solid). The second energy band
(yvellow, dotted), third (green, dashed) and the fourth band
(red, dot dashed) have their evolutions

lowest four energy bands, attempting to recollect it into
the lowest energy band, something which is impossible in
conventional lattices due to the unavoidable coupling to
higher bands.

We use a different value of the force here, F©' =
0.1ER/4d, although this process would be possible for
any force of the same order of magnitude. This process
may not be possible for larger values of an external force
as the internal velocity of the particles can create some
complicated tunnelling dynamics. The particles are pre-
pared into the lowest four energy bands in a five band
approximation such that the initial conditions of Eq.
are

|c(0)]? = {0.25,0.25,0.25,0.25,0},

with a Dirac delta initial quasi-momentum distribution
centered on k = 0. This process is conducted over five
Bloch periods and we implement four sets of parameter
changes. The first step is to empty the fourth energy
band of its population into the third. Using the rela-
tive phase ¢ we can couple the second and third energy
bands while isolating the fourth and waiting until the
third energy band is empty before changing ¢ again and
coupling the first and second energy bands. When the
second band is empty (and as a consequence, the popu-
lation is in the lowest energy level) we isolate the bands
from each other and the evolution can stop. The final
population distribution is

(5757 |2 = {0.9575,0.0026,0.0104, 0.029, 0}.

We emphasise that other lattice parameters and force
values may achieve similar, or, by employing optimisation
algorithms, better fidelity.

Figure (10| shows the superlattice parameter values we
used for this process and at what time they were imple-

mented. The inset panel details the values of ¢ while the
main graph shows the potential depth changes. These
values for the potential depths are low enough to be eas-
ily implemented experimentally. We change ¢ more often
due to the influence it has over the distance between en-
ergy bands one and two. The value ¢ = /20 is used
as a ‘freezing’ value as the bands become almost equally
separated.

Figure [11] shows the absolute square value of the solu-
tions to Eq. plotted against time as the wave packet
evolves over five Bloch periods. Beginning in an equal
superposition in the lowest four bands the dynamics are
manipulated to recollect the wave packet into the lowest
energy band.

We have described in Section IV various possibilities
of band population manipulation in the superlattice. We
have not discussed the coherences between each energy
band which, through constructive and destructive inter-
ference mechanisms, affect the dynamics of the particles.
We wish to stress that manipulating band population
necessarily involves manipulation of the coherences, and
are fully included in our numerical simulations. Using
time-of-flight measurements both of these features (band
population and coherence) can be measured, either by
suddenly turning off the lattice or band-mapping using
appropriate beam splitter transformations [52].

V. CONCLUSIONS

In this work we have theoretically explored the ma-
nipulation of a non-interacting BEC modelled by a wave
packet in a superlattice structure. We employed Bloch
oscillations, easily implemented in current experiments,
in conjunction with multiple superlattice parameters to
manipulate the BEC band populations. The ability to
create quasi-isolated band multiplets and tunnelling be-
tween flat energy bands give clear advantages over a sim-
ple lattice. We have showcased a few examples of the
available control in this setup with step-wise constant pa-
rameters. Higher quality control could be achieved with
more general time dependencies.

While we consider the preparation of any arbitrary
quantum state in this superlattice to be an open ques-
tion, utilising exhaustive numerical optimisation a wide
range of different quantum states can be created. Super-
lattice potential structures have already been shown to
aid atomic transport [63] and the use of Bloch oscilla-
tions may improve this process. Furthermore, the effect
of inter-atomic interactions in a superlattice was explored
in [54] and if, for instance, interactions were controlled
using a Feshbach resonance this may provide an addi-
tional knob for the manipulation of particles. Their exact
role in this problem remains to be analysed.
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