300 research outputs found

    Genome-Wide Scan Identifies Loci Associated with Classical BSE Occurrence

    Get PDF
    Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Sequence variations in the coding region of the prion gene (PRNP) have been associated with acquired transmissible spongiform encephalopathy (TSE) susceptibility in mammals; however, this is not the case in cattle. It has been hypothesized that genes, in addition to the prion gene, contribute to genetic susceptibility of acquired TSEs. Accordingly, genetic studies of classical BSE in cattle identified loci other than PRNP that are associated with disease incidence. The objective of this study was to utilize a genome-wide association study to test for genetic loci associated with classical BSE. The samples include 143 BSE affected (case) and 173 unaffected half sib (control) animals collected in the mid 1990s in Southern England. The data analysis identifies loci on two different chromosomes associated with BSE disease occurrence. Most notable is a single nucleotide polymorphism on chromosome 1 at 29.15 Mb that is associated with BSE disease (p = 3.09E-05). Additionally, a locus on chromosome 14, within a cluster of SNPs showed a trend toward significance (p = 5.24E-05). It is worth noting that in a human vCJD study markers on human chromosome 8, a region with shared synteny to the region identified on cattle chromosome 14, were associated with disease. Further, our candidate genes appear to have plausible biological relevance with the known etiology of TSE disease. One of the candidate genes is hypothetical gene LOC521010, similar to FK506 binding protein 2 located on chromosome 1 at 29.32 Mb. This gene encodes a protein that is a member of the immunophilin protein family and is involved in basic cellular processes including protein folding. The chromosomal regions identified in this study and candidate genes within these regions merit further investigation

    A 2cM genome-wide scan of European Holstein cattle affected by classical BSE

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (<it>PRNP</it>) are associated with classical BSE disease susceptibility. However, two bovine <it>PRNP </it>insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of <it>PRNP </it>appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic.</p> <p>Results</p> <p>Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the <it>PRNP </it>in the family sample set. The only association found in the <it>PRNP </it>region was in the case-control sample set and this was not significant after multiple test correction. The genome scan of the case-control animals did not identify any associations that passed a stringent genome-wide significance threshold.</p> <p>Conclusions</p> <p>Several regions of the genome are statistically associated with the incidence of classical BSE in European Holstein cattle. Further investigation of loci on chromosomes 2, 14, 16, 20, 21 and 28 will be required to uncover any biological significance underlying these marker associations.</p

    An assessment of population structure in eight breeds of cattle using a whole genome SNP panel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from <it>Bos indicus </it>and <it>Bos taurus</it>.</p> <p>Results</p> <p>Two thousand six hundred and forty one single nucleotide polymorphisms (SNPs) spanning all of the bovine autosomal genome were genotyped in Angus, Brahman, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black, Limousin and Nelore cattle. Population structure was examined using the linkage model in the program STRUCTURE and Fst estimates were used to construct a neighbor-joining tree to represent the phylogenetic relationship among these breeds.</p> <p>Conclusion</p> <p>The whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. The greatest level of genetic differentiation was detected between the <it>Bos taurus </it>and <it>Bos indicus </it>breeds. When the <it>Bos indicus </it>breeds were excluded from the analysis, genetic differences among beef versus dairy and European versus Asian breeds were detected among the <it>Bos taurus </it>breeds. Exploration of the number of SNP loci required to differentiate between breeds showed that for 100 SNP loci, individuals could only be correctly clustered into breeds 50% of the time, thus a large number of SNP markers are required to replace the 30 microsatellite markers that are currently commonly used in genetic diversity studies.</p

    Whole genome linkage disequilibrium maps in cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle.</p> <p>Results</p> <p>Linkage disequilibrium was assessed using r<sup>2 </sup>among all pairs of syntenic markers within eight breeds of cattle from the <it>Bos taurus </it>and <it>Bos indicus </it>subspecies. <it>Bos taurus </it>breeds included Angus, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while <it>Bos indicus </it>breeds included Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were used to estimate pairwise r<sup>2 </sup>values. We found that the extent of linkage disequilibrium is no more than 0.5 Mb in these eight breeds of cattle.</p> <p>Conclusion</p> <p>Linkage disequilibrium in cattle has previously been reported to extend several tens of centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings suggest that 30,000–50,000 loci will be needed to conduct whole genome association studies in cattle.</p

    A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575)

    Get PDF
    PURPOSE: To establish the recommended phase II dose of the oral γ-secretase inhibitor RO4929097 (RO) in combination with gemcitabine; secondary objectives include the evaluation of safety, tolerability, pharmacokinetics, biomarkers of Notch signaling and preliminary anti-tumor activity. METHODS: Patients with advanced solid tumors were enrolled in cohorts of escalating RO dose levels (DLs). Tested RO DLs were 20 mg, 30 mg, 45 mg and 90 mg. RO was administered orally, once daily on days 1-3, 8-10, 15-17, 22-24. Gemcitabine was administered at 1,000 mg/m(2) on d1, 8, and 15 in 28 d cycles. Dose limiting toxicities (DLTs) were assessed by CTCAE v4. Serial plasma was collected for RO (total and unbound) and gemcitabine pharmacokinetic analysis. Biomarkers of Notch signaling were assessed by immunohistochemistry in archival tissue. Antitumor activity was evaluated (RECIST 1.1). RESULTS: A total of 18 patients were enrolled to establish the recommended phase II dose. Of these, 3 patients received 20 mg RO, 7 patients received 30 mg RO, 6 patients received 45 mg RO and 2 patients received 90 mg RO. DLTs were grade 3 transaminitis (30 mg RO), grade 3 transaminitis and maculopapular rash (45 mg RO), and grade 3 transaminitis and failure to receive 75 % of planned RO doses secondary to prolonged neutropenia (90 mg); all were reversible. The maximum tolerated dose was exceeded at 90 mg RO. Pharmacokinetic analysis of both total and free RO confirmed the presence of autoinduction at 45 and 90 mg. Median levels of Notch3 staining were higher in individuals who received fewer than 4 cycles (p = 0.029). Circulating angiogenic factor levels did not correlate with time to progression or ≥ grade 3 adverse events. Best response (RECIST 1.1) was partial response (nasopharyngeal cancer) and stable disease > 4 months was observed in 3 patients (pancreas, tracheal, and breast primary cancers). CONCLUSIONS: RO and gemcitabine can be safely combined. The recommended phase II dose of RO was 30 mg in combination with gemcitabine 1,000 mg/m(2). Although RO exposure was limited by the presence of autoinduction, RO levels achieved exceeded the area under the concentration-time curve for 0-24 h (AUC(0-24)) predicted for efficacy in preclinical models using daily dosing. Evidence of clinical antitumor activity and prolonged stable disease were identified

    Genetically inferred birthweight, height, and puberty timing and risk of osteosarcoma

    Get PDF
    INTRODUCTION: Several studies have linked increased risk of osteosarcoma with tall stature, high birthweight, and early puberty, although evidence is inconsistent. We used genetic risk scores (GRS) based on established genetic loci for these traits and evaluated associations between genetically inferred birthweight, height, and puberty timing with osteosarcoma. METHODS: Using genotype data from two genome-wide association studies, totaling 1039 cases and 2923 controls of European ancestry, association analyses were conducted using logistic regression for each study and meta-analyzed to estimate pooled odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were conducted by case diagnosis age, metastasis status, tumor location, tumor histology, and presence of a known pathogenic variant in a cancer susceptibility gene. RESULTS: Genetically inferred higher birthweight was associated with an increased risk of osteosarcoma (OR =1.59, 95% CI 1.07-2.38, P = 0.02). This association was strongest in cases without metastatic disease (OR =2.46, 95% CI 1.44-4.19, P = 9.5 ×10-04). Although there was no overall association between osteosarcoma and genetically inferred taller stature (OR=1.06, 95% CI 0.96-1.17, P = 0.28), the GRS for taller stature was associated with an increased risk of osteosarcoma in 154 cases with a known pathogenic cancer susceptibility gene variant (OR=1.29, 95% CI 1.03-1.63, P = 0.03). There were no significant associations between the GRS for puberty timing and osteosarcoma. CONCLUSION: A genetic propensity to higher birthweight was associated with increased osteosarcoma risk, suggesting that shared genetic factors or biological pathways that affect birthweight may contribute to osteosarcoma pathogenesis

    PRNP Haplotype Associated with Classical BSE Incidence in European Holstein Cattle

    Get PDF
    Background: Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease of cattle. The bovine prion gene (PRNP) contains regions of both high and low linkage disequilibrium (LD) that appear to be conserved across Bos taurus populations. The region of high LD, which spans the promoter and part of intron 2, contains polymorphic loci that have been associated with classical BSE status. However, the complex genetic architecture of PRNP has not been systematically tested for an association with classical BSE. Methodology/Principal Findings: In this study, haplotype tagging single nucleotide polymorphisms (htSNPs) within PRNP were used to test for association between PRNP haplotypes and BSE disease. A combination of Illumina goldengate assay, sequencing and PCR amplification was used to genotype 18 htSNPs and 2 indels in 95 BSE case and 134 control animals. A haplotype within the region of high LD was found to be associated with BSE unaffected animals (p-value = 0.000114). Conclusion/Significance: A PRNP haplotype association with classical BSE incidence has been identified. This result suggests that a genetic determinant in or near PRNP may influence classical BSE incidence in cattle

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore