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Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states
have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some
genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly
observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant
extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide
polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had
been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative
splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern
between individuals, with a highly significant association between splice phenotype and neighbouring SNPs.
Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron–
exon boundary, although the distance between these SNPs and the intron–exon boundary ranged from 2 bp to greater
than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the
SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these
SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing
patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an
important mechanism by which SNPs influence gene function.

Citation: Hull J, Campino S, Rowlands K, Chan MS, Copley RR, et al. (2007) Identification of common genetic variation that modulates alternative splicing. PLoS Genet 3(6):
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Introduction

The sequencing of the human genome [1,2] and subsequent
work describing sequence variation amongst human popula-
tions [3] has provided the necessary resources for large-scale
studies of the effects of genetic variation on human gene
expression. Identifying functionally important variation has
the potential for increasing understanding of gene regulation
and for providing efficient markers to study the effects of
variation in gene expression on human disease risk [4].
Experimentally demonstrating the potential functional ef-
fects of DNA polymorphism is difficult, as these effects may
be both tissue and stimulus specific. Significant efforts have
focused on transcriptional regulation, because of the strong
suspicion that the majority of human phenotypic variation is
due to regulatory variants [5,6]. Novel allele-specific tran-
script quantification approaches to candidate genes [7,8] have
been employed, along with broader approaches to investigate
the absolute levels of expression of thousands of genes [9,10].
Using these methods, several cis-acting SNPs that correlate
with gene expression have been identified. However, fine
mapping these effects and determining the mechanisms
underlying the associations has been more difficult [11].

In this study, we used a different approach—that of
evaluating effects on splicing efficiency—to study the effects
of common genetic polymorphism on gene function. The vast
majority of human genes are comprised of three or more
exons that need to be efficiently spliced together to form
mature mRNA. Variation in this process occurs naturally and
is thought to be an important mechanism whereby different

protein products can be derived from the same gene
sequence [12]. Single base changes that affect splicing can
have dramatic effects on gene function and can cause disease,
usually because the splice mutation results in a shift in the
amino acid reading frame. Most commonly observed alter-
native splicing events preserve the reading frame and have
more subtle effects on protein function [13]. There are an
increasing number of examples in which the genetically
determined modulation of alternative splicing has been
implicated in common complex disease traits, such as the
associations between the G protein-coupled receptor (GPRA)
and asthma susceptibility [14], cytotoxic T lymphocyte
antigen 4 (CTLA4) and autoimmune disease [15], and the
CD45 (leucocyte common) antigen and infectious and auto-
immune diseases [16,17]. The potential effects of common
SNPs on splicing isoforms have been suggested by bioinfor-
matic analysis of expressed sequence tags [18]. In a small
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number of genes, these potential effects have been demon-
strated experimentally [19–21]. Here, we used lymphoblastoid
cell lines (LCLs) from the Centre d’Etude du Polymorphisme
Humain (CEPH) as an experimental model system to
investigate the relationship between variation in simple
cassette exon splicing events and genotypic diversity. We
sought to determine (1) whether individual variation in
splicing patterns was commonly observed, (2) if any observed
phenotypic variation could be explained by genetic differ-
ences among individuals, and (3) whether any genetic differ-
ences could be localised and the functional element
identified.

Results

Inter-individual Variation in Splice Pattern
Our initial aim was to investigate whether there was

variation among individual LCLs in simple cassette exon
events. These events were defined as the occurrence of
complete exon skipping in two or more mRNA isoforms. We
used a strategy of exon selection that we believe increased the
likelihood of detecting allele-specific effects on alternative
splicing. We argue that for genes in which common SNPs
affect splicing, at least two mRNA transcript isoforms of that
gene will be relatively commonly observed. Conversely, where
only one transcript isoform has been observed and docu-
mented, the likelihood of a SNP-related splicing event is
reduced. We identified 2,281 simple cassette exon events
from the European Bioinformatics Institute Alternative
Splicing Database (EBI-ASD) in which each transcript isoform
had been observed in at least two clone libraries. From these,
we selected the 250 genes with the highest expression levels in
LCLs as detected by global microarray analysis. We carried
out reverse transcriptase PCR (RT-PCR) analysis of these 250
genes and found that in LCLs both transcript isoforms were
present in 70 (28%) of the genes.

We proceeded to investigate whether the amount of
different isoforms varied between 22 different LCLs. Of the
70 events that produced both full-length and exon-skipped

products, we found that 18 (26%) showed significant variation
among cell lines, in which at least one cell line showed a ratio
of PCR products that differed by more than 10% of the mean
value for the entire sample set of 22 cell lines (10% difference
in relative abundance is the lower limit of sensitivity of the
detection assay). These 18 events were retested using RNA
derived from an independent round of cell culture. Six
events, centered around genes CASP3, CD46, IFI16, RBM23,
SH3YL1, and ZDHHC6, demonstrated repeatable and consis-
tent variation of the splicing pattern among different cell
lines. The genes and exons for each of these six events are
listed in Table 1. None of the skipped exons resulted in a shift
in the reading frame of the mRNA. We did not investigate the
remaining 12 events; these provided inconsistent results, as
splicing isoforms were present only at very low intensity or in
only one or two cell lines.

SNP Genotype Predicts Splice Pattern
We next investigated the relationship between DNA

sequence variation and observed differences in splice iso-
forms among LCLs. We looked at the correlation between
SNP genotype and splicing pattern over the 500-kb region
surrounding each of the six splicing events that showed
consistent variation among the LCLs. Two sources of SNP
genotyping data were used. First, we analysed SNP genotypes
from the International HapMap Project [3]. Second, we
resequenced the skipped exons and 150 bp of the flanking
introns for each event in each of the 22 cell lines.
Resequencing did not identify any SNPs that were not already
identified on the HapMap resource. Approximately 350 SNPs
were available for each gene at an average density of 0.7 SNPs
per kb. For each of the six events, highly significant
correlations between SNPs and the observed splicing pattern
were identified (Figure 1). The maximum values for the
Pearson’s statistic were 0.76 (p , 10�4) for the CASP3 event
and over 0.86 (p , 10�6) for the other five events. For five of
the six events, the SNP nearest the intron–exon boundary
showed the strongest correlation with splicing pattern. For
the ZDHHC6 event, a slightly higher value for the Pearson’s
statistic was seen for a group of three SNPs lying over 50 kb
away from the gene and in very strong linkage disequilibrium
(LD) (R2 ¼ 0.95) with the SNP nearest the intron–exon
boundary. When we studied the ZDHHC6 SNP nearest the
intron–exon boundary in the minigene system (see below), we
observed a direct effect of this SNP on splicing efficiency,
suggesting that this SNP, rather than the more distant group
of three SNPs, was responsible for the observed variation in
splice pattern. To test whether the identified SNP accurately
predicted the variation in splice pattern, we selected a new
set of nine unrelated LCLs in which there was at least one
example of each of the possible SNP genotypes. For each of
the six genes, the splicing pattern observed was accurately
predicted by the SNP genotype (Figure S1).
The correlations between splice pattern and individual

SNPs are highly significant even after allowing for correction
for multiple comparisons. If we use a simple Bonferroni
correction for the 350 SNPs that were tested for each simple
cassette exon event, all results remain significant at the 0.05
level. This level of correction is overly conservative, since the
LD relationship among the SNPs means that they are not
independent of one another. Furthermore, it is remarkable
that for five of the six events it is the SNP closest to the
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Author Summary

Genetic variation, through its effects on gene expression, influences
many aspects of the human phenotype. Understanding the impact
of genetic variation on human disease risk has become a major goal
for biomedical research and has the potential of revealing both
novel disease mechanisms and novel functional elements control-
ling gene expression. Recent large-scale studies have suggested that
a relatively high proportion of human genes show allele-specific
variation in expression. Effects of common DNA polymorphisms on
mRNA splicing are less well studied. Variation in splicing patterns is
known to be tissue specific, and for a small number of genes has
been shown to vary among individuals. What is not known is
whether allele-specific splicing events are an important mechanism
by which common genetic variation affects gene expression. In this
study we show that allele-specific alternative splicing was observed
in six out of 70 exon-skipping events. Sequence analysis of the
relevant splice sites and of the regions surrounding single
nucleotide polymorphisms correlated with the splicing events failed
to identify any predictive bioinformatic signals. A genome-wide
study of allele-specific splicing, using an experimental rather than a
bioinformatic approach, is now required.



intron–exon boundary that is the strongest predictor of
splicing phenotype. When we analysed the effects of the SNP
nearest the intron–exon boundary of each event, a clear
effect of genotype on relative abundance of each product was
found. The measured ratios of the two splice products are
plotted by genotype in Figure 2. The magnitude of allele-
specific effect was similar for each gene and represented an
approximately a 2-fold additive effect on the ratio of splice
isoforms. In four out of the six events, the minor allele was
associated with an increased abundance of mRNA with the
exon-skipping event. For the other two (RMB23 and
ZDHHC6), the minor allele was associated with an increased
abundance of the full length mRNA. These data suggest that
cis-acting variation is directly modulating the pattern of
observed alternative splicing at these loci.

For five of the six events, there is an apparent dose-
dependent effect with larger effects seen in homozygotes
compared with heterozygotes. For the CASP3 event, the effect
of the SNP on relative abundance of the two transcript
isoforms was only seen in the homozygous state. The effect of
the CASP3 SNP in the homozygous state was nevertheless
clear-cut and repeatable. We were puzzled as to why we were
unable to detect an effect when the SNP was present on only
one chromosome since a cis-acting mechanism of action
seems most likely. One possible explanation is that when only
one chromosome carries the splicing SNP, up-regulation of
expression from the other chromosome compensates for the
loss of the full-length product. To test this hypothesis, we
quantified the relative abundance of CASP3 transcripts
derived from each chromosome in LCLs from 16 unrelated
CEPH individuals heterozygous for the rs4647603 CASP3
exonic SNP. These experiments showed that all 16 hetero-
zygous individuals had a higher relative abundance of
transcripts containing the rs4647603 G allele compared to
those with the A allele (on average 2.7 times more G than A,
Figure S2). In the homozygous state, the A allele is associated
with increased exon skipping. In the heterozygous state, the
relative proportions of the full-length and exon-skipped
products appear unchanged. The higher relative abundance
of CASP3 transcripts containing the rs4647603 G allele
suggests increased expression of CASP3 derived from this
chromosome and is consistent with an effect of the rs4647603
A allele on splicing in the heterozygote state.

Splice Site Analysis
Splice site signal scores from the donor and acceptor sites

of the test exons predicted to show alternative splicing were
compared with those from a genome-wide set of constitu-
tively spliced exons (Figure 3). As a group, the test exons had
significantly (p¼1310�5) weaker splice site signal scores than
those from constitutive exons. The difference was greatest for
the exons in which alternative splicing was experimentally
demonstrated. The effect was seen in both donor and
acceptor sites and was slightly more pronounced at the
donor sites. Although the differences in splice site strength
were statistically significant, there was extensive overlap in
splice site scores between the groups (Figure 3).
The potential effects on exonic splice enhancer strength of

the four exonic SNPs shown to correlate with splice pattern
were tested using four different prediction algorithms (see
Materials and Methods). For two SNPs, no effects were
predicted by any of the four models tested. For the other two
SNPs, the results were contradictory (different models
showed both increased and decreased splice enhancer
activity).
There were no differences in the number of SNPs in the 50-

bp regions around the intron–exon junction for the 180
exons that did not show alternative splicing in our exper-
imental model, compared to the 70 exons that did. This
suggests that using the position of known SNPs to select for
exons with allele-specific splicing patterns is unlikely to be
fruitful. Furthermore, of the six exons that showed allele-
specific splicing patterns, three showed splicing patterns that
were correlated with SNPs situated more than 50 bases from
the intron–exon junctions.

Minigene Analysis Confirms Modulation of Splicing by
SNP Genotype
To investigate whether SNP genotype directly defined

splice isoform pattern, we carried out minigene analysis in
two genes. In ZDHHC6, the test SNP was situated in the
middle of the exon, 99 bp away from the intron–exon
boundary. In SH3YL1, the test SNP was also exonic, but in this
case only 2 bp away from the intron–exon boundary. For each
gene, we independently cloned two fragments that differed
only by the alleles of the SNP correlated with exon skipping.
Each fragment consisted of the alternatively spliced exon plus

Table 1. Details of the Alternatively Spliced Exons and Associated SNPs

Gene ID Chromosome Exona Exon Sizeb Frameshift Position of SNP SNP ID Minor Allele

Frequency

Major

Allele

Minor

Allele

ZDHHC6 10 5/11 162 No exonic, þ99 bp from 59 I/E rs2306159 0.34 Tc C

CD46 1 8/14 45 No intronic, þ23 bp into 39 intron rs2724374 0.18 T Gc

SH3YL1 2 11/12 61 No exonic, þ2 bp from 59 I/E rs2290911 0.31 T Cc

CASP3 4 2/8 171 No exonic, þ56 bp from 59 I/E rs4647603 0.19 G Ac

RBM23 14 6/14 54 No exonic, þ7 bp from 59 I/E rs2295682 0.35 Ac G

IFI16 1 8/12 168 No intronic, �1,300 bp from 59 I/E rs2994824 0.07 A Gc

I/E, intron/exon junction.
aNumber of the exon skipped and the total number of exons in the gene.
bExon size is in bases.
cAllele associated with increased exon skipping.
doi:10.1371/journal.pgen.0030099.t001

PLoS Genetics | www.plosgenetics.org June 2007 | Volume 3 | Issue 6 | e991011

SNPs Modulate Alternative Splicing



180 bp of intronic sequence on each side. The fragments were
inserted into a minigene splicing vector that was used to
transfect HEK293T cells. After 48 h, mRNA was extracted
from the cells and the relative abundance of mRNA (full
length and alternative spliced) transcripts derived from the
minigene plasmid was determined. For both genes we
observed that the SNP allele associated with increased exon

skipping in the LCL experiments was also associated with
increased exon skipping in the minigene system (Figure 4).
For four genes (SH3YL1, ZDHHC6, IFI16, and RNPC4) there
were between four and ten SNPs identified on the HAPMAP
resource that were in complete LD with the SNP nearest the
intron–exon boundary. All but one of these SNPs lay more
than 2 kb away from the exon of interest and are not testable

Figure 1. Correlation of Splice Pattern with SNP Genotype

In each graph, Pearson’s r is plotted against relative chromosomal SNP position for all SNPs identified by the HAPMAP consortium within a 500-kb
region surrounding the relevant gene. For each graph, the HUGO gene name is given and the SNP nearest to the intron–exon boundary at either the 59
or 39 end of the skipped exon is highlighted. For each gene this SNP was either within the skipped exon or in the flanking intron (see Table 1). Each of
the six genes is between 15 and 50 kb in size.
doi:10.1371/journal.pgen.0030099.g001
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Figure 2. Relative Transcript Abundance Grouped by SNP Genotype

The ratio of transcript abundance (skipped product/full-length product) for each of the six alternative splicing events that showed consistent variation
between different individuals is shown. For each gene, the ratios are grouped by the genotype of the SNP nearest the intron–exon junction of the
splicing event.
doi:10.1371/journal.pgen.0030099.g002
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using the minigene system. We cannot discount an effect of
these more distant SNPs on the observed allele-specific
splicing event.

Discussion

This study describes reproducible phenotypic variation in
splicing among individuals, in each case arising from a simple
cassette exon event that is associated with genotypic variation
in SNPs close to the corresponding intron–exon boundaries.
Our starting point was to screen for phenotypic variation in
splicing in 22 lymphoblastoid cell lines, and then to identify
SNPs associated with this phenotypic variation. Interestingly,
the splicing-associated SNPs identified experimentally in this
study did not show any clear difference in position or
sequence context from other SNPs that were not associated
with splicing variation.

The mechanisms by which alternative splicing is regulated
are poorly understood. Exon recognition and splicing
requires the presence of basic ‘‘classic’’ splice sites (the
branch point, polypyrimidine tract, and the 39 and 59 splice
sites). The efficiency of the splicing process can be affected in
some exons by the presence of auxiliary or modulating
elements (Figure 5). The consensus sequences for the known
modulating elements are degenerate and frequently found
throughout the genome. DNA sequence variation can
modulate alternative splicing, and to date attention has
focused on disease-causing cis-acting mutations affecting the
use of constitutive and alternative splice sites, together with

trans-acting variants that affect the basal splicing machinery
and factors regulating splicing [22]. In contrast to mechanistic
studies of disease process, our study started from the premise
of defining simple cassette exon events in which there was
significant variation among a panel of LCLs and relating this
to genotypic diversity. We found consistent variation in six
out of 70 simple cassette exon events, and for each of these six
events we found a clear relationship between genotype and
splice phenotype. Analysis of SNPs typed by the International
HapMap project and those derived experimentally by
resequencing showed that the SNPs with the strongest
correlation were those closest to the intron–exon boundaries
of the splicing events. For two of the SNPs we carried out
minigene experiments, and both showed cis-acting effects on
gene splicing using this system.
It is perhaps not surprising that we were unable to detect

any specific patterns in the sequence context of the six SNPs
identified in this study, given the apparent degenerate nature
of consensus sequences that bind splice modulator proteins.
Overall the splice-site strengths of the exons that were
predicted to be skipped by the EBI-ASD database were
weaker than those of constitutive exons, and those that we
were able to demonstrate to have alternative splicing in our
experimental system had the weakest splice site strength.
However, there was significant overlap among the groups,
and splice site strength cannot be used to identify the most
likely exons to study. Equally, the presence of SNPs close to
the intron–exon boundaries did not differ between those
exons that did and did not show alternative splicing,
suggesting that selecting exons to study according to whether
there is a ‘‘splice site SNP’’ (defined for example on Ensembl
as a SNP lying within 10 bp of the intron–exon junction) will

Figure 3. Comparison of Splice Site Scores Using a Density Plot

The distribution of splice site scores was compared using a density plot
generated using the statistical package R (http://cran.uk.r-project.org).
Each line shows the distribution of splice site scores for three different
sets of exons: the black line (set A) shows scores for a genome-wide set
of constitutive exons (n¼7431), the green line (set B) shows the scores
from the experimental test set of exons predicted to be skipped but that
did not show skipping in the CEPH system (n¼ 180), and the red line (set
C) represents the scores from the experimental test set that were
predicted to be skipped and that actually demonstrated skipping in the
CEPH system (n ¼ 70). The distributions of splice site scores for set A
(mean 18.5) differed from set B (mean 16.6) and set C (mean score 15.7),
p , 0.0001 for both comparisons.
doi:10.1371/journal.pgen.0030099.g003

Figure 4. Minigene Transcript Analysis

The graph shows the relative abundance of the two transcripts derived
from the minigene plasmid, expressed as a ratio of the shorter transcript
(with the test exon skipped) to the longer ‘‘full length’’ transcript. Data
shown are means of four measurements with confidence intervals. For
each test exon there are significant differences in exon exclusion
between the two tested allelic variants (T or C for each gene).
doi:10.1371/journal.pgen.0030099.g004
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not enrich for those SNPs that actually affect the splicing
process. Only two out of the six SNPs identified in this study
were within 10 bp of an intron–exon junction. The exonic
SNPs that correlated with splice pattern in this study showed
no consistent effects on splice enhancer strength using four
different predictive models. Thus, the sequence context or
position of the SNPs would not identify those likely to
influence splicing efficiency. A different approach to identify
allele-specific alternative splicing events that does not rely on
the sequence context or the position of SNPs is to identify
allele-specific RNA isoforms from EST databases [18]. This
approach requires the presence of an exonic SNP not
involved in the alternative splicing event to be in high LD
with the functional splicing SNP and limits its broad
applicability. When applied to our data using HAPMAP
SNPs, only the events in ZDHHC6 and RBM23 have the
potential of being identified. The EST method is prone to
false-positive results, particularly for low frequency SNPs, if
there are insufficient representative ESTs available in the
database. We suggest that an experimental approach, rather
than a bioinformatic approach, will be necessary to identify
splicing phenotype-associated SNPs, at least until more is
learned about how these SNPs exert their functional effects.
We believe that identifying alternative splicing events is the
essential first step in this experimental approach. While splice
enhancers and suppressors are found in constitutive exons
and their flanking introns, these exons by definition are not
observed to show alternative splicing. This suggests either
that no SNPs occur within functionally important splice
elements or that the splice enhancer/suppressor signals are
not required for the accurate splicing of these exons. The
relative positions and sequence context of experimentally
identified splicing SNPs can be used to refine predictive
algorithms and may provide new insights into which of the
many exonic and intronic splice modulator sequences
present in every gene are functionally important in regulat-
ing the splicing process.

Our method of isoform quantification and pooling strategy
meant that our ability to detect rare events was limited.
Dilution experiments determined that both the full-length
and exon-skipped transcript products were detectable even
when their starting concentrations differed by 100-fold. Thus,
provided that both transcripts were present in at least one of
the 22 cell lines, and the minor transcript was present at an
abundance of 30% or greater, the event would be detected. If
the rare transcript was present in three or more cell lines, the

sensitivity increased to a lower abundance of 10%. The
method we used is not readily scalable to whole genome
analysis. Microarray-based approaches to the analysis of
alternative splicing have been published [23,24]. These
approaches can analyse the splicing patterns of many
thousands of exons and have been used to distinguish splicing
patterns seen in different tissues. Interpretation is complex,
and for some arrays sensitivity is low and false positive rates
are high. Although it is likely that the technology will
improve, these approaches have not yet been shown to have
the sensitivity to detect the level of variation we observed in
this study, particularly for low-abundance isoforms. The
advantage of the system we describe is targeted amplification
of the splicing event of interest, which we believe provides
greater sensitivity. Nevertheless, use of an array-based
approach is likely to become the most efficient method to
identify allele-specific splicing effects at a whole genome
level.
For the splicing phenotypes, our experiments using the

minigene system suggest that the SNP closest to the intron–
exon boundary that shows correlation with the splicing
phenotype is very likely to be the functional element. For
four of the genes in this study there were additional SNPs in
complete LD with the SNP nearest the intron–exon boun-
dary, and although most were over 2 kb away from the exon-
skipping event it is possible that the presence of these SNPs
influence the splicing process. Further work is needed to
define the consequences of the loss of these exons on the
functional activities of the encoded protein isoforms and in
the levels of expression. There is already evidence that
biological consequences of the alternative splicing event we
describe in CD46 are likely to be important. CD46 is a cell-
surface glycoprotein involved in regulation of complement
activation and it acts as a receptor for several pathogens
including measles virus, Streptococcus pyogenes, Neisseria gonor-
rhea, and Neisseria meningitidis [25]. CD46 is known to have two
protein isoforms with distinct cytoplasmic tails of 16 or 23
amino acids generated by alternative splicing of exon 8 [26].
These different tails have pivotal effects on the intracellular
precursor processing of, and signal transduction by, the CD46
protein [26–28]. We have demonstrated that the inclusion of
exon 8 is strongly associated with the presence of a nearby
SNP (rs2724374), and whether or not this SNP is directly
functionally responsible for the pattern, rs2724374 is a
genetic marker for what appears to be an important func-
tional protein isoform. Variants of CD46 have been associated
with outcome in hemolytic uremic syndrome [29], but genetic
association studies using the rs2724374 SNP have not been
reported. For CASP3 we have shown that, in individuals who
are heterozygous for the splicing SNP rs4647603, there
appears to be compensatory upregulation of expression of
the full-length CASP3 isoform derived from the other
chromosome. This suggests some functionally important
difference between the two CASP3 isoforms. The consequen-
ces of the allele-specific splice events we have defined are
summarised in Table 2.
In this study we focused on only one form of splicing

variation in a relatively small number of genes. Larger-scale
whole genome studies investigating additional splicing
patterns, such as alternative donor and acceptor sites, will
be needed to determine the extent of SNP-associated splicing
phenotypes. Our findings raise the possibility that SNP effects

Figure 5. Representation of Classic and Auxiliary Splice Sites and Binding

Factors

In this example, a SNP (represented by a star) in an exonic splice
enhancer sequence has disrupted binding of the SR proteins, reducing
the efficiency of exon definition and potentially leading to an alternative
splice site being used. Similar disruption could affect exonic splice
suppressor, intronic splice enhancer, and intronic splice suppressor
elements.
ESE, exonic splice enhancer; ESS, exonic splice suppressor; ISE, intronic
splice enhancer; ISS, exonic splice suppressor; and p-py, polypyrimidine.
doi:10.1371/journal.pgen.0030099.g005
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on splicing may be at least as prevalent in the genome as
those on overall gene expression [11]. SNPs that predict
splicing phenotypes are likely to be important markers to
include in genetic association studies of complex diseases.

Materials and Methods

Exon selection. A number of different publicly available databases
of observed mRNA transcripts are available. We used the EBI-ASD
(www.ebi.ac.uk/asd), which is a database of computationally de-
lineated alternative splice events derived from alignments of ex-
pressed sequence tags or cDNA sequences with the corresponding
genomic sequences for each gene. Using this resource, we identified
transcripts where at least two isoforms are detected in which
complete exons (called simple cassette exon events on the EBI-ASD)
are skipped. These events generally result in transcripts that differ
sufficiently in size to be readily distinguished by simple agarose
electrophoresis. Primers were designed in the flanking exons, and
product sizes for the full length and exon-skipped products were
calculated.

Cell lines. LCLs from 22 unrelated CEPH individuals selected from
the HapMap collection were obtained from the Coriell Institute for
Medical Research. Cells were cultured at 37 8C in a 5% CO2
environment using RPMI 1640 cell culture medium with 10% fetal
calf serum, 200 mM L-glutamine, penicillin, and streptomycin. Cell
density was maintained between 200,000 and 800,000 cells/ml. DNA
and RNA were each extracted from 10 million cell aliquots.
Constitutive expression levels in CEPH cell lines were defined for
pooled RNA from four LCLs using an Affymetrix human U133A
expression microarray (Affymetrix, http://www.affymetrix.com).

RNA and cDNA synthesis. RNA was extracted from cell pellets
using TRIREAGENT (Sigma-Aldrich, http://www.sigmaaldrich.com),
chloroform, isopropanol, and ethanol precipitation. Total RNA was
quantified using UV spectrophotometry. mRNA was extracted from
20 lg of total RNA aliquots using the Dynabeads mRNA purification
kit (Invitrogen, http://www.invitrogen.com), and was cDNA synthes-
ised using Stratascript reverse transcriptase (Stratagene, http://www.
stratagene.com) with oligo(dT) primers. 1 ll of cDNA was derived
from 100 ng of total RNA. Parallel reverse transcriptase negative
controls were generated in all cDNA syntheses. PCRs were carried out
at standard conditions (30 cycles, melting at 94 8C, annealing at 58 8C,
and extension at 72 8C, each for 30 s) using BioTaq DNA polymerase
(Bioline, http://www.bioline.com). Primers were designed in the exons
flanking the simple cassette exon event. Two products of different
lengths were predicted to be amplified, one including the cassette
exon and a shorter product lacking the cassette exon. The products
were resolved on 2% agarose gels.

Detecting variation among samples. Pooled cDNA from all 22 cell
lines was used to test each set of primer pairs. Identification of the

expected full length product and the shorter product lacking the
cassette exon (and no other products) was used to confirm that the
predicted alternative splicing event was detectable in our exper-
imental system. Primer sets showing the two expected RT-PCR
products were subsequently taken forward to determine if there was
variation in the proportion of the two products among different
individual cell lines. Detection of variation among cell lines was
carried by performing RT-PCR on RNA from each cell line
separately. For each cell line, the relative amount of each of the
two RT-PCR products (representing the full length and skipped
mRNA) was quantified using image analysis of the products visualised
on ethidium bromide gels (ImageQuant software; Amersham Bio-
sciences, http://www4.gelifesciences.com). Since both RT-PCR prod-
ucts were amplified by the same primer sets, the RT-PCR was truly
competitive, allowing the accurate determination of their relative
abundance [30]. To assess the robustness of the ethidium bromide–
based quantification method it was compared with quantification
using a fluorescence-based technique. Primer pairs with a 59 FAM
modification were used to amplify exon-skipping events from six
different genes using cDNA from nine different LCLs. The amplicons
ranged in size from 137 bp to 617 bp. The relative amounts of PCR
products for each of the 54 reactions were quantified using GeneScan
software (Amersham Biosciences). The ratios of quantified products
from this method showed excellent correlation with those derived
from image quantification of ethidium bromide–stained gels (corre-
lation coefficient 0.93).

We determined the sensitivity of the ethidium bromide quantifi-
cation system using known starting concentrations of DNA fragments
of different lengths, and then quantifying the resulting amplicons. We
were able to show that over a range of different product signal
intensities, differences in the ratios of the different sized starting
material of 10% or greater could be detected reliably (Figure S3). The
sensitivity of this method was independent of cycle number.

Each of the 22 cell line samples was assayed in duplicate. The mean
ratio of the abundance of the two RT-PCR products from each
primer set was calculated for each cell line. When the relative
abundance for an individual cell line differed by more than 10%
from the average value for the full set of 22 samples, the experiment
was repeated using a fresh aliquot of cell culture material. Those
events that gave consistent differences in the repeat analysis were
then analysed further.

SNP identification. Genotypes for SNPs positioned within 250 kb
on either side of the exon-skipping event were downloaded from the
International HapMap Project Web site (http://www.hapmap.org) [3].
For each event with reproducible variation, we also resequenced the
skipped exon and 150 base pairs of the flanking introns to determine
if additional SNPs close to the event could be identified, using DNA
from each of the 22 LCLs. Sequencing was carried out using purified
PCR products generated with M13-tagged primers.

Genotype correlation analysis. For each splicing event with
reproducible variation, we calculated Pearson’s correlation between

Table 2. Biological Consequences of Identified Allele-Specific Alternative Splicing Events

Gene Protein Product Consequence of Allele-Specific

Splicing Event

Disease Relevance

ZDHHC6 Likely palmitoyltransferase. Contains zinc

finger–like metal binding site.

Loss of 54 amino acids. SNP in ZDHHC8 that influences retention

of intron 4 associated with schizophrenia [21].

CD46 Cell surface glycoprotein involved in regulation

of complement activation; acts as a receptor

for several pathogens.

Loss of 15 amino acids resulting

in functionally different protein

isoform.

Association between CD46 SNPs and hemolytic

uremic syndrome. Effects on infectious disease

susceptibility not studied.

SH3YL1 SH3 domain–containing protein. Loss of 19 amino acids. Not studied.

CASP3 Caspase-3, a major effector caspase in the

apoptotic pathway.

Loss of exon 2 from the 39 UTR and

upregulation of full-length transcript.

Not studied.

RBM23 (also known as

splicing factor SF2)

Serine-rich alternative splicing factor SF2/ASF

that binds to exonic splice enhancer

motifs and modulates splicing specificity

Loss of 19 amino acids Not studied.

IFI16 Member of HIN-200 gene family, a target of

interferon-gamma. Postulated role in apoptosis

and inflammation.

Loss of 56 amino acids from amino-acid

repeat region involved in transcriptional

repression.

Not studied.

doi:10.1371/journal.pgen.0030099.t002
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the ratio of band intensities for the two RT-PCR products and the
SNP genotype. In this analysis, we have assumed that any functional
SNPs will be cis-acting, and thus expect to see an effect that is more
pronounced in homozygotes than in heterozygotes. Thus, for the
purposes of the correlation analysis, genotypes were coded 1, 2, and 3
to represent the genotypes AA, Ab, and bb, where A represents the
major allele and b represents the minor allele. The value of Pearson’s
correlation was determined for each SNP in each 500-kb region.

Splice site analysis. Splice donor and acceptor sequences were
scored using a position specific score matrix (PSSM) method [31].
Alignments of mRNA and EST sequences to the reference human
genomic assembly (version: hg17) were taken from the University of
California Santa Cruz genome database (http://genome.ucsc.edu) and
used to define a population of well-supported (appearing in more
than nine transcripts) constitutive splice sites. These were used to
train the PSSMs, considering three exonic, six intronic nucleotides at
the splice donor, and three exonic, 18 intronic nucleotides for the
splice acceptor PSSM [31]. We compared the splice site scores of the
250 exons predicted by EBI-ASD to show exon skipping (subdivided
into those that showed exon skipping in our experimental model and
those that did not) with the splice site scores of 7,431 exons that were
always found in mRNA transcripts (constitutively present) randomly
selected from the genome. We sought to determine if splice site
strength could predict those exons that were likely to be skipped. We
also sought to determine if the SNP density near to the intron–exon
boundaries differed in those exons that showed alternative splicing
compared to those that did not. Finally, the sequence context of SNPs
correlated with specific splice patterns was analysed to determine
whether they affected know splice enhancer or silencer elements,
using four published algorithms: http://ast.bioinfo.tau.ac.il/ESR.htm
[32], http://genes.mit.edu/burgelab/rescue-ese [33], http://cubweb.
biology.columbia.edu/pesx [34], and http://rulai.cshl.edu/tools/ESE
[35].

Minigene analysis. Both allelic forms of the SNPs showing
correlation with splice patterns in the ZDHHC6 and SH3YL1 genes
were cloned into a minigene splicing vector (pALTER MAX modified
splice vector, http://www.promega.com). Within this modified splicing
vector, the multiple cloning site (MCS) of the conventional pALTER
MAX minigene vector was replaced by an insert, so that the MCS falls
within an intron instead of being within expressed sequence. The new
insert contains the 59 donor splice site from the human b-globin gene
intron 1, the MCS, and the 39 acceptor splice site from the intron of
an immunoglobulin gene. When a PCR product with primers
designed within introns is used, all donor and acceptor splice sites
are present and thus the construct is spliced correctly. The fragments
cloned consisted of the exon plus an average of 180 bases of flanking
intron. All inserts were confirmed by fluorescent sequencing.
HEK293T cells were transfected following the manufacturer’s
protocol (FuGENETM6, Boehringer Mannheim). Cells (3 3 105) were
transfected with 1 lg of DNA and were harvested after 48 h. The
relative abundance of the full length and alternatively spliced mRNA
derived from the plasmid was analysed using the same methodology
as described for the CEPH cell RNA.

Allele-specific transcript quantification. Allele-specific differences
in CASP3 expression were determined using a transcribed marker
polymorphism (rs4647603) in the exon of interest to distinguish the
relative abundance of transcript containing this exon arising from
the two alleles. Sixteen unrelated CEPH individuals heterozygous for
the transcribed marker were selected from the HapMap collection
and obtained from the Coriell repository. RNA and cDNA from each
individual were prepared as described above. DNA was extracted
using a purification kit (Blood and Cell Culture DNA, Nucleon
BACC2; Tepnel, http://www.tepnel.com). For each individual, data
were obtained from nine replicates from each of two independent
cultures. Allele-specific transcript quantification was carried out by
single nucleotide primer extension and MALTI-TOF analysis using a
SpectroREADER MassArray (Sequenom, http://www.sequenom.com)
mass spectrometer as described previously [7]. RNA ratio values were
normalized with the ratios observed for genomic DNA.

Supporting Information

Figure S1. Relative Transcript Abundance Grouped by SNP Genotype
for Nine Additional Unrelated Cell Lines

The ratio of transcript abundance (skipped product/full length
product) for each of the six alternative splicing events was accurately
predicted by the SNP genotype.

Found at doi:10.1371/journal.pgen.0030099.sg001 (355 KB DPF).

Figure S2. Allele-Specific Differences in CASP3 Expression

Allelic imbalances were determined using an exonic polymorphism to
distinguish the relative abundance of transcript arising from the two
alleles (G/A) in 16 unrelated CEPH heterozygous individuals. RNA
ratios were normalized with the DNA ratios and the data plots
represent the average from two independent experiments. Variability
between biological replicas was small (mean of relative difference of
9%)

Found at doi:10.1371/journal.pgen.0030099.sg002 (237 KB DPF).

Figure S3. Sensitivity of Detection Assay

Relationship between the measured ratios of band intensity of 2
fragments of DNA after amplification using competitive PCR
compared with ratios of the two fragments in the starting material.
The two DNA templates were themselves PCR products of different
sizes (250 and 463 bp) amplified with M13-tagged primers. These PCR
products were diluted and quantified using the picogreen system. A
range of different ratios of each of the starting templates was then
generated by mixing different volumes together. The mixed samples
were then amplified in a single reaction using the M13 primer set,
generating two products of different lengths. The products were run
out on agarose gels stained with ethidium bromide and visualised
with ultraviolet light. Digital photographs of the images were
quantified using ImageQuant software (Amersham Biosciences). Each
point on the graph represents the mean of eight measurements for
each ratio; the bars show 95% confidence intervals. The assay is
designed to be sensitive to changes in relative abundance rather than
to detect actual molar ratios. Thus, for example, an assay result
showing a measured ratio of 3:1 compared with a known ratio of 1:1
does not affect the sensitivity of the assay to detect differences in
actual starting concentrations.

Found at doi:10.1371/journal.pgen.0030099.sg003 (257 KB DPF).

Accession Numbers

The National Center for Biotechnology Information (NCBI) Entrez
Gene (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼gene) acces-
sion numbers for the genes discussed in this paper are CASP3, 836;
CD46, 4179; IFI16, 3428; RBM23, 55147; SH3YL1, 26751; and ZDHHC6,
64429.
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