139 research outputs found

    Part 1: a process view of nature. Multifunctional integration and the role of the construction agent

    Get PDF
    This is the first of two linked articles which draw s on emerging understanding in the field of biology and seeks to communicate it to those of construction, engineering and design. Its insight is that nature 'works' at the process level, where neither function nor form are distinctions, and materialisation is both the act of negotiating limited resource and encoding matter as 'memory', to sustain and integrate processes through time. It explores how biological agents derive work by creating 'interfaces' between adjacent locations as membranes, through feedback. Through the tension between simultaneous aggregation and disaggregation of matter by agents with opposing objectives, many functions are integrated into an interface as it unfolds. Significantly, biological agents induce flow and counterflow conditions within biological interfaces, by inducing phase transition responses in the matte r or energy passing through them, driving steep gradients from weak potentials (i.e. shorter distances and larger surfaces). As with biological agents, computing, programming and, increasingly digital sensor and effector technologies share the same 'agency' and are thus convergent

    What is the maximum rate at which entropy of a string can increase?

    Full text link
    According to Susskind, a string falling toward a black hole spreads exponentially over the stretched horizon due to repulsive interactions of the string bits. In this paper such a string is modeled as a self-avoiding walk and the string entropy is found. It is shown that the rate at which information/entropy contained in the string spreads is the maximum rate allowed by quantum theory. The maximum rate at which the black hole entropy can increase when a string falls into a black hole is also discussed.Comment: 11 pages, no figures; formulas (18), (20) are corrected (the quantum constant is added), a point concerning a relation between the Hawking and Hagedorn temperatures is corrected, conclusions unchanged; accepted by Physical Review D for publicatio

    Universal Bound on Dynamical Relaxation Times and Black-Hole Quasinormal Ringing

    Get PDF
    From information theory and thermodynamic considerations a universal bound on the relaxation time τ\tau of a perturbed system is inferred, τ/πT\tau \geq \hbar/\pi T, where TT is the system's temperature. We prove that black holes comply with the bound; in fact they actually {\it saturate} it. Thus, when judged by their relaxation properties, black holes are the most extreme objects in nature, having the maximum relaxation rate which is allowed by quantum theory.Comment: 4 page

    Adaptation and enslavement in endosymbiont-host associations

    Full text link
    The evolutionary persistence of symbiotic associations is a puzzle. Adaptation should eliminate cooperative traits if it is possible to enjoy the advantages of cooperation without reciprocating - a facet of cooperation known in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are widespread, and may have been necessary for the evolution of complex life. The discovery of strategies such as tit-for-tat has been presented as a general solution to the problem of cooperation. However, this only holds for within-species cooperation, where a single strategy will come to dominate the population. In a symbiotic association each species may have a different strategy, and the theoretical analysis of the single species problem is no guide to the outcome. We present basic analysis of two-species cooperation and show that a species with a fast adaptation rate is enslaved by a slowly evolving one. Paradoxically, the rapidly evolving species becomes highly cooperative, whereas the slowly evolving one gives little in return. This helps understand the occurrence of endosymbioses where the host benefits, but the symbionts appear to gain little from the association.Comment: v2: Correction made to equations 5 & 6 v3: Revised version accepted in Phys. Rev. E; New figure adde

    Extension and approximation of mm-subharmonic functions

    Full text link
    Let ΩCn\Omega\subset \mathbb C^n be a bounded domain, and let ff be a real-valued function defined on the whole topological boundary Ω\partial \Omega. The aim of this paper is to find a characterization of the functions ff which can be extended to the inside to a mm-subharmonic function under suitable assumptions on Ω\Omega. We shall do so by using a function algebraic approach with focus on mm-subharmonic functions defined on compact sets. We end this note with some remarks on approximation of mm-subharmonic functions

    Constraints on the Existence of Chiral Fermions in Interacting Lattice Theories

    Full text link
    It is shown that an interacting theory, defined on a regular lattice, must have a vector-like spectrum if the following conditions are satisfied: (a)~locality, (b)~relativistic continuum limit without massless bosons, and (c)~pole-free effective vertex functions for conserved currents. The proof exploits the zero frequency inverse retarded propagator of an appropriate set of interpolating fields as an effective quadratic hamiltonian, to which the Nielsen-Ninomiya theorem is applied.Comment: LaTeX, 9 pages, WIS--93/56--JUNE--P

    An improved method of computing geometrical potential force (GPF) employed in the segmentation of 3D and 4D medical images

    Get PDF
    The geometric potential force (GPF) used in segmentation of medical images is in general a robustmethod. However, calculation of the GPF is often time consuming and slow. In the present work, wepropose several methods for improving the GPF calculation and evaluate their efficiency against theoriginal method. Among different methods investigated, the procedure that combines Riesz transformand integration by part provides the fastest solution. Both static and dynamic images have been employedto demonstrate the efficacy of the proposed methods

    On the order of summability of the Fourier inversion formula

    Get PDF
    In this article we show that the order of the point value, in the sense of Łojasiewicz, of a tempered distribution and the order of summability of the pointwise Fourier inversion formula are closely related. Assuming that the order of the point values and certain order of growth at infinity are given for a tempered distribution, we estimate the order of summability of the Fourier inversion formula. For Fourier series, and in other cases, it is shown that if the distribution has a distributional point value of order k, then its Fourier series is e.v. Cesàro summable to the distributional point value of order k+1. Conversely, we also show that if the pointwise Fourier inversion formula is e.v. Cesàro summable of order k, then the distribution is the (k+1)-th derivative of a locally integrable function, and the distribution has a distributional point value of order k+2. We also establish connections between orders of summability and local behavior for other Fourier inversion problems

    Hawking Radiation and Unitary evolution

    Get PDF
    We find a family of exact solutions to the semi-classical equations (including back-reaction) of two-dimensional dilaton gravity, describing infalling null matter that becomes outgoing and returns to infinity without forming a black hole. When a black hole almost forms, the radiation reaching infinity in advance of the original outgoing null matter has the properties of Hawking radiation. The radiation reaching infinity after the null matter consists of a brief burst of negative energy that preserves unitarity and transfers information faster than the theoretical bound for positive energy.Comment: LaTex file + uuencoded ps version including 4 figure

    Predictability and Semiclassical Approximation at the onset of Black Hole formation

    Get PDF
    We combine analytical and numerical techniques to study the collapse of conformally coupled massless scalar fields in semiclassical 2D dilaton gravity, with emphasis on solutions just below criticality when a black hole almost forms. We study classical information and quantum correlations. We show explicitly how recovery of information encoded in the classical initial data from the outgoing classical radiation becomes more difficult as criticality is approached. The outgoing quantum radiation consists of a positive-energy flux, which is essentially the standard Hawking radiation, followed by a negative-energy flux which ensures energy conservation and guarantees unitary evolution through strong correlations with the positive-energy Hawking radiation. As one reaches the critical solution there is a breakdown of unitarity. We show that this breakdown of predictability is intimately related to a breakdown of the semiclassical approximation.Comment: 26 pages RevTex + 8 figures in a separate postscript fil
    corecore