35 research outputs found

    The Cost-Effectiveness of Early Access to HIV Services and Starting cART in the UK 1996–2008

    Get PDF
    To calculate use, cost and cost-effectiveness of people living with HIV (PLHIV) starting routine treatment and care before starting combination antiretroviral therapy (cART) and PLHIV starting first-line 2NRTIs+NNRTI or 2NRTIs+PI(boosted), comparing PLHIV with CD4≤200 cells/mm3 and CD4>200 cells/mm3. Few studies have calculated the use, cost and cost-effectiveness of routine treatment and care before starting cART and starting cART above and below CD4 200 cells/mm3.Use, costs and cost-effectiveness were calculated for PLHIV in routine pre-cART and starting first-line cART, comparing CD4≤200 cells/mm3 with CD4>200 cells/mm3 (2008 UK prices).cART naïve patients CD4≤200 cells/mm3 had an annual cost of £6,407 (95%CI £6,382 to £6,425) PPY compared with £2,758 (95%CI £2,752 to £2,761) PPY for those with CD4>200 cells/mm3; cost per life year gained of pre-cART treatment and care for those with CD4>200 cells/mm3 was £1,776 (cost-saving to £2,752). Annual cost for starting 2NRTIs+NNRTI or 2NRTIs+PI(boosted) with CD4≤200 cells/mm3 was £12,812 (95%CI £12,685-£12,937) compared with £10,478 (95%CI £10,376-£10,581) for PLHIV with CD4>200 cells/mm3. Cost per additional life-year gained on first-line therapy for those with CD4>200 cells/mm3 was £4639 (£3,967 to £2,960).PLHIV starting to use HIV services before CD4≤200 cells/mm3 is cost-effective and enables them to be monitored so they start cART with a CD4>200 cells/mm3, which results in better outcomes and is cost-effective. However, 25% of PLHIV accessing services continue to present with CD4≤200 cells/mm3. This highlights the need to investigate the cost-effectiveness of testing and early treatment programs for key populations in the UK

    Rising Population Cost for Treating People Living with HIV in the UK, 1997-2013

    Get PDF
    Background The number of people living with HIV (PLHIV) is increasing in the UK. This study estimated the annual population cost of providing HIV services in the UK, 1997–2006 and projected them 2007–2013. Methods Annual cost of HIV treatment for PLHIV by stage of HIV infection and type of ART was calculated (UK pounds, 2006 prices). Population costs were derived by multiplying the number of PLHIV by their annual cost for 1997–2006 and projected 2007–2013. Results Average annual treatment costs across all stages of HIV infection ranged from £17,034 in 1997 to £18,087 in 2006 for PLHIV on mono-therapy and from £27,649 in 1997 to £32,322 in 2006 for those on quadruple-or-more ART. The number of PLHIV using NHS services rose from 16,075 to 52,083 in 2006 and was projected to increase to 78,370 by 2013. Annual population cost rose from £104 million in 1997 to £483 million in 2006, with a projected annual cost between £721 and £758 million by 2013. When including community care costs, costs increased from £164 million in 1997, to £683 million in 2006 and between £1,019 and £1,065 million in 2013. Conclusions Increased number of PLHIV using NHS services resulted in rising UK population costs. Population costs are expected to continue to increase, partly due to PLHIV's longer survival on ART and the relative lack of success of HIV preventing programs. Where possible, the cost of HIV treatment and care needs to be reduced without reducing the quality of services, and prevention programs need to become more effective. While high income countries are struggling to meet these increasing costs, middle- and lower-income countries with larger epidemics are likely to find it even more difficult to meet these increasing demands, given that they have fewer resources

    Taking the Confusion Out of Multinomial Confusion Matrices and Imbalanced Classes

    No full text
    Classification is a fundamental task in machine learning, and the principled design and evaluation of classifiers is vital to create effective classification systems and to characterise their strengths and limitations in different contexts. Binary classifiers have a range of well-known measures to summarise performance, but characterising the performance of multinomial classifiers (systems that classify instances into one of many classes) is an open problem. While confusion matrices can summarise the empirical performance of multinomial classifiers, they are challenging to interpret at a glance—challenges compounded when classes are imbalanced.We present a way to decompose multinomial confusion matrices into components that represent the prior and posterior probabilities of correctly classifying each class, and the intrinsic ability of the classifier to discriminate each class: the Bayes factor or likelihood ratio of a positive (or negative) outcome. This approach uses the odds formulation of Bayes’ rule and leads to compact, informative visualisations of confusion matrices, able to accommodate far more classes than existing methods. We call this method confusR and demonstrate its utility on 2-, 17-, and 379-class confusion matrices. We describe how confusR could be used in the formative assessment of classification systems, investigation of algorithmic fairness, and algorithmic auditing
    corecore