283 research outputs found

    Executive Clemency: An Ancient Power and a Modern Solution

    Get PDF

    The Impact of Donor and Recipient Genetic Variation on Outcomes After Solid Organ Transplantation:a Scoping Review and Future Perspectives

    Get PDF
    At the outset of solid organ transplantation, genetic variation between donors and recipients was recognized as a major player in mechanisms such as allograft tolerance and rejection. Genome-wide association studies have been very successful in identifying novel variant-trait associations, but have been difficult to perform in the field of solid organ transplantation due to complex covariates, era effects, and poor statistical power for detecting donor-recipient interactions. To overcome a lack of statistical power, consortia such as the International Genetics and Translational Research in Transplantation Network have been established. Studies have focused on the consequences of genetic dissimilarities between donors and recipients and have reported associations between polymorphisms in candidate genes or their regulatory regions with transplantation outcomes. However, knowledge on the exact influence of genetic variation is limited due to a lack of comprehensive characterization and harmonization of recipients' or donors' phenotypes and validation using an experimental approach. Causal research in genetics has evolved from agnostic discovery in genome-wide association studies to functional annotation and clarification of underlying molecular mechanisms in translational studies. In this overview, we summarize how the recent advances and progresses in the field of genetics and genomics have improved the understanding of outcomes after solid organ transplantation

    Harnessing publicly available genetic data to prioritize lipid modifying therapeutic targets for prevention of coronary heart disease based on dysglycemic risk

    Get PDF
    Therapeutic interventions that lower LDL-cholesterol effectively reduce the risk of coronary artery disease (CAD). However, statins, the most widely prescribed LDL-cholesterol lowering drugs, increase diabetes risk. We used genome-wide association study (GWAS) data in the public domain to investigate the relationship of LDL-C and diabetes and identify loci encoding potential drug targets for LDL-cholesterol modification without causing dysglycemia. We obtained summary-level GWAS data for LDL-C from GLGC, glycemic traits from MAGIC, diabetes from DIAGRAM and CAD from CARDIoGRAMplusC4D consortia. Mendelian randomization analyses identified a one standard deviation (SD) increase in LDL-C caused an increased risk of CAD (odds ratio [OR]Ā 1.63 (95Ā % confidence interval [CI] 1.55, 1.71), which was not influenced by removing SNPs associated with diabetes. LDL-C/CAD-associated SNPs showed consistent effect directions (binomial PĀ =Ā 6.85Ā Ć—Ā 10āˆ’5). Conversely, a 1-SD increase in LDL-C was causally protective of diabetes (OR 0.86; 95Ā % CI 0.81, 0.91), however LDL-cholesterol/diabetes-associated SNPs did not show consistent effect directions (binomial PĀ =Ā 0.15). HMGCR, our positive control, associated with LDL-C, CAD and a glycemic composite (derived from GWAS meta-analysis of four glycemic traits and diabetes). In contrast, PCSK9, APOB, LPA, CETP, PLG, NPC1L1 and ALDH2 were identified as ā€œdruggableā€ loci that alter LDL-C andĀ risk ofĀ CAD without displaying associations with dysglycemia. In conclusion, LDL-C increases the risk of CAD and the relationship is independent of any association of LDL-C with diabetes. Loci that encode targets of emerging LDL-C lowering drugs do not associate with dysglycemia, and this provides provisional evidence thatĀ new LDL-C lowering drugs (such as PCSK9 inhibitors) may not influence risk of diabetes

    Identification of common genetic variation that modulates alternative splicing

    Get PDF
    Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function
    • ā€¦
    corecore